
 
 
Vietnam Journal of Science and Technology 57 (2) (2019) 233-248 

doi:10.15625/2525-2518/57/2/13129 

 

 

THE REAL-WORLD-SEMANTICS INTERPRETABILITY OF 

LINGUISTIC RULE BASES AND THE APPROXIMATE 

REASONING METHOD OF FUZZY SYSTEMS 

Nguyen Thu Anh, Tran Thai Son
*
 

Institute of Information Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 

*
Email: thuanh@ioit.ac.vn , ttson@ioit.ac.vn 

Received: 25 September 2018; Accepted for publication: 5 December 2018 

 

Abstract: The real-world-semantics interpretability concept of fuzzy systems introduced in [1] 

is new for the both methodology and application and is necessary to meet the demand of 

establishing a mathematical basis to construct computational semantics of linguistic words so 

that a method developed based on handling the computational semantics of linguistic terms to 

simulate a human method immediately handling words can produce outputs similar to the one 

produced by the human method. As the real world of each application problem having its own 

structure which is described by certain linguistic expressions, this requirement can be ensured by 

imposing constraints on the interpretation assigning computational objects in the appropriate 

computational structure to the words so that the relationships between the computational 

semantics in the computational structure is the image of relationships between the real-world 

objects described by the word-expressions. This study will discuss more clearly the concept of 

real-world-semantics interpretability and point out that such requirement is a challenge to the 

study of the interpretability of fuzzy systems, especially for approaches within the fuzzy set 

framework. A methodological challenge is that it requires both the computational expression 

representing a given linguistic fuzzy rule base and an approximate reasoning method working on 

this computation expression must also preserve the real-world semantics of the application 

problem. Fortunately, the hedge algebra (HA) based approach demonstrates the expectation that 

the graphical representation of the rule of fuzzy systems and the interpolation reasoning method 

on them are able to preserve the real-world semantics of the real-world counterpart of the given 

application problem.  

Keywords:  interpretable, fuzzy system, hedge algebra. 

Classification numbers: 4.7.4, 4.8.4, 4.10.3. 

1. INTRODUCTION 

 

Fuzzy rule based systems (FRBSs) have been strongly developed in recent years due to 

their exceptional capabilities such as expert linguistic knowledge-based activities. They can be 

designed optimally based on genetic algorithms, i.e. they are constructed by using machine 

learning methods and techniques and especially, they are easy to understand and explain to users 
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to interact with people in natural language. In the above features, being equipped with a 

linguistic knowledge basis and capable of simulating human reasoning can be considered as 

extremely important and is one of the main objectives of the FRBSs design. Thus, to interact 

with users, the interpretability of the FRBSs has attracted a lot of attention and interest from the 

research community in this field. Example as Alonso et al. [2], Antonelli et al. [3], Cordon [4], 

Gacto et al. [5], Ishibuchi and Nojima [6], Mencar et al. [7, 8], Nauck [9], Zhou và Gan [10]. 

The interpretability of the FRBSs has been interested since the 1990s and it is mainly based 

on the comprehensibility view, so the terms ‘interpretability’ and ‘comprehensiveness’ are 

considered synonyms. The nature of interpretable in the uncertain linguistic information 

environment is to ensure that the modeling and simulation of things and phenomena beyond the 

real world (RW) based on formal computational systems and on handing their computational 

semantics instead of linguistic words and sentences is sound and consistent with RW-processes. 

Linguistic words and rules are just symbolic strings which do not have any meaning and they 

only have semantics when they are given meaning by humans. Therefore, when assigning 

mathematical objects to the linguistic words to computationally manipulate them, it requires that 

we must have a formalized methodological basis to ensure that computational systems 
manipulate on them also has the same results as humans manipulating their respective linguistic 

elements.  

In essence, each fuzzy system (FSyst) is a fuzzy set expression manipulated based on a 

calculation formalism of fuzzy set theory (such as fuzzy set algebras, reasoning methods, etc.). 

In this formalism, each fuzzy set is labeled by a linguistic word and they are considered as 

representing the computational semantics of their associated linguistic labels. Thus, each fuzzy 

set expression corresponds to a linguistic expression that can be read and understood by humans 

and it is considered as representing its corresponding linguistic expression. The interpretability 

problem of formalized programming languages or more broadly, of the formalized theory based 

on a formalized language, is establishing interpretations that assign computational objects of 

their respective desired computational structures to the well-formed symbolic expressions of 

their formalized languages so that the syntactic properties of the formalized programming 

languages or of the formalized theories, like the axioms and theorems of formalized theory 

derived by applying syntactical rules to symbolic strings, are preserved in the respective 

computational structures. As these computational structures, which are usually mathematic 

theories, do soundly represent the structures of their respective RW-counterparts, in nature the 

interpretation of symbolic expressions of a formalized language is an assignment of RW-

semantics of its RW-counterpart to symbolic expressions so that the properties formulated in the 
formalized language are just properties of the RW-counterpart observed by humans.  

In the hedge-algebra-based HA-approach, the word-domains of the linguistic variables are 

formalized as their algebraic structures, called hedge algebras (HAs), similar as for 

programming languages, in the studies [11, 12] as well as in this study, applying the 

interpretation concept it is possible to translate symbolic strings representing linguistic words to 

elements of their respective HAs and, then, to their respective computational quantities based on 

the quantification of the HAs. Thus, the interpretability of a computational representation of a 

word-expression is studied based on how preserving the structural semantic characteristics of the 

word-expression which is described by human experts in terms of their language. Thus, in the 
HA-approach, words are considered as elements of an HA and their qualitative semantics are 

defined by the order relation among them in the word-domain of the variable. Meanwhile, the 

computational semantics of words and of word-expressions are produced or constructed from the 
qualitative semantics of words in the linguistic domain based on the numerical semantics and 
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intervallic semantics of words. This means the words are not just labels, but they play a crucial 

role in determining their computational semantics and linguistic expressions.  

