doi:10.15625/2525-2518/57/3/13076

GLYCOSIDES ISOLATED FROM THE AERIAL PARTS OF PREMNA INTEGRIFOLIA GROWING IN THAI BINH

Truong Thi Thu Hien¹, Ngo Thi Tuyet Mai¹, Bach Thi Tam¹, Nguyen Thi Thu Hien², Le Canh Viet Cuong³, Hoang Le Tuan Anh^{3, 4, *}

¹Vietnam Military Medical University, 160 Phung Hung, Phuc La, Ha Đong, Ha Noi ²Hanoi University of Mining and Geology, Tu Liem, Ha Noi

³Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue city, Thua Thien Hue

⁴Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi

^{*}Email: hoangletuananh@hotmail.com

Received: 5 September 2018; Accepted for publication: 4 May 2019

Abstract. From the aerial parts of *Premna integrifolia* L., three glycosides: acteoside (1), premnaodoroside A (2), and premnaodoroside B (3) were isolated. Their chemical structures were elucidated by means of ESI-MS, ¹H-NMR, ¹³C-NMR, HSQC, HMBC spectra and compared with the previous literature. To our best knowledge, this is the first report of 1 and 3 from *P. integrifolia*.

Keywords: Premna integrifolia, acteoside, premnaodoroside A, premnaodoroside B.

Classification numbers: 1.1.1; 1.1.6

1. INTRODUCTION

Premna intergrifolia L. (Verbenaceae), a herb known as "vong cach", "cach" or "bong cach" in Vietnamese, is widely distributed in Papua New Guinea, Australia, and South-East Asian countries [1]. The aerial parts of this plant have been used in folk medicines to treat cirrhosis and dysentery [2]. The phytochemical investigations of *P. intergrifolia* confirmed the presence of alkaloids [2], flavonoids [2-4], lignans [5, 6], iridoids [3, 7], and terpenoids [8]. In addition, biological activities of methanol extracts and isolated compounds from *P. intergrifolia* have been studied, such as anti-bacterial [6, 9, 10], anti-inflammatory [11, 12], anti-oxidant [6, 13-16], anti-diabetic [13, 17] anti-tumor [18] and anti-atherosclerotic activities [19]. Herein, we reported the isolation and structure elucidation of three glycosides from the aerial parts of *P. integrifolia*.

2. MATERIAL AND METHODS

2.1. Plant materials

The aerial parts of *P. integrifolia* L. were collected in Dong Hoang, Tien Hai, Thai Binh province, Viet Nam, in September 2017, and authenticated by Dr. Do Thanh Tuan, Thai Binh University of Medicine and Pharmacy. A voucher specimen (VMMU-2017-17) was deposited at the Herbarium of Viet Nam Military Medical University.

2.2. General experimental procedures

All NMR spectra were recorded on a Bruker AM500 FT-NMR spectrometer (500 MHz for ¹H-NMR and 125 MHz for ¹³C-NMR). ESI-MS spectra were recorded on Agilent 1260 Series Single Quadrupole LC/MS Systems. Optical rotations, Jasco P-2000 digital polarimeter. Plant sample was extracted on a JP. Selecta 300867 sonicator. Column chromatography was performed using a silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck) or RP-18 resins (150 μ m, Fuji Silysia Chemical Ltd.), thin layer chromatography (TLC) using a precoated silica-gel 60 F₂₅₄ (0.25 mm, Merck) and RP-18 F_{254S} plates (0.25 mm, Merck).

2.3. Extraction and isolation

The dried powder of the aerial parts of P. integrifolia (1.8 kg) was sonicated in methanol (three times \times 4L each) to obtain 220 g of crude extract, which was then suspended in water and successively partitioned with *n*-hexane, dichloromethane, and ethyl acetate to give corresponding extracts: n-hexane (PIH, 30 g), dichloromethane (PID, 9 g), and ethyl acetate (PIE, 20 g) and water layer (PIW). The water layer was subsequently chromatographed over Diaion HP-20 column and then eluted in turn with mixture of methanol/water (0 % to 100 % methanol, respectively) to obtain four fractions, PIW1-PIW4. The PIW1 fraction (2.25 g) was chromatographed on a silica gel column, eluted with ethyl acetate/methanol (10/1, v/v) to yield two sub-fractions, PIW1A and PIW1B. The PIW1A sub-fraction (350 mg) was further separated in a RP-18 column eluting with methanol/water (2/1, v/v) to give compound 1 (30 mg). The PIW3 fraction (12.0 g) was continued to be chromatographed on a silica gel column, eluted with dichloromethane/methanol/water (5/1/0.1, v/v/v) to obtain five sub-fractions, PIW3A-PIW3E. Compound **3** (10 mg) was obtained from PIW3B (240 mg) fraction through chromatography on reverse RP-18 column using methanol/water (1/1, v/v) as eluent. The PIW3C sub-fraction (280 mg) was further separated on a reverse RP-18 column and eluted with methanol/water (1/1, v/v)to yield compound 2 (10 mg).

Acteoside (1): Amorphous powder; ESI-MS: m/z 625 $[M+H]^+$ (C₂₉H₃₆O₁₅, M = 624); ¹H-NMR (500 MHz, CD₃OD) and ¹³C-NMR (125 MHz, CD₃OD) see Table 1.

Premnaodoroside A (2): Amorphous powder; ESI-MS: m/z 891 $[M+H]^+$ (C₄₂H₆₆O₂₀, M=890); ¹H-NMR (500 MHz, CD₃OD) and ¹³C-NMR (125 MHz, CD₃OD) see Table 2.

Premnaodoroside B (3): Amorphous powder; ESI-MS: m/z 891 [M+H]⁺ (C₄₂H₆₆O₂₀, M = 890); ¹H-NMR (500 MHz, CD₃OD) and ¹³C-NMR (125 MHz, CD₃OD) see Table 2.

3. RESULTS AND DISCUSSION

Compound **1** was obtained as an amorphous powder. The molecular formula of **1** was determined to be $C_{29}H_{36}O_{15}$ by the combination of ESI-MS ion at m/z 625 [M + H]⁺ and ¹³C-NMR spectral data. The ¹H-NMR spectrum of **1** showed the signals of six protons of two aromatic ABX systems at $\delta_{\rm H}$ 6.72 (1H, d, J = 2.0 Hz), 7.08 (1H, d, J = 2.0 Hz), 6.70 (1H, d, J = 8.0 Hz), 6.81 (1H, d, J = 8.0 Hz), 6.59 (1H, dd, J = 2.0, 8.0 Hz), 6.98 (1H, dd, J = 2.0, 8.0 Hz),

which are characteristic of two 1,3,4-substituted aromatic rings; two doublet protons at $\delta_{\rm H}$ 6.30 (1H, d, J = 16.0 Hz) and 7.62 (1H, d, J = 16.0 Hz) suggesting the presence of a double bond with E configuration; one anomeric proton $\delta_{\rm H}$ 5.21 (1H, d, J = 1.5 Hz) together with a methyl signal at $\delta_{\rm H}$ 1.12 (3H, d, J = 6.5 Hz) revealing the presence of a rhamnopyranosyl moiety with α -configuration. Besides, the other anomeric proton at $\delta_{\rm H}$ 4.40 (1H, d, J = 8.0 Hz) suggested a sugar unit with β -configuration. The ¹³C-NMR and HSQC spectra of **1** showed the signals of 26 carbons including one carbonyl carbon signal at $\delta_{\rm C}$ 168.3; six other non-protonated carbon signals; seventeen methine carbon signals; three methylene carbon signals at $\delta_{\rm C}$ 36.5, 62.3, and 72.2 and one methyl signal at $\delta_{\rm C}$ 18.4. The ¹H- and ¹³C-NMR spectral data of **1** were similar to those of acteoside (Table 1) [20].

С	${\delta_C}^{\#}$	${\delta_C}^{a,b}$	δ _H ^{a,c} (mult., <i>J</i> in Hz)	С	$\delta_{C}^{\#}$	${\delta_C}^{a,b}$	δ _H ^{a,c} (mult., <i>J</i> in Hz)
1	131.6	131.5	-	8′	114,8	114,7	6.30 (d, 16.0)
2	116.4	116.3	6.72 (d, 2.0)	9′	168.4	168.3	-
3	144.6	144.6	-	1″	104.2	104.2	4.40 (d, 8.0)
4	146.1	146.1	-	2″	76.0	76.0	3.55 (m)
5	117.2	117.1	6.70 (d, 8.0)	3″	81.7	81.6	3.84 (t. 9.0)
6	121.3	121.3	6.59 (dd, 2.0, 8.0)	4″	70.7	70.6	4.94 (m)
7	36.5	36.5	2.81 (m)	5″	76.2	76.2	3.42 (m)
8	72.3	72.2	3.73 (m) 4.06 (m)	6	62.5	62.3	3.54 (m) 3.64 (m)
1'	127.7	127.7	-	1‴	102.9	103.0	5.21 (d, 1.5)
2'	115.4	115.3	7.08 (d, 2.0)	2'''	72.1	72.0	3.60 (m)
3'	146.8	146.8	-	3‴	72.3	72.3	3.94 (m)
4′	149.7	149.7	-	4‴	73.8	73.8	3.32 (m)
5'	116.4	116.5	6.81 (d, 8.0)	5'''	70.7	70.4	3.88 (m)
6'	123.2	123.2	6.98 (dd, 2.0, 8.0)	6′′′′	18.4	18.4	1.12 (d, 6.5)
7′	148.0	148.0	7.62 (d, 16.0)				

Table 1. The ¹H- and ¹³C-NMR spectral data of **1** and reference compound.

^a measured in MeOD, ^b125 MHz, ^c500 MHz, [#] δ_C of acteoside [20].

The HMBC correlations between proton H-2 ($\delta_{H} 6.72$) and carbons C-4 ($\delta_{C} 146.1$)/ C-6 ($\delta_{C} 121.3$)/ C-7 ($\delta_{C} 36.5$); proton H-5 ($\delta_{H} 6.70$) and carbons C-1 ($\delta_{C} 131.5$)/ C-3 ($\delta_{C} 144.6$); proton H-6 ($\delta_{H} 6.59$) and carbons C-2 ($\delta_{C} 116.3$)/ C-4 ($\delta_{C} 146.1$)/ C-7 ($\delta_{C} 36.5$); proton H-7 ($\delta_{H} 2.81$) and carbons C-2 ($\delta_{C} 116.3$)/C-6 ($\delta_{C} 121.3$)/C-8 ($\delta_{C} 72.2$); protons H-8 ($\delta_{H} 3.73$, 4.06) and carbons C-1' ($\delta_{C} 131.5$)/ C-7 ($\delta_{C} 36.5$) suggested the presence of a hydroxytorosol moiety. The position of this moiety at C-1" of glucopyranoside was confirmed by HMBC correlations between protons H-8 ($\delta_{H} 3.73$ and 4.06) and carbon C-1" ($\delta_{C} 103.0$); between the anomeric proton H-1" ($\delta_{H} 4.40$)

and carbon C-8 (δ_C 72.2). The presence of *E*-caffeoyl moiety was determined by the HMBC cross peaks from proton H-2' (δ_H 7.08) to carbons C-4' (δ_C 149.7)/ C-6' (δ_C 123.2)/ C-7' (δ_C 148.0); proton H-5' (δ_H 6.81) to carbons C-1' (δ_C 127.7)/ C-3' (δ_C 146.8); proton H-6' (δ_H 6.98) to carbons C-2' (δ_C 115.3)/ C-4' (δ_C 149.7)/ C-7' (δ_C 148.0); proton H-7' (δ_H 7.62) to carbons C-2' (δ_C 115.3)/ C-6' (δ_C 123.2)/ C-9' (δ_C 168.3); and proton H-8' (δ_H 6.30) to carbons C-1' (δ_C 127.7) /C-9' (δ_C 168.3). In addition, the HMBC correlation between proton H-4" (δ_H 4.94) and carbon C-9' (168.3) indicated the ester linkages between *E*-caffeoyl moiety and glucopyranoside at C-9' and C-4". Finally, the attachment of rhamnopyranosyl moiety at C-3" was confirmed by the HMBC correlation between anomeric proton H-1"' (δ_H 5.21) and C-3" (δ_C 81.6) (Figure 1). Based on the above evidence, compound **1** was determined to be acteoside [20]. This compound has been reported from genus *Premna* (*P. subscandens* [21], *P. japonica* [22], and *P. corymbosa* [23]). However, this is the first report of acteoside from *P. integrifolia*.

Compound 2 was obtained as an amorphous powder. The molecular formula of 2 was determined to be $C_{42}H_{66}O_{20}$ by the combination of ESI-MS ion at m/z 891 [M + H]⁺ and ¹³C-NMR spectral data. The ¹H-NMR spectrum of 2 revealed the signals of two oxygenated methine protons at $\delta_{\rm H}$ 5.47 (2H, d, J = 4.0 Hz) and two singlet olefinic protons at $\delta_{\rm H}$ 7.41 (2H, s), which are characteristic of protons H-1 and H-3 of iridoid skeletons [24]. Besides, the signals of two methyl groups at $\delta_{\rm H}$ 0.95 (3H, d, J = 6.5 Hz) and 0.98 (3H, d, J = 6.5 Hz); four oxygenated methylene protons at $\delta_{\rm H}$ 4.18 (2H, t, J = 6.5 Hz), 3.94 (1H, dd, J = 6.0, 10.5 Hz), 4.04 (1H, dd, J= 6.0, 10.5 Hz) and other protons at $\delta_{\rm H}$ 1.20 – 1.83 ppm suggested the presence of a monoterpene fragment [24]. In addition, the signals of two anomeric protons at $\delta_{\rm H}$ 4.70 (2H, d, J = 7.5 Hz) were confirmed the presence of two sugar units. The 13 C-NMR and HSQC spectra of 2 showed the presence of 42 carbons including six non-protonate carbons, 20 methine carbons, 12 methylene carbons and four methyl carbons (Table 2). The ¹H- and ¹³C-NMR spectral data of 2were similar to those of premnaodoroside A [24]. The presence of the monoterpene fragment were confirmed by the HMBC correlations from protons H-9" (δ_H 0.95) to carbons C-2" (δ_C 36.7)/ C-3" (δ_C 31.0)/ C-4" (δ_C 38.1); protons H-10" (δ_H 0.98) to carbons C-6" (δ_C 34.7)/ C-7" (δ_C 34.0/ C-8" ($\delta_{\rm C}$ 69.9) together the shielded carbon signals ($\delta_{\rm C}$ 63.5, 36.7, 31.0, 38.1, 25.2, 34.7, 34.0, 69.9, 19.9, 17.5) and their corresponding proton splitting pattern [$\delta_{\rm H}$ 4.18 (t), 1.48 (m)/1.71 (m), 1.45 (m), 1.20 (m)/1.37 (m), 1.33 (m)/1.45 (m), 1.20 (m)/1.44 (m), 1.83 (m), 3.94 (dd, 6.0, 10.5/4.04 (dd, 6.0, 10.5), 0.95 (d), 0.98 (d)]. The HMBC cross peaks between proton H-3a ($\delta_{\rm H}$ 7.41) and carbons C-4a ($\delta_{\rm C}$ 113.6)/ C-11a ($\delta_{\rm C}$ 169.0), proton H-8" ($\delta_{\rm H}$ 3.94 and 4.04) and carbon C-11a ($\delta_{\rm C}$ 169.0) revealed the presence of the ester linkage between iridoid <u>1a</u> group and the monotepene fragment at C-4a/C-8" and the carbonyl carbon of iridoid 1a group. The HMBC correlations between proton H-3b (δ_H 7.41) and carbons C-4b (δ_C 113.6)/ C-11b (δ_C 169.0); protons H-1" ($\delta_{\rm H}$ 4.18) and carbon C-11b ($\delta_{\rm C}$ 169.1) confirmed the attachment of iridoid 1b group to the monoterpene fragment at C-1". Moreover, the position of two sugar units was assigned with the aid of the HMBC correlations from two anomeric protons H-1'a and H-1'b ($\delta_{\rm H}$ 4.70) to carbons C-1a (δ_C 95.4)/C-1b (δ_C 95.5) (Figure 1). Consequently, compound 2 was identified as premnaodoroside A [7, 24].

Similarly, detailed analysis of the NMR data as well as comparison of them with the literature values led to identification of compound 3 as premnaodoroside B [24]. To our best knowledge, this is the first report of premnaodoroside B from *P. integrifolia*.

Compound 1 has been reported with various activities as hepatoprotective, antiinflammation, anti-oxidant and cytotoxic activities [20]. Currently, biological activities of compounds 2 and 3 have not been reported, however, several studies of the pharmacological effects have shown that iridoids exhibits neuroprotective, anti-tumor, anti-inflammatory, antioxidant, anti-diabetic, anti-viral, anti-microbial, immunomodulator, antiallergic, anti-leishmanial and molluscicidal activities [25]. Therefore, the presence of these compounds in chemical component of *P. intergrifolia* demonstrate the therapeutic effects of this plant in traditional Vietnamese medicine.

С	$\delta_{C}^{\#}$	Compound 2		δ_C	Compound 3	
		${\delta_C}^{a,b}$	$\delta_{\mathrm{H}}{}^{\mathrm{a,c}}$		${\delta_C}^{a,b}$	${\delta_{\mathrm{H}}}^{\mathrm{a,c}}$
			(mult., J in Hz)			(mult., J in Hz)
1a	95.43	95.4	5.47 (d, 4.0)	95.5	95.5	5.47 (d, 4.5)
3a	151.91	151.9	7.41 (s)	151.9	151.9	7.41 (s)
4a	113.59	113.6	-	113.6	113.6	-
5a	32.07	32.1	3.19 (m)	32.1	32.1	3.20 (m)
ба	30.93	30.9	1.45 (m)/ 2.30 (m)	31.0	31.0	1.45 (m)/ 2.30 (m)
7a	40.68	40.7	1.74 (m)	40.7	40.7	3.93 (m)
8a	80.55	80.5	-	80.6	80.6	-
9a	52.30	52.3	2.24 (dd, 4.0, 9.0)	52.3	52.3	2.24 (dd, 4.0, 9.0)
10a	24.70	24.7	1.34 (s)	24.7	24.7	1.07 (d, 7.0)
11a	169.03	169.0	-	169.0	169.1	-
1b	95.47	95.5	5.47 (d, 4.0)	96.2	95.3	5.47 (d, 4.5)
3b	151.94	151.9	7.41 (s)	152.3	152.3	7.41 (s)
4b	113.62	113.6	-	114.2	114.2	-
5b	32.11	32.1	3.19 (m)	31.1	31.1	3.20 (m)
6b	31.01	31.0	1.45 (m)/ 2.30 (m)	41.3	41.3	1.45 (m)/ 2.30 (m)
7b	40.71	40.7	1.74 (m)	79.3	79.2	1.74 (m)
8b	80.58	80.6	-	45.3	45.2	2.62 (m)
9b	52.30	52.3	2.24 (dd, 4.0, 9.0)	43.0	43.0	2.24 (dd, 4.0, 9.0)
10b	24.70	24.7	1.34 (s)	14.4	14.4	1.35 (s)
11b	169.07	169.1	-	169.0	169.1	-
1′a/1′b	99.86	99.9	4.70 (d, 7.5)	99.9	99.9	4.70 (d, 7.5)
2'a/2'b	74.76	74.8	3.21 (dd, 7.5, 9.0)	74.8	74.8	3.21 (dd, 7.5, 9.0)
3'a/3'b	78.40	78.4	3.30 (m)	78.4	78.4	3.33 (m)
4′a/4′b	71.75	71.7	3.27 (m)	71.8	71.7	3.27 (m)
5'a/5'b	78.02	78.0	3.40 (m)	78.0	78.0	3.40 (m)
6′a/6′b	62.98	63.0	3.66 (dd, 6.5, 12.0)	63.0	63.0	3.67 (dd, 6.5, 12.0)

Table 2. The ¹H- and ¹³C-NMR spectral data of **2-3** and reference compounds.

			3.92 (dd, 2.0, 12.0)			3.93 (dd, 2.0, 12.0)
1″	63.5	63.5	4.18 (t, 6.5)	63.5	63.5	4.18 (t, 6.5)
2″	36.8	36.7	1.48 (m)/ 1.71 (m)	36.8	36.7	1.48 (m)/ 1.71 (m)
3″	31.0	31.0	1.45 (m)	31.0	31.0	1.45 (m)
4″	38.2	38.1	1.20 (m)/ 1.37 (m)	38.2	38.1	1.20 (m)/ 1.37 (m)
5″	25.3	25.2	1.33 (m)/ 1.45 (m)	25.3	25.2	1.33 (m)
6″	34.8	34.7	1.20 (m)/ 1.44 (m)	34.8	34.7	1.20 (m)/ 1.44 (m)
7″	34.0	34.0	1.83 (m)	34.0	34.0	1.84 (m)
8″	69.9	69.9	3.94 (dd, 6.0, 10.5)	69.9	69.9	3.94 (dd, 6.0, 10.5)
			4.04 (dd, 6.0, 10.5)			4.04 (dd, 6.0, 10.5)
9″	20.0	19.9	0.95 (d, 6.5)	20.0	19.9	0.96 (d, 6.5)
10″	17.5	17.5	0.98 (d, 6.5)	17.5	17.5	0.99 (d, 6.5)

^ameasured in MeOD, ^b125 MHz, ^c500 MHz, ^{# δ_C} of premnaodoroside A [24], ^{§ δ_C} of premnaodoroside B [24].

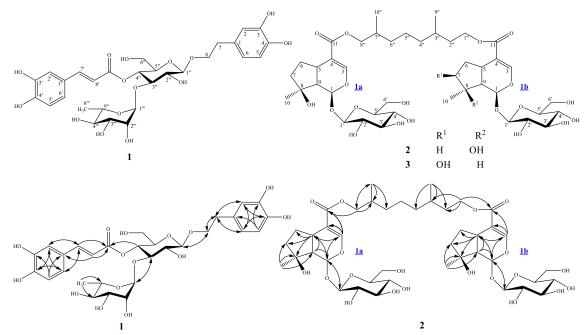


Figure 1. Chemical structures of compounds 1-3 and key HMBC correlations of compounds 1-2.

4. CONCLUSIONS

From the aerial parts of *P. integrifolia* L. collected in Thai Binh, three glycosides, acteoside (1), premnaodoroside A (2) and premnaodoroside B (3) were isolated and structurally elucidated. To our best knowledge, this is the first report of isolation of compounds 1 and 3 from this species. It would be of interest to determine biological activity of these compounds to discover new medicines from medicinal plants in Vietnam.

REFERENCES

- Chi V. V. Dictionary of Medicinal Plants in Vietnam. Medical Publishing House, Hanoi 1 (2012) 300-301.
- 2. Dasgupta, B., Sinha, N. K., Pandey, V. B., Ray, A. B. Major alkaloid and flavonoid of *Premna integrifolia*. Planta Med. **50** (1984) 281.
- Hang N. T. B., Ky P. T., Van Minh C., Cuong N. X., Thao N. P., Van Kiem P. Study on the chemical constituents of *Premna integrifolia* L. Nat. Prod. Commun. 3 (2008) 1449-1452.
- 4. Purushothaman K. K., Vasanth S. Di-C-glycosyl flavone from *Premna integrifolia*, Indian Drugs **23** (1986) 482.
- Win N. N., Woo S. Y., Ngwe H., Prema Wong C. P., Ito T., Okamoto Y., Tanaka M., Imagawa H., Asakawa Y., Abe I., Morita H. - Tetrahydrofuran lignans: Melanogenesis inhibitors from *Premna integrifolia* wood collected in Myanmar, Fitoterapia **127** (2018) 308-313.
- 6. Yadav D., Masood N., Luqman S., Brindha P., Gupta M. M. Antioxidant furofuran lignans from *Premna integrifolia*, Ind. Crops Prod. **41** (2013) 397-402.
- 7. Nguyen T. B. H., Pