
 
 

Vietnam Journal of Science and Technology 57 (3) (2019) 344-355 

doi:10.15625/2525-2518/57/2/13166 

A METHOD TO IMPROVE THE TIME OF COMPUTING 

BETWEENNESS CENTRALITY IN SOCIAL NETWORK GRAPH 

Nguyen Xuan Dung
1, *

, Doan Van Ban
2
, Do Thi Bich Ngoc

3
 

1
Hanoi Open University, B101 Nguyen Hien Str., Hai Ba Trung Dist., Ha Noi 

2
Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Dist., Ha Noi 

3
Posts and Telecommunications Institute of Technology, 122 Hoang Quoc Viet Str., Cau Giay 

Dist., Ha Noi 

*
Email: nguyenxuandung@hou.edu.vn 

Received: 14 August 2018; Accepted for publication: 5 December 2018 

Abstract. The Betweenness centrality is an important metric in the graph theory and can be 

applied in the analyzing social network. The main researches about Betweenness centrality often 

focus on reducing the complexity. Nowadays, the number of users in the social networks is 

huge. Thus, improving the computing time of Betweenness centrality to apply in the social 

network is neccessary. In this paper, we propose the algorithm of computing Betweenness 

centrality by reduce the similar nodes in the graph in order to reducing computing time. Our 

experiments with graph networks result shows that the computing time of the proposed 

algorithm is less than Brandes algorithm. The proposed algorithm is compared with the Brandes 

algorithm in term of execution time. 

Keywords: Betweenness centrality, mining graph data, analyzing the social network.  

Classification numbers: 4.10.2. 

1. INTRODUCTION 

In analyzing social network, Betweenness is often used for analyzing, monitoring or finding 

subgroup or community on the social network graph. Betweenness plays an important role in 

spreading information in the network. The higher Betweenness of an object is, the more 

important it is. 

The researches of analyzing social network [1, 2] proposed some measures to analyze some 

structured  form of community and structure of the social network. Measure Betweenness 

centrality is often used. In 1977, Freeman [3, 4] proposed a definition about Betweenness 

centrality. In 2001, Brandes [1] studied about the time of computing Betweenness centrality for 

a graph. It is O(nm+ n
2
logn)  for weight graph with n nodes and m edges; là O(nm) for 

unweighting graph with n nodes and m edges. There are several researches about Betweenness 

centrality [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. However, there researches focused on 

calculating Betweenness centrality in a graph. The problem of minimum the number of edges 

and nodes are not considered much.  



 
 
A method to improve the time of computing Betweenness centrality  in socical network graph 

 

345 

Besides, nowadays the number of users in the social network increase quickly. Thus, the 

researches mentioned above cannot satisfy the computing time of Betweenness centrality of 

huge social networks (e.g., Facebook with billions of users). Betweeness centrality of edges on 

the graph has wide applications in social network analysis problems. The paper proposes the 

reduction of the number of vertices, the number of edges of the graph based on the selection of 

representative vertices with the same Betweenness centrality. Based on the graph reduction 

technique, the paper proposes an algorithm to calculate Betweenness centrality of the edges on 

the graph to reduce the execution time.  

The structure of the paper is: Section 2 represents the materials and methods; Section 3 

shows the results and discussion; The last section is a conclusion.  

2. MATERIALS AND METHODS 

2.1. Background 

We can model the relationships in the social network as a graph G = (V, E), with V is set of 

node, E is a set of edges. Set V represents for members of the social network; E represents the 

relationships between members. Based on graph theory, the structure of the social network can 

be considered as an adjacency matrix A = (aij) ∈{0, 1}
n×n

, with n = |V| and aij = 1 if 2 nodes i and 

j have an edge, if not aij = 0. Then the Betweenness of edges in a graph is defined as follows: 

Definition 1. [16] For Graph G = (V, E) with eE is an edge of graph. With 2 nodes s, t V, 

assuming that σst is the number of sorties path from s to t, and σst(e) is the number of sorties path 

from s to t and visit e. Then, the Betweenness centrality of edge e, called CB(e), is defined as 

follows:  

      ∑
      

   
   

 

We combine the methods of Girvan-Newman [16]  and  Brandes [1, 2] to traverse G = (V, 

E) using BFS(Breadth-First Search) in order to compute Betweenness centrality of edges in G. 

The algorithm traverses using BFS to find the shortest paths from source node to all nodes in G. 

The edges connecting between levels of nodes during BFS from source node X will be built a 

direct graph, no circle, called DAGX (Directed Acyclic Graph). 

Algorithm EBC (Edge- Betweenness centrality) compute Betweenness centrality of two 

edges in DAG (using BFS) [16] 

Input:DAGx – a graph for BFS of G  

Output: CB(e), with all e in DAGx 

// Bottom up for DAGx 

 Find all node t is a leaf of DAGx 

// Node t has no sorted path visits it.  

for v adjacent with t  do {//v  N(t){ 

 e = (v, t); //edge connect v and t, e  E 

 if (deg(t) == 1) then //t is a leaf node in  G 

  CB(e) = W1(t);  // W1(t) is number of similar leaf nodes   



 
 

Nguyen Xuan Dung, Doan Van Ban, Do Thi Bich Ngoc 
 

 

346 

 else  CB(e) = wv / wt;  } 

 Start from edges which are farthest from x: let e = (i, j) in DAGx - i is parent of j  

 

      ( ∑     
  

          ∈            

   )   
  

  
 

 Redo step 2 until i is x. 

2.2. Nodes with similar Betweenness centrality in a graph 

2.2.1. Class of similar leaf nodes 

Social network graphs are often complicated with a huge number of edges and nodes. Thus, 

computing Betweenness centrality is time- consuming.  As we known, the problem of finding 

the shortest path between nodes in graph is NP-hard. Next part will study node class with a 

similar structure [17, 18]. These nodes will be combined in order to reduce the number of nodes 

and edges in the graph. Then, the performance of the algorithm for computing Betweenness 

centrality, the algorithm for analyzing structure community of graph are increasing.  

In social network graph, many nodes are similar structure, they create similar classes and 

can be combined together to be a single node which stands for class of node to reduce the 

number of nodes and edges in the graph. From now, we change the original graph G = (V, E)to 

graph G = (V, E, W), with W is weight function for nodes, at first W(v) = 1 for all v  V. 

Definition 2. [18] For graph G = (V, E, W), node v ∈ V, is called leaf not if degree of it is 1 

(deg(v) = 1). 

Property 1. If v is a leaf node of graph G and e = (v, w) ∈ E then: 

CB(e) = (|V| - 1)     

Proof.  

         G is connected, thus all v’ ∈ V - {v} have paths to v. That means, there is shortest 

path from v to v’. Because v is leaf node, all shortest paths between v, v’ must visit e. From  

Definition 2, the Betweenness centrality of edge is CB(e) = (|V| - 1). 

Property 2. If v is a leaf node of G, and w is adjacent with v, (v, w) ∈ E then DAGV and DAGW 

have same subgraph G1 = DAGV DAGW. Graph G1 is a subgraph of DAGV (or DAGW) 

obtained by remove leaf nodes connected with w and remove the connected edge.  

Corollary 1. All leaf nodes connect with a node have the same subsystem G1. Thus, when doing 

BFS, we can skip the start nodes are leaves.  

Definition 3. [18] For undirected connected graph G = (V, E), u, w  V are two leaf nodes, , u is 

similar level 1 with w, called u 1 w  if and only if they adjective with v  (N(u) = N(w) = {v}). 

It is easy to see that relationship  1 is the equivalent relationship. 

Based on Property 1, all edges connect with leaf nodes have Betweenness centrality |V|-1. 



 
 
A method to improve the time of computing Betweenness centrality  in socical network graph 

 

347 

Denote that V1 is a set of leaf nodes of G,  

V1 = { u  V | deg(u) = 1} 

V1/1 will create classes of similar leaf nodes, V1/1 = {C1, C2, …, Ck}. Similarly, leaf 

nodes will connect with a node and have the same Betweenness centrality.  

The similar leaf nodes can combine together to be a single node to reduce the leaf nodes in 

the graph. After reduce the similar leaf nodes of class Ci, i = 1..k, to be a node C’i (is also a leaf), 

we obtain the graph G1 = (V1, E1, W1), in that: 

 + V1 = V – V1  VC, với VC = {C’1, C’2, …, C’k}, V1 = { u  V | deg(u) = 1} 

 + E1 = E – {(u, v) | u  V1, v = N(u)}  {(v, C’i) | i = 1..k, v = N(u), u  Ci }  

 + W1(v) = 1, where v  V – V1, W1(v) = |Ci|, where v  VC. 

2.2.2. Class of similar side nodes 

Definition 4. [18] For undirected, connected graph G = (V, E, W), u  V is called side node of 

G if subgraph generated by set of adjacent nodes N(u) are clique (complete subgraph).  

In here, we only consider side node with |N(u)|  2,  because if |N(u)| = 1 then u is leaf node 

we already consider before.  

Property 3. If u is side node of graph G = (V, E, W), then u is either root or leaf in graph DAG 

with BFS.  

Proof.  

Assuming that u is neither root nor leaf node in graph DAG with BFS. Because u is a node in 

DAG,  

thus, we have the shortest path visit u. All shortest paths from the root which visit u, must 

visit two adjacents v, w of u. If u is side node, from Definition 4, N(u) is a clique, it means that 

(v, w)  E, for all v, w which are adjacent of u. Thus, the path visit u is not the shortest path in 

DAG, this conflicts with the property all paths in DAG are shortest paths.  

Definition 5. [18] For aundirrected connected graph  graph G = (V, E, W), u, v  V, the 

relationship 2: u 2 v if u, v are side nodes of G and N(u) = N(v). 

Property 4. Assuming that the set of similar side node, S = {v1, v2, …,  vh} and N(S) = N(vi), i = 

1..h, then the Betweenness centralities of edges connect side node with similar adjacent nodes is 

are the same: CB((vi, v)) = CB((vj, v)), for all vi, vj S, v  N(S).  

Proof. 

From assumption, the nodes vi, i = 1..h are similar to side nodes, thus, they have the same set 

of adjacent nodes N(S) = N(vj) = N(vi), i,j  [1,h]. Then, for all v  N(S), ei = (vi, v)  E, for all 

i = 1..h. Besides, a side node can be either root or a leaf in non-circle graphs (obtained from 

BFS) [18], thus CB(ei) = CB(ej) for all i,j = 1..h. The similar side nodes can be combine to be a 

node to reduce the number of similar side nodes in the graph.  

Assuming that G=(V,E,W) has classes of similar side node (each class has at least 2 side 

nodes). Each class is replaced by a node, we obtain graph G1 = (V1, E1, W1): 



 
 

Nguyen Xuan Dung, Doan Van Ban, Do Thi Bich Ngoc 
 

 

348 

+ V1 = V – V1  {S’1, S’2, …, S’h},  

with V1 = S1 S2 …  Sh. 

+ E1 = E – {(u, v) | u  V1, v  N(u)}  {(v, S’i) | i = 1..h, v  N(u) with u  V1}  

+ W1(v) = W(v), v  V – V1; W1(S’i) = |Si|, i = 1..h 

To compute Betweenness centrality of edges in G2 which is also Betweenness centrality of 

nodes in G1, we use the following properties. 

Property 5. Assuming that S is a set of similar side nodes, S = {v1, v2, …, vh} if a side node vi, i 

= 1..h, is selected to be root to do BFS, then h-1 remain nodes are leaves and the length from 

root is 2, the Betweenness centrality of adjacent edges of side node and adjacent nodes of DAGvi 

are the same, CB((v, vj)) = 1/ |N(S)|, for all j ≠ i, v  N(S).  

Proof. 

From the assumption, the nodes vi, i = 1..h, are similar side nodes, thus they have the same 

set of similar adjacent nodes N(S) =  N(vi), i = 1..h. When an adjacent vi is selected to do BFS, 

then we have |N(S)| adjacent nodes of vi are all level 1 (the distance to the root is 1). Besides, v 

 N(S) is the parent of all remain similar side nodes vj (level 2), that means vj has |N(S)| parent 

nodes. Thus, the ratio the shortest path from vi (root node) to other similar side nodes in DAGvi 

and visit edge  (v, vj) is 1 / |N(S)|.     

Property 6. Assuming that S is set of similar side node, S = {v1, v2, …,  vh} and N(S) = N(vi), i 

= 1..h, the betweenness centralities of edges that connect side node with similar adjacent nodes 

are the same: CB((vi, v)) = CB((vj, v)), for all vi, vj S, v  N(S).  

Proof. 

From the assumption, the nodes vi, i = 1..h are similar to side nodes, thus, they have the 

same set of adjacent nodes N(S) =  N(vi), i = 1..h. Then, for all v  N(S), edge ei = (vi, v)  E, 

for all i = 1..h. From Property 3, all side node can be either root or node of DAG, then CB(ei) = 

CB(ej), for all i, j = 1..h. 

2.2.3. Algorithm of combining similar nodes 

The main task of analyzing social network, finding the structure of community is clarifying 

the metrics to evaluate the role of edges, or the Betweenness centrality of edges in a big graph. 

Combining the similar nodes to be a node will reduce the number of edges and reduce the task of 

commuting Betweenness, thus, clarifying the task of entities in the network will be faster.  

Graph G1 obtained from G by algorithm RED (Reduce Equivalence Degree) as follow: 

remove similar leaf node, side node with their adjacent edges, and replace them by a represent 

node with name is name of class and an adjacent edge for each represent node, the weights of 

leaf node, side node are the size of the classes that they represent.  

Algorithm RED (Reduce Equivalence Degree) 

Algorithm combine similar nodes  

Input: G = (V, E, W) 

Output:+ G1 = (V1, E1, W1) – obtained graph after combine similar nodes  



 
 
A method to improve the time of computing Betweenness centrality  in socical network graph 

 

349 

 + VC – set of leaf nodes represent for similar classes  

    + VS  - set of side nodes represent for similar classes 

 V1 = V; 

    E1 = E; 

 P1 = ;  //Stack keeps pair (leaf, Adjacent node) 

    P2 = ;  //Stack keeps pair (side node, set of adjacent nodes) 

 for u  V1 do{  

      N[u] = Neighbor(G, u);//find adjacent node of u  

     if(deg(u) == 1) then  {  

  v = N[u];   // N[u] is an adjacent node of u  

P1.push(u, v);  

  V1 = V1 – {u}; E1 = E1 – {(u, v)};  

  }// if(deg(u) == 1) 

      //find all side nodes  

  if(Clique(N[u]) then {     

  V1 = V1 – {u}; 

  for v  N[u] do{  

          E1 = E1 – {(u, v)};   

P2.push(u, N[u]);  

            } 

      }//for u  V do 

      //find similar nodes of side nodes  

      k = 1;  

      (u, v) = P1.pop();  

      C[k] = {u}  

      N[k] = v;   

      while( P1 != ) do { 

   (u, v) = P1.pop(); 

   j = 1; 

   loop = true; 

while (j <= k && loop) do 

     if (N[j] == v) then {  

     C[j] = C[j]  {u};   

     loop = false;   

   }else j = j + 1; 

   if (loop) then {  



 
 

Nguyen Xuan Dung, Doan Van Ban, Do Thi Bich Ngoc 
 

 

350 

    k = k + 1; //find next class 

C[k] = {u}; 

N[k] = v; 

   } 

      }// while( P1 != ) 

     //combine similar nodes in class C[j] to be a leaf node C’j 

     VC = ; 

     for j = 1 to k do {  

//k similar classes of side nodes  

  VC = VC {C’j}; 

  W1(C’j) = |C[j]|;  

  E1 = E1 {(C’j, N[j])}  

              V1 = V1 VC;                  

    }// for j = 1 to k 

        //find similar classes of side nodes  

    h = 1;  

    (u, M) = P2.pop();  

    S[h] = {u}   

    N[h] = M;   

    while( P2 != ) do { 

  (u, M) = P2.pop(); 

  j = 1; 

  loop = true; 

while (j <= h && loop) do 

       if(N[j] == M) then  

   S[j] = S[j]  {u};   

   loop = false; 

       }else j = j +1; 

  if (loop) then { 

   h = h + 1; 

S[h] = {u}; 

N[h] = M;   

} 

   }  

   //combine similar nodes in class S[j] tobe a side node Sj 

   VS = ; 

 for j = 1 to h do { 



 
 
A method to improve the time of computing Betweenness centrality  in socical network graph 

 

351 

  VS = VS {S’j};  

  W1(S’j) = |S[j]|;  

  for v  N[j] do 

E1 = E1 {(S’j, v)}  

   }  

    for u  V1 do 

          W1(u) = W(u);    

   V1 = V1 VS; 

Algorithm Neighbor (G, u) [19]: find adjacent node of u in graph G.  

Input: Graph G = (V, E, W) and node u  V 

Output: N – set of adjacent nodes of u in G  

 N = ; 

for v  V do 

  if ((u, v)  E) then  

   N = N  {v};   

return N; 

Algorithm Clique (G, N) [20]: check if subgraph generated by a set of node N in G is a clique 

or not. 

Input: Graph G = (V, E, W) and set of node N  V 

Output: true if subgraph generated by a set of node N in graph G1 is a clique, false in 

otherwise  

for u  N do { 

    for v  N – {u} do 

   if((u, v)  E) then  

       return false;   

 } 

return true;   

2.3. Fast algorithm for computing Betweenness centrality 

Based on algorithm computing Betweenness centrality CB using dependency accumulation 

technique of Brandes [1, 2] and using above features, the algorithm FBC (Fast algorithm for 

Betweenness centrality) for computing Betweenness centrality CB of edges in the graph. 

Algorithm FBC (Fast algorithm for Betweenness centrality) 

Compute CB of edges in social network graph  

Input: + G = (V, E, W) social network graph  

Output: + CB(e), e ∈ E  



 
 

Nguyen Xuan Dung, Doan Van Ban, Do Thi Bich Ngoc 
 

 

352 

Algorithm FBC include 4 main phases: 

Phase 1. Execute algorithm RED (G) to reduce similar leaf node, side nodes, change graph G = 

(V, E, W) to graph G2 = (V1, E1, W1). 

Phase 2. Initial the value of array CB[e] = 0, e  E2, stack S = , queue Q = , for array Prx, 

Pox, δ and d. Array δ is a number of the shortest path from root x to every node in DAGx, array d 

is a distance of nodes from root x. At first, the distance between nodes and root is -1.  

Array Prx, is a list of parent nodes link with each node v, Pos[v] contain children node after 

v in the next visit of BFS from x. VC is a set of leaf node and VS is a set of side nodes of G1.  

Phase 3. BFS travel from root x to find the shortest path to every node. In this phase, each 

element is pushed to a queue when it is found. During BFS, the distance from x to node v will be 

computed. For each node v found in next visit of BFS will have two lists of parents and children. 

δ[t] is shortest path from x to t.  

Phase 4. Compute Betweenness centrality CB of edges based on the accumulation technique of 

Brandes [1, 2]. For each DAGx, x  V2, compute Betweenness centrality of each edge in DAGx, 

then compute the sum of them to be Betweenness centrality of the graph. 

      ∑
      

   
   

  

3. RESULTS AND DISCUSSION 

3.1.  Evaluate the complexity of algorithm FBC 

The size of the memory stack, queue and array σ and d is O(|V2|), mean the size of the limit 

by the number of node V2 of graph. The complexity of BFS is O(|V2| + |E1|) and accumulation 

is about O(|V2| + |E1|), the maximum number steps of parent nodes O(|E1|), the corresponding 

children node is O(|V2|). Thus, the complexity of the algorithm is O(|V2|
2
 +|V2| * |E1|). In case 

|E1| > |V2|, the complexity of the algorithm is O(|V2| * |E1|). The complexity of Algorithm 

Brandes [1] is O(|V|
2
 +|V| * |E|), so the algorithm has better complexity, because we often have 

|V2| < |V| and |E1| < |E|. 

3.2. Experimental result 

We do an experiment and evaluate the algorithm FBC and compare with an algorithm of 

Brandes [1, 2] about execution time.  

The program is implemented by R programming language and does an experiment in a 

computer with CPU Intel Core i5 4200U, RAM 4G. Because of the limitation of the computer, 

the experiment is done in Graph with maximum 1000 nodes and 4000 edges.  

We do the experiment for 40 random graphs with 100 - 1000 nodes. For each node, 4 

undirected graphs are created with the ratio from 2- 4 (each node connect with 2 - 4 other 

nodes).  

(Unit: seconds) 

 

 

 



 
 
A method to improve the time of computing Betweenness centrality  in socical network graph 

 

353 

Edge Ratio FBC Brandes 

100 2 3.59 4.06 

200 2 16.85 17.78 

300 2 41.94 49.02 

400 2 82.12 100.00 

500 2 174.17 201.27 

600 2 259.49 292.85 

700 2 389.83 446.71 

800 2 538.60 601.57 

900 2 682.55 746.00 

1000 2 862.83 958.28 

100 3 4.62 4.96 

200 3 21.72 23.00 

300 3 58.11 60.44 

400 3 112.85 125.43 

500 3 229.49 238.86 

600 3 356.36 368.44 

700 3 525.42 548.23 

800 3 682.10 705.83 

900 3 865.02 886.84 

1000 3 1078.68 1099.30 

100 4 5.52 5.84 

200 4 23.16 23.41 

300 4 62.32 67.05 

400 4 146.19 159.29 

500 4 282.92 295.28 

600 4 441.20 449.95 

700 4 619.00 630.71 

800 4 786.12 796.84 

900 4 992.18 1003.36 

1000 4 1271.21 1279.61 

Figure 1. The computing time of Betweenness centrality of algorithms FBC and Brandes. 



 
 

Nguyen Xuan Dung, Doan Van Ban, Do Thi Bich Ngoc 
 

 

354 

 

Figure 2. The computing time of Betweenness centrality of algorithms FBC and Brandes. 

The results of our experiments can be found in figure 1. The run time values are measured 

in seconds.  

Figure 2 shows running times for Betweenness centrality on random graphs with 100 to 

1000 vertices. 

The experiments results show that the proposed algorithm FBC is faster than the Brandes 

algorithm [1, 2]. 

4. CONCLUSIONS 

In this paper, we proposed a method to increase the speed of computing exactly 

Betweenness centrality of edges in the social network graph. The proposed algorithm FBC allow 

us to compute Betweenness centralities of edges in social network faster. For future work, we 

can apply FBC to find the structure of the social network community faster. We implement this 

method in R, and experiments showed that the computing time of the proposed algorithm is less 

than Brandes algorithm. 

REFERENCES 

1. Brandes U. -  A faster  algorithm  for  Betweenness centrality, Journal  of  Mathematical 

Sociology 25 (2) (2001) 163-177. 

2. Brandes U. and Pich C. - Centrality estimation in large networks, International Journal of 

Bifurcation and Chaos (2007). 



 
 
A method to improve the time of computing Betweenness centrality  in socical network graph 

 

355 

3. Freeman L. C. - A set of measures of centrality based on Betweenness centrality, 

Sociometry 40 (1) (1977) 35-41. 

4. Freeman L. C. - Centrality  in  social  networks: Conceptual clarification, Social Networks 

1 (1978) 215-239. 

5. Bader D. A., Kintali S., Madduri K., and Mihail M. - Approximating Betweenness 

centrality. In WAW, 2007. 

6. Bader D. A. and Madduri K. - Parrallel algorithm for evaluating centrality indices in real-

world networks, In ICPP, 2006. 

7. Edmonds N., Hoefler T., and Lumsdaine A. - A space efficient parallel algorithm for 

computing betweenness centrality in distributed memory, In HiPC, 2010. 

8. Dora Erdos, Vatche Ishakian, Azer Bestavros, Evimaria Terzi - A divide and Conquer 

Algorithm for Betweenness Centrality, 2015. 

9. Steven Fleuren - Using preprocessing to speed up Brandes’ betweenness centrality 

algorithm, 2018.  

10. Geisberger R., Sanders P., and Schultes D. - Better approximation of  betweenness 

centrality, In ALENEX, 2008. 

11. Newman M. - A measure of Betweenness centrality centrality based on random walks, 

Social Networks 27 (1) (2005) 39-54. 

12. Mudduri K., Ediger D., Jiang K., Bader D. A., and Chavarria-Miranda D. G. - A faster 

paralel algorithm and effcient multithreaded implementations for evaluating Betweenness 

centrality on massive datasets. In IPDPS, (2009). 

13. Riondato M. and Kornaropoulos E. M. - Fast approximation of  Betweenness centrality 

through sampling WSDM’14, (2014) 413-422. 

14. Sariyuce A. E., Saule E., Kaya K., and Catalyurek U. V. - Shattering and compressing 

networks for Betweenness centrality, In SDM, 2013. 

15. Tan G., Tu D. and Sum N. - A parallel algorithm for computing Betweenness centrality, 

In ICPP, 2009. 

16. Newman M. E. J.  and  Girvan M. - Finding and evaluating community structure in 

networks,  Physical Review E 69 (2004) 026113. 

17. Mikhail Chernoskutov, Yves Ineichen, Costas Bekas - Heuristic Algorithm for 

Approximation Betweenness centrality Using Graph Coarsening, 4th International Young 

Scientists Conference on Computational Science, Elsevier B.V 66 (2015) 83-92. 

18. Rami Puzis, Polina Zilberman, Yuval Elovici, Shlomi Dolev  and Ulrik Brandes - 

Heuristics for Speeding up Betweenness centrality Computation, ASE/IEEE International 

Conference on Privacy, Security, Risk and Trust, 2012. 

19. Zhang H., Berg A. C., Maire M., and Malik J. - “SVM-KNN: Discriminative nearest 

neighbor classification for visual category recognition”, In IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition 2 (2006) 2126-2136. 

20. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. - Automatic Subspace Clustering 

of High Dimensional Data for Data Mining Applications, SIGMOD’(98).  