In this article, we will give clearer and deeper explanation and discussion on the concept of 

the real-world-semantics (RWS-) interpretability of FSysts and of word-expressions and on how 

to solve the RWS-interpretability problem based on the HA-approach. Following the research 

methodology examined in [1, 13] it is demonstrated that the method of representing the 

linguistic rule bases (LRBs) of FSysts and the approximate reasoning method (ARMd) based on 

the interpolation method is possible to preserve the real-world structural semantics of applied 

problem expressed in the basis of their linguistic rule knowledge. 

2.  THE REAL-WORLD-SEMANTICS INTERPRETABILITY 

2.1. The real-world-semantics interpretability of the computational representation of the 
linguistic expression 

In 2017, a new approach to the interpretability of FSysts which is an approach based on real 

world semantic interpretation, was first proposed and studied in [1] based on the real-world 

structural semantics of words and the semantic relation between of FSyst components and 

corresponding sub-structures of the real world. In particular, the RWS-approach is to study the 

relation among the three entities: (1) a FSyst, considered to be a formal symbolic expression; (2) 

computational model which is the computational image of the formal expression and (3) its 

corresponding real world structural semantic. The RWS- interpretability of computational 

expressions for each composed component of the FSyst is ensured by an interpretation 

assignment and is imposed by constraints that are discovered by human experts from the real 

world. The RWS-approach establishes a formal basis to overcome the difference in nature 

among the computational semantics of the components of a FSyst constructed by the designers 

and the RW-semantics of just the components of the FSyst, including linguistic frames of 

cognition of variables, LRB and ARMd. This difference exists inevitably because computational 

semantics are mathematical objects with distinguished specific natures defined in a mathematical 

structure, while linguistic semantics are RW-entities and relation among them defined and 

described in terms of words and linguistic sentences. This distinction exists objectively because 

the semantics of words and sentences point at objects or entities that exist and act objectively in 

the real world, while computational semantics are mathematical objects, they operate or interact 

each other in a mathematical structure built by humans. Whether they properly represent the 

real-world semantics that the linguistic expressions describe is just the RWS-interpretability 

problem of their computational semantics, i.e. the computational representations of the 

linguistic expressions. Thus, the RWS-interpretability is essential and therefore any formal 

symbolic language that exists up to now must be RWS-interpretable. For examples, 

mathematical theories, theoretical physics, especially human natural language, etc. are all RWS-
interpretable though they are not so explicitly declared. This problem becomes necessary when 

in the field of fuzzy sets, the RWS-interpretability problem of the computational representations 

of linguistic expressions has not been taken into account and, hence, this may cause many 

questions [1], especially, when the word-domains of linguistic variables have not been 

mathematically formalized. For instance, let us consider the case human may use a numeric 

variable N as well as a linguistic variable L to model a RW-variable RW, say the velocity of a 

car. It is known that the domain of N is linearly ordered arithmetic math-structure, but the 

word-domain of L is not taken into account as a math-structure, while, by the compatibility of 



 
 

Nguyen Thu Anh, Tran Thai Son  

236 

two variables N and L and the RWS-interpretability of the human language, the word-domain 

of L must also be at least linearly ordered. In contrast, the order of the fuzzy sets representing 

the word-set of L is not take care in most studies in the fuzzy set framework, recalling that 

raking fuzzy sets is a hard problem. Thus, the RWS-interpretability concept is essential and very 

practical in studying FSysts and in simulating human ability in immediately handling fuzzy 

linguistic information. So, the problem of how to ensure the RWS-interpretability of the 

computational expressions representing word-expressions within fuzzy set theory is not only a 

novel problem, but also  challenging in the field of fuzzy set.  

To consider whether a formal theory is RWS-interpretable or not, the authors of [1] has 

introduced the following definition applying the concept of interpretability of a theory S in 

another theory T defined by Tarski et al. [14]: 

Definition 1. [1] A formalized method/theory T formulated in a formalized language to simulate 

a real-world structure, denoted by WT, is said to be RWS-interpretable if there exists a realization 

RT: WT → T, which assigns real-world objects of W to elementary formalized elements of T, that 

can convey or preserve the essential properties of WT. In this case, T is called an RWS-model of 

WT or WT is interpretable in T. Such a formalized method T is called RWS-interpretable. Note 

that, the structure WT is a subjective concept as it depends on the observation/perception of a 

human user. In this sense, most of classical mathematical theories are RWS-interpretable. 

The question is whether or not there is an RWS-interpretable theory to form a basic 

mathematical formalism to immediately manipulate linguistic words and their semantics. The 

studies [1, 13] point out that the theory of HAs is RWS-interpretable based on the assumption 

that human natural language is RWS-interpretable.  

Although fuzzy set theory is strongly developed and has widespread application, 

methodically, it is difficult to consider it as a RWS-interpretable formalism to develop fuzzy 

methods to solve application problems. For example, we have the word-expression of the truth 

variable  = “true OR very true”. By the RWS-interpretability of natural language, we have: 

true OR very true = very true. However, denoting by FS(.) the fuzzy set expression of the word-

expression “.”,  it can clearly be seen that, in the formalism of the standard algebra of fuzzy sets, 

we have FS( ) = FS(true)  FS(very true) ≠ FS(very true). This means that the equality between 

word-expressions cannot be preserved when they are translated into the standard algebra of 

fuzzy sets. In other words, the computational representation of  in standard fuzzy set algebra 

does not preserve the real-world structural semantic. Methodologically, this leads to the fact that 

methods developed to solve application problems in the fuzzy set framework in general require a 

lot of experimental study to adjust parameters to achieve acceptable solutions.  

2.2. Schema for constructing computational representations of linguistic expressions in 

FSysts 

Linguistic expressions of FSysts have the following forms: linguistic rules, LRB, and 

word-sets of variables called linguistic frames of cognition (LFoCs). The concept of LFoCs of 

variables is similar as the one of Frames of Cognition in the fuzzy set framework, each of which 

consists of declared fuzzy sets of a variable and considered as frame of view in cognition. This 

declaration depends strongly on individual applications. Thus, in the linguistic information 

environment, the semantics of the variables depend strongly on the declared LFoCs and, so, the 

semantic interpretation of LFoCs is a very important problem in studying FSysts and in the 

fuzzy set framework, in general. As the RWS-interpretability problem of computational 
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representations of word-expression was studied in [13] and as this problem is quite new and 

complex, this study aims to focus on the RWS-interpretability problem of computational 

representations of fuzzy LRBs and ARMd running on them.  

In order to solve the RWS-interpretability problem of FSysts properly and fully, the study 

should rely on the schema shown in Figure 1, of which the RWS-interpretability problem of a 

word-expressions and the ARMd of FSysts depends on the structural characteristics of the RW-

part described by the word-expressions. A component of the FSyst, including the whole FSyst, 

or any method or algorithm described by linguistic sentences can also be considered a word-

expression , that is expressed by human expert to solve the given practical problem in a real-

world W in question.   

In case  is an LFoC: Then  is the word-sets of the variables. On every word-domain, 

there are two important relations: order relation and generality-specificity relation of words 

[16]. However, order relation is the most essential, i.e. it should be preserved by any 

interpretation, while generality-specificity relation is not necessary to be preserved for all 

application problems. In other words, SW structure is not described by generality-specificity 

relation, for example, control problems, e.g. for control problems. However, for classification 

problems [15], regression problems [16] or linguistic data summarization, the generality-

specificity relation is very crucial. 

In case  is the rule base: In principle, each linguistic rule represents a relation between the 

real-world variables corresponding to the variables occurring in this rule. Indeed, consider a 

simple case that the rules have m input variables and 1 output variable. Similar as in the numeric 

case, each rule is represented by a point in Cartesian product  of m linguistic domains of its 

variables and as such, the n rules of the given rule base define n points in space . A non-

contradictory rule base defines the output linguistic variable as a function of m input linguistic 

variables. Similar also as for numeric functions, between each pair of input – output variable of a 

linguistic function there may be a monotonic relation defined on a certain "segment" of the 

word-domain of the input variable. They reflect the structural characteristics of its RW-

counterpart of the LRB. 

It is clear that as human natural language is RWS-interpretable, structural properties of the 

real world can be recognized based on the inherent semantics of the words of the variables. For 

instance, from the given rule “If the car-engine is strong, it can run fast” one can deduce that the 

variable ‘car-velocity” increasingly depends on the variable ‘car-engine’ on a certain 

neighborhood of the linguistic point “strong” of the linguistic domain of ‘car-engine’. These 

recognized structural properties will be used to impose constraints on the established semantic 

Figure 1. The interpretable problem-solving schema RWS. 
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interpretations that assign computational semantics, or computational objects in their respective 

suitably constructed computational structures, to the words appearing in the LRB. Only in such 

way, we may ensure that the manipulation on computational objects assigned to their respective 

words by the established interpretations based on the formalism of the constructed 

computational structures is compatible with the manipulation of the words by human expert. We 

will show that hedge algebras and its quantification methodology will form a formalism to solve 

the RWS-interpretability problem of FSysts  [1].  

3. THE RWS-INTERPRETABILITY OF LINGUISTIC RULE THE BASES OF FUZZY 

SYSTEMS AND OF THE APPROXIMATE REASONING METHOD 

The RWS-interpretability of the LRBs and the ARMd is introduced and examined in [1] 

and further analyzed and discussed in [13]. These studies show that this problem is very 

important and essential for designing effective FSysts but it is complex as it is based on a high 

abstract interpretation concept of math-logics. In this article, we emphasize and study two 

features related to ARMds: (i) As it requires that ARMds are developed so that they may work 

on the computational representation of any given LRB, we should deal with the method to 

generate the computational representations of LRBs; (ii) It is necessary to introduce criteria to 

verify the RWS-interpretability of the both kinds og just mentioned methods based on the 

structural semantics properties discovered from the RW-counterpart described by the given 

LRBs. 

As a consequence of feature (i) above, ARMd should be developed to work on the 

computational representation constructed by a developed method to generate computational 

representation of any LRB. For the criteria mentioned in feature (ii), it is clear that they depend 

on each application problem, because the structures of the RW-counterparts described by the 

LRBs of different application problems are of course different. As discussed in point 2), Section 

2.2, we may rely on the monotonicity of dependence between any two input variable and output 

variable to impose constraints on the examination of the RWS-interpretability of the methods 

mentioned in features (i) and (ii). As a consequence of these two features, the RWS-

interpretability of the two methods will be defined in a close relation with each other. 

First of all, we study the RWS-interpretability of the method to generate the computational 

representation of LRBs.  

3.1. The RWS-interpretability of the computational representation of LRBs 

3.1.1. Challenges in studying of the RWS-interpretability of the computational representation           

of LRBs 

The study [1] suggests that one can reveal information about dependence of any two RW-

variables only if it is monotonic on a certain interval of each variable, since otherwise their 

dependent relation is chaotic. As the RWS-interpretability problem of LRB is related to three 

objects, RW-objects, math-objects and human linguistic words, to avoid confusion, we introduce 

notations as follows: If  denotes a RW-variable, then the notations N and L denote 

respectively the numerical variable and the linguistic one. 

Consider a linguistic rule with one output and m input variables written in the following 

form: 

(r) IF 1L is x1 & … & mL is xm, THEN m+1,L is xm+1   (1) 
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in which each expression “ jL is xj” is a linguistic predicate, for j = 1 to m + 1. Similar as for 

analyzing a classical multi-variable function, for every rule r, one may consider m dependent 

relations ‘IF jL is xj, THEN m + 1,L is xm+ 1’, j = 1 to m + 1, and therefore, r denotes m 

monotonic dependences between variables m + 1, L and jL on certain interval of each respective 

RW-variable of the RW-counterpart.  

So, the semantics of linguistic rules reflect that their RW-semantics are very important but, 

in the fuzzy set framework, such semantics of fuzzy rules is not taken into consideration and, 

therefore, there is no formalism to define computational semantics of fuzzy rules in relation with 

the linguistic labels of the fuzzy sets occurring in the rules. Most importantly, due to the RWS-

interpretability of natural language, the above monotonic dependences can be discovered from 

the linguistic rules of the form (1). For example, in the field of fuzzy control there are many 

application problems whose LRBs describe increasingly or decreasingly monotonic RW-

function of a RW-variable m+1,RW on the j,RW, j = 1 to m, and hence so are their respective 

LRBs. 

In approaches within the fuzzy set framework, methodology, the inherent qualitative 

semantics are completely ignored and words are only considered as linguistic labels assigned to 

the fuzzy sets designed by human expert of the FSyst to computationally represent their 

semantics. In such approaches, the computational semantics of a fuzzy rule base ℛℬ consisting 

of n rules in form (1), in which the words xm’s are considered as linguistic labels of the designed 

fuzzy sets, can be expressed by the fuzzy relation RF defined in Cartesian product U1 × … × 

Um+1 constructed by a certain representation method, where Uj’s are the reference domains of the 

respective variables j,L’s. In general, there are some computational representation methods to 

compute such fuzzy relation RF. Applying the composition rule of inference introduced by 

Zadeh, the computational representation method ℳ can transform LRB of the rules in the form 

(1) into a fuzzy relation as follows: 

(i) Established an interpretation I j that maps the words of j into the designed fuzzy sets 

of a fussy set space CSj, i.e. I j(xj) is the fuzzy set of CSj, with j = 1 to m+1. These fuzzy sets 

usually form a fuzzy partition of the reference domain U j of j, j = 1 to m+1;  

(ii) Construct a procedure P which translates connectives AND, OR appearing in ℛℬ and 

the rule themselves into fuzzy relations defined on Cartesian product U = U1 × … × Um+1 in the 

following way:  

- AND, OR: It is known that these connectives are translated respectively into the 

intersection and union of fuzzy sets using min “ ” and max “ ” and which are pointwise 

defined; 

- IF-THEN: the IF-THEN appearing in each rule is translated into an implication of a 

multi-valued logic, denoted by “→”, which is a binary operation s → t, s, t ∈ [0,1], that 

is decreasing with respect to s and increasing with respect to t;  

- Then, the composition P∘ (I 1, …, I m+1) with functionality to convert every rule ri of 

the form (1), i = 1, …, n, of linguistic rule base ℛℬ into a fuzzy relation RF(ri) ∈ (U), 

the set of all fuzzy relations defined on U, defined as follows: 

RF(ri) = P ∘ (I 1, …, I m+1)(ri)  

          = P∘ (I 1, …, I m+1)[IF 1L is xi1 & … & mL is xim, THEN m+1,L is xi,m+1)]  

          = I 1(xi1)  …  I m(xim) → I m+1(xi,m+1)  

    (2) 

(iii) Finally, the rule base ℛℬ is represented by the fuzzy relation RF(ℛℬ) in (U) as 

follows: 
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  U{ RF(ri): i = 1, …, n}      (3) 

By (i) – (iii), note that the operations on fuzzy sets mentioned in (ii) and (iii) are pointwise 

defined on the reference domain the variables. We may find that it does not take advantage of 

any qualitative information or semantics of words, and of course it does not rely on real-world 

information that such linguistic expressions describe. Thus, there is no basis for formalization as 

a basis for the study of real-world-semantics interpretability based on the concept and schema 

mentioned in Section 2. To easily see the nature of the problem we consider the following rule: 

If SPEED(o) = “large” & WEIGHT(o) = “heavy”, Then KINETIC ENERGY(o) = “large”  (4)  

Many studies within fuzzy set theory express the above linguistic rule by the following 

expression: 

FSSPEED;large (s)  FSWEIGHT;heavy (t) → FSK_ENERGY;large (u), s ∈ USPEED, t ∈ UTR_L, u ∈ UK_ENERGY   (5) 

in which FS ;x denotes fuzzy set with linguistic label x of  and “→”denotes an implication of 
multi-valued logic with the truth values in [0,1]. According to [1], analyzing linguistic rule (4), 

we see that the variable “KINETIC ENERGY” monotonically increasingly depends on each of 

the variables “SPEED” and “WEIGHT”. However, as membership functions take a value of 1 at 

the cores of fuzzy sets and are monotonically decreasing to 0 on both sides of their cores and so 

they are non-monotonic. Thus, increasing variations of the variables s, t and u do not result in an 

incremental variation of the values of the fuzzy set functions. So, if the word “heavy” is replaced 

by a greater word “very heavy” of the variable “WEIGHT”, there is no basis to make sure that 

we also have FSTR_L;heavy (t)  ≤ FSTR_L;very heavy (t), t ∈ UTR_L. Consequently, it is not ensured that 

the corresponding values of the variable “KINETIC ENERGY” also increases. In other words, 

there is no basis to ensure that representation (5) of rule (4) preserves the RW-semantics of the 

linguistic rule (4). 

From the above analysis, we infer that the problem of aggregation of the semantic 

information of predicates in rules so that it preserves the semantics of the rules in the fuzzy 

environment is a challenge to examine the semantics of linguistic rules and their computational 

semantics. However, if we stand on a viewpoint that words of a variable being the elements of 

hedge algebra associated with the variable, then rule (4) can be represented by a linguistic point 

in Cartesian product of the linguistic domains of the variables present in the rule. So, n rules of a 

given linguistic rule base will be represented by m points in this Cartesian product and they 

define a graph in it, namely a graph of a linguistic function. Successful applications of analytical 

mathematics to solve application problems so far demonstrate that graphical representation of 

functions is a useful way to properly aggregate linguistic information of individual rule variables 

to preserve the structural semantics of the rule base RW-counterpart, as discussed below. 

3.1.2. The RWS-interpretability of the computational representation of LRBs and ARMds 

Consider a LRB ℛℬ consisting of n rules ri in the form given in (1):  

(ri) IF 1L is xi1 & … & mL is xim, THEN m+1,L is xi(m+1), i = 1 …, n,  (6) 

The question is whether or not there exists a method to produce computational 

representation of the LRB ℛℬ which is RWS-interpretable and on which one can develop an 
approximate reasoning method being also RWS-interpretable? In this section, we will conduct a 

study using the HA-approach in which the inherent order based semantics of the words and 

semantic structures of the domains of variables are utilized to determine their computational 
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semantics. Because this approach establishes a formalism to deal directly with the words with 

their own semantics of variables, we will use the terminologies linguistic rules instead of fuzzy 

rules in the fuzzy set framework to emphasize their linguistic semantic features. 

Methodologically, in general, when the word-domains are formalized into mathematical 

structures, each linguistic rule in form (1) can be considered as a linguistic point in the Cartesian 

product space of (m+1) hedge algebras which are formalized linguistic domains of variables. 

Thus, every LRB in form (6) can be considered as a model of a linguistic function with m 

variables going through n linguistic points defined by the given LRB. On this basis we can 

construct a computational representation for linguistic rule base using interpretation 

assignments. 

Firstly, we define a computational representation method of ℛℬ based on the concept of 

computational interpretation assignment for the words of variables jL, j = 1, …, m + 1. We 

denote by I j an interpretation assignment of computational objects of an ordered based 

computational space j = (CSj, ≤j) associated with the variable jL to the words of jL. Assume 

that  = (CS, ≤) is a partially ordered computational space defined on the Cartesian product of 

j: CS = CS1 ×… × CS(m+1) with the order relation ≤ defined based on the order relations of 

components ≤j, j = 1,  …, m + 1, as usual. Then, we develop a graphical method to 

computationally represent the given LRB ℛℬ in Euclidean space [0,1]
m+1

, where [0,1] is the 

normalized domain of the reference domain Uj of jL as follows. 

1) The interpretation assignment of elements of hedge algebra to words of rules and a graphic 

representation of LRBs: As mentioned above, methodologically, every rule ri should be 

considered as a symbolic expression. Now, we will assign meaning to ri using interpretation 

assignment. Because every HA  associated with a variable can be considered as a 

mathematical model of its word-domain, which is formalized in such a way that each element of 

 can be obtained by a direct translation of a word of the word-domain. By this, for every 

variable jL occurring in ri whose associated HA is declared to be jL = (Xj, Gj, Hj, ≤j) by 

specifying: (i) the names of the negative and positive primary words c  and c
+ 

of the set Gj of 

generators; (ii) specifying the set Hj of the positive and negative hedges; and (iii) establishing a 

table of the relative "algebraic" signs between the declared hedges. Then, there exists a “natural” 

interpretation I j : LDom( jL) → Xj, where LDom( jL) is the word-set of jL, that assigns an 

element of jL to a word of LDom( jL). 

Denote by  = (I 1, …, I m+1) a set of natural interpretations of the words of their respective 

variables whose functionality is defined as follows, for all rules ri in form (6): 

 = (I 1, …, I m+1) : ri → (xi1, …, xi(m+1)) ∈ X1 × … × X(m+1)    (7) 

Definition 2. Let be given a LRB ℛℬ consists of n rules in the form (6). Assume that each 

variable jL is associated with an HA jL = (Xj, Gj, Hj, ≤j), j = 1, …, m+1, defined as given 

above, and an interpretation I j established for each variable jL. Then, the set {(xi1, …, xi(m+1)) : 

i = 1, …, n}  X1 × … × X(m+1)}, denoted by ℒGph (ℛℬ), is called a linguistic graphical 

representation of ℛℬ. 

Proposition 1. If a LRB ℛℬ consisting of n rules in form (6) is consistent, i.e. two rules of ℛℬ 

have the same “IF” components, their “THEN” components are also the same, the graph of ℛℬ 

describes a functional relation.  

Proof: the correctness is immediately derived from the consistency of the LRB ℛℬ.  
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2) Assignment of numerical semantics to linguistic words: To construct numerical semantics for 

words, we need to apply the hedge algebra quantitative methodology. There are three basic 

quantitative semantics of the words of each variable , defined in close relation to each other: 

fuzzy measure, fuzzy interval (considered as interval semantics) and semantically quantifying 

mapping (SQM) of the words of variables. They are uniquely defined when the numerical values 

of the independent fuzzy parameters of variables are provided. The SQM-values of words are 

called the numerical semantics of words. In this section, however, we utilize only SQMs which 

are characterized by two properties that they are order isomorphisms, i.e. they must preserve the 

order relations among words and the images of linguistic domains of variables under these 

isomorphisms are dense in the reference domains of the corresponding variables (similar as the 

countable set of the rational numbers is dense in the real line). 

For each variable jL and the HA jL assigned to its, we define an SQM of jL, fj : Xj 

→ [0,1], j = 1,  …, m + 1, and consider the composition I j ∘ fj : Dom( jL) → [0,1] as an 

interpretation assigning numerical semantics to the words of the variable jL, called numeric 

semantic interpretation of jL.  

Definition 3. Let be give an LRB ℛℬ consisting of n rules in form (6). Assume that, for each 

variable jL, the numerical semantic interpretation I j ∘ fj : Dom( jL) → [0,1] is established, j = 

1,  …, m + 1. Let  ∘  = (I 1 ∘ f1, …, I (m+1) ∘ fm+1) denotes a vector of numeric semantic 

interpretations. Then, the computational image of the linguistic graph ℒGph (ℛℬ) of ℛℬ is 

defined as follows 

∘ (ℒGph (ℛℬ)) = ∘ ({(xi1, …, xi(m+1)) : i = 1, …, n}) 

= {(f1(I 1(xi1)), …, fm+1(I (m+1)(xi(m+1))) : i = 1, …, n}  [0,1]
m+1

 

and it is called numeric graphical representation of ℛℬ, denoted by Gph ∘  (ℛℬ) and the 

method to defined its is called graphical representation method of LRBs (GRMd).  

Due to natural language is RWS-interpretable, if the linguistic rule base ℛℬ aims to 

describe a RW-function fW in the real-world W, then ℛℬ must also represent a linguistic function 

fL,ℛℬ of linguistic variable jL,(m+1) on the remaining ones jL’s, whose graph is ℒGph (ℛℬ). So, 

ℒGph (ℛℬ) is a model of fW which models a RW-semantic feature of W. On the other hand, as fW 

is RW-function of the RW-variable jRW,(m+1) on the remaining ones jRW’s, applying the 

numerical analytical theory to model this RW-semantic feature of W, this numerical model must 

also be a numeric function of the variable (m+1)N depending on the remaining variables jN’s, , 

denoted by fN,ℛℬ, as the numerical analytical theory is RWS-interpretable as discussed in Section 

2.1.  

Now, we will demonstrate that the computational representation method Gph ∘  (ℛℬ) of 

ℛℬ is RWS-interpretable in the following sense: If the numeric graphical representation 

ℒGph (ℛℬ) of ℛℬ represent an increasing (or, decreasing) linguistic functional dependence of 

the variable jL,(m+1) on the their words of the remaining variables jL’s, then the numeric 

graphical representation Gph ∘  (ℛℬ) of ℛℬ must preserve this dependence. It can be seen that 

this RWS-interpretability is broader than the concept examined in [13].  

Theorem 1. The GRMd to produce Gph ∘  (ℛℬ) of any given LRB ℛℬ described in Def. 3 is 

RWS-interpretable. 

Proof: Firstly, we need to prove that if there are two vectors of words (u1, …, ui(m+1)) and (v1, …, 

v(m+1)) of the two rules describing increasing monotonic relation, we have: 
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(u1, …, u(m+1)) ≤ (v1, …, v(m+1))   ∘ (u1, …, u(m+1)) ≤  ∘ (v1, …, v(m+1)) 

Indeed, as argued in [1], the natural language, the hedge algebra theory and their SQMs of HAs 

are RWS-interpretable, i.e. they preserve the order-semantics of the domains of their respective 

variables, from the inequality in the left side, we infer 

(I 1(u1), …, I (m+1)(u(m+1))) ≤ (I 1(v1), …, I (m+1)(v(m+1))). 

As the quantitative mapping f1, …, fm+1 is the order isomorphism, i.e. they preserve the order of 

the numeric semantics of the words, we obtain: 

(f1(I 1(u1)), …, fm+1(I (m+1)(u(m+1))) ≤ (f1(I 1(v1)), …, fm+1(I (m+1)(v(m+1))). 

Because the decreasing monotonicity case is demonstrated similarly, so the theorem is 

demonstrated.  

3.2. The interpretability of the approximate reasoning method 

3.2.1. The RWS-interpretability of ARMds and computational representation methods of the 

linguistic rule base 

ARMds developed to solve application problems plays an important role to build FSysts 

and therefore, its interpretability is essential to ensure their performance in solving application 

problems, due to in the opposite case we have no formal basis to ensure that the outputs of their 

ARMd are compatible with the results expected by human designer. This question strongly 

depends on the RWS-interpretability of the constructed computational representation method, 

ℳ, to produce computational representations of LRBs as well as of ARMds running on. Any 

ARMd, say ℝ, needs to be developed to be able to work on the computational representation of 

ℛℬ and this implies that its real-world-semantics interpretability depends heavily on ℳ. 

Therefore, the RWS-interpretability of an ARMds should be defined based on the computational 

representation method associated with it. In [13], the authors introduced the following definition, 

in which a = (a1, ..., am) is the input vector and ℝ(a) denotes the numerical output of the vector a 

produced by ℝ. 

Definition 4. [13] Assume that an ARMd ℝ is developed to work on computational 

representations of LRBs produced by a computational representation method ℳ. Then, ℝ is said 

to be RWS-interpretable if for any give LRB ℛℬ being increasingly monotonic to all individual 

input variables of ℛℬ, ℝ must satisfy the following condition:  

( a, a’){[a ≼ a’  ℝℳ( )(a)  ℝℳ( )(a’)] and [a  a’  ℝℳ( )(a)  ℝℳ( )(a’)]} 

 (2) 

3.2.2. Interpolative approximate reasoning method on graphical representations of LRBs 

Give a LRB ℛℬ in form as above and a GRMd, denoted by ℳGraph. Then an ARMd ℝ 

running on ℛℬ is stated as follows: 

Approximate reasoning problem: Give a numerical vector ain = (ain,1, …, ain,m) ∈ U 1  …  

U m and a linguistic rule base ℛℬ, calculate a numerical semantic of the output corresponding to 

the input ain, denoted by Outℛℬ(ain), based on the knowledge given by ℛℬ. 

This problem can be solved in this study by an interpolative method in Euclidean space as 

follows: 
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Interpolative method on LRB ℛℬ: Let be given values of the fuzzy parameters of the 

variables present in ℛℬ and a graphical representation method Graph. Then, ℳGraph(ℛℬ) defines 

a grid of a surface Sℛℬ in Euclidean space [0, 1]
m+1

. So, every (numerical) interpolative method 

INTMd on the surface Sℛℬ can be apply to define a ARMd to solve the approximate reasoning 
problem for the given linguistic rule knowledge base ℛℬ. 

For a given an INTMd ℳInter, it is clear that, for each input vector ain, Outℛℬ(ain) can be 

calculated by applying ℳInter on the surface Sℛℬ, denoted by ℳInter(Sℛℬ), and obtain Outℛℬ(ain) = 

ℳInter(Sℛℬ)(ain), i.e. it is the value calculated by ℳInter on Sℛℬ in the Euclidean space [0, 1]
m+1

. 

RWS-interpretability of interpolative approximate reasoning methods  

1)  In case m = 2, i.e. in Euclidean space [0, 1]
3 

Table 1.  Simple FRB for the first stage actuator. 

 

 

 

 

 

In this case we can apply the linear interpolative ARMd. In case that the LRB has two 

inputs, we have a linear interpolative approximate reasoning method on surface in [0, 1]
3
. For 

example, the LRB ℛℬ given in Table 1 with 9 linguistic rules defines a surface Sℛℬ as 

represented in Figure 2. Then, the interpolative ARMd is developed based on the triangular 

sections and denoted by Li P, where P is a set of three points of the numeric graph 

representation Gph ∘  (ℛℬ) defining the section, e.g. the section in Fig. 2 whose linguistic 

vertices are (l, W, l), (l, l, l) and (l, W, Ll). This interpolative method is called the Li -method, 

which is extended from the method studied in the work [3] but it RWS-interpretability is still not 

examined, and is described as follows: 

x2 
 

S W l 

S  S S W 

W  Ls W Ll 

l  W PS l 

S  (0.18) 

W (0.40) 

l (0.73) 

S (0.18) W (0.40) l (0.73) 

S(0.18) 
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W(0.40) 

Ll(0.67) 

x 

 

l (0.73) 

Figure 2. Numerical graphical representation of LRB passing through 9 

points. 
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- For each input vector ain = (a1, a2), define the smallest rectangle, whose three vertices are 

denoted by Pk, k = 1, 2, 3, in the coordinate plane x  y containing point (a1, a2), including 

when it lies on the edge of the triangle, so that any its two vertices always have a 

common coordinate.   

- Establish the section whose projection on the coordinate plane x  y is the above defined 

triangle: Denote by Sℛℬ(Pk), k = 1, 2, 3, the points in [0,1]
3
 lying on the surface Sℛℬ 

whose projections on the plane x  y are the points Pk, k = 1, 2, 3 and establish the plane 

equation going through these points, denoted by z = EQ(Sℛℬ(P1), Sℛℬ(P2), Sℛℬ(P3))(x, y). 

-  Calculate the output by equality Out(ain) = EQ(Sℛℬ(P1), Sℛℬ(P2), Sℛℬ(P3))(a1, a2). 

 We can easily demonstrate the correctness of the following theorem: 

Theorem 2. F
2
LLX

2
 The linearly interpolative Li -method, denoted by -ℳ, is RWS-

interpretable.  

Proof: Assuming that LRB ℛℬ describes an increasing linguistic function, as this equation is 

linear  it is easy to prove that the inequality (a1, b1) ≤ (a2, b2) implies that -ℳ(Sℛℬ)(a1, b1) ≤ -

ℳ(Sℛℬ)(a2, b2).  

2)  In case m > 2 

There are many interpolative methods with the number of dimensions n > 3 but they are in 

general very complicated when n is large. The approximate reasoning method applied to LRBs 
with the number of variable n ≥ 3 is developed based on reducing the number of dimensions 

from n to 2. In this case, we can use an aggregation operator usually used in fuzzy set theory to 

convert approximate reasoning problems in m + 1 dimensional space to two-dimensional one.  

Assume that the LRB ℛℬ consists of n rules ri in form (1), i.e.: 

ri :  IF 1L is x1,i & … & mL is xm,i, THEN m+1,L is xm+1,i, i = 1, …, n    (*) 

Step 1) Apply the numeric graphical representation method of ℛℬ we obtain a grid 

Gridm+1(ℛℬ) of the graph Gph ∘  (ℛℬ) in space [0, 1]
m+1

: 

Gridm+1(ℛℬ) = {(SQM1(ri| 1), …, SQMm+1(ri| m+1) : i = 1, …, n }  [0, 1]
m+1

 

in which if a is a vector of [0, 1]
m+1

, the symbol a| j is its component corresponding to variable 

j. 

Step 2) Aggregate the m first coordinates of the vectors in Gridm+1(ℛℬ) using a selected 

aggregation operator, denoted by , we obtain a grid which approximates a curve in [0, 1]
2
:  

Grid2(ℛℬ) = {( [SQM1(ri| 1), …,SQMm(ri| m)], SQMm+1(ri| m+1)): i = 1, …, n }  [0, 1]
2
 

Step 3) Select an interpolative method on the obtained grid Grid2(ℛℬ), denoted by IntM2 

whose inputs are numerical singleton values. Then, for each numerical input vector ain = (ain,1, 

…, ain,m) ∈ U 1  …  U m, the output value in U m+1 is calculated by the IntM2 method and the 

aggregation operator  as follows: 

Out(ain) = IntM2ℛℬ( (ain,1, …, ain,m)). 

Theorem 3. Let be given a LRB ℛℬ and assume that the aggregation operator used is a 

weighted average with weight vector w = (w1, …, wm) corresponding to m antecedent variables 

of ℛℬ, denoted by w. Then, the linear interpolation using w, denoted by Li_IntM2,w is RWS-

interpretable. 
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Proof:  Assume that ℛℬ is a LRB represented by the graph Gph ∘  (ℛℬ) with the grid 

Grid2(ℛℬ) = {( w[SQM1(x1,i), …,SQMm(xm,i)], SQMm+1(xm+1,i)): i =1,…, n }. 

Due to ℛℬ is increasingly monotonic and assume that there are two rules ri and ri’ in form 

(*) whose linguistic vectors created by the words in their antecedent parts, denoted by x(ri) = 

(x1,i, …, xm,i) and x(ri’) = (x1,i’, …, xm,i’), satisfy the condition that x(ri) ≤ x(ri’), i.e. xj,i ≤ xj,i’, for j 

= 1, …, m, implies ri| m+1 = xi,m+1 ≤ ri’| m+1 = xi’,m+1. As SQMj are order isomorphisms, we have 

SQMj(xj,i) ≤ SQMj(xj,i’), j = 1, …, m+1, and therefore we obtain w(x(ri)) ≤ w(x(ri’)).   

Consider two input vectors ain = (ain,1, …, ain,m) ≤ bin = (bin,1, …, bin,m). Then, similarly as 

above, we have w(ain,1, …, ain,m) ≤ w(bin,1, …, bin,m). There are two cases: 

Case 1: There exists a smallest interval [ w(x(rj1)), w(x(rj2))] containing the both values w(ain,1, 

…, ain,m) and w(bin,1, …, bin,m) computed from the two given inputs. As w(x(rj1)) < w(x(rj2)), the 

two linear interpolation values of the two input vectors, Out(ain) = IntM2ℛℬ( w(ain,1, …, ain,m)) 

and Out(bin) = IntM2ℛℬ( w(bin,1, …, bin,m)), which both lie on the interpolation line connecting 

two points ( w(x(rj1)), SQMm+1(rj1| m+1)) and ( w(x(rj2)), SQMm+1(rj2| m+1)).  

As SQMm+1(rj1| m+1) = SQMm+1(xj1,m+1) < SQMm+1(rj1| m+1) = SQMm+1(xj2,m+1) and w(ain,1, 

…, ain,m) ≤ w(bin,1, …, bin,m), we must have L_IntM2,w( w(ain,1, …, ain,m)) < L_IntM2,w( w(bin,1, …, 

bin,m)). I.e. the linear interpolative approximate reasoning method L_IntM2,w preserves the 

increasing monotonicity of the linguistic rule base ℛℬ.  

Case 2: The two values w(ain,1, …, ain,m) and w(bin,1, …, bin,m) lie on different intervals I1 = 

[ w(x(rj1)), w(x(rj1*))] and I2 = [ w(x(rj2)), w(x(rj2*))] created by the adjacent horizon coordinates 

of the grid Grid2(ℛℬ) in [0, 1]
2
. Assume that w(ain,1, …, ain,m) ∈ I1 and w(bin,1, …, bin,m) ∈ I2, we 

infer I1< I2 and due to increasing monotonicity of ℛℬ, we also have SQMm+1(rj1*| m+1) ≤ 

SQMm+1(rj2| m+1), where SQMm+1(rj1*|Xm+1) and SQMm+1(rj2|Xm+1) are two values of Grid2(ℛℬ), the 

first of which is the right end-point of I1 and and the other is the left end-point of I2. Also as ℛℬ 

is increasing, we infer that L_IntM2,w( w(ain,1, …, ain,m)) < L_IntM2,w( w(bin,1, …, bin,m)). I.e. the 

linear interpolative approximate reasoning method Li_IntM2,w also preserves the increasing 

monotonicity of the linguistic rule base ℛℬ in this case. The theorem is proved. 

4. CONCLUSIONS 

On the basis of more specific formalized analysis on the RWS-interpretability of basic 

components in fuzzy systems, especially of the composition of linguistic rule base and 

approximate reasoning methods running on them, the study has solved the following main 

issues: 

It is pointed out that the study of interpretability is essential to ensure that the manipulation, 

calculation or reasoning in a formalism of a theory or a methodology to draw a conclusion/action 

must be compatible and appropriate to the RW-semantics of their respective RW-counterparts 

when they interact with them. However, this is also a challenging problem, e.g. the 

methodologies within the fuzzy set framework are in general not RWS-interpretable. Therefore, 

there is no formal basis to ensure that the fuzzy representations of linguistic rule bases and fuzzy 

reasoning methods on them constructed in the fuzzy set framework are RWS-interpretable. 

After analyzing the aggregation/synthesis of the semantic information of composed 

elements of a linguistic rule by the aggregation operators within the fuzzy set, such as t-norm, s-

norm and implication to show that it is hard to have a formal basis to ensure that they can 
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preserve the RW-semantics of linguistic rules, the study proposes a computational representation 
method of linguistic rule base by graphs in Euclidean space. The article has demonstrated that 
the proposed graphical representation method is RWS-interpretable. 

It is argued that approximate reasoning method is one of key distinguished component of 

fuzzy systems and its RWS-interpretability problem must be defined and solved in a closed 

relation with the RWS-interpretability of linguistic rule bases. It is demonstrated that there exists 

an RWS-interpretable approximate reasoning method working on the above graphical 

representations produced by the proposed computational representation method. 
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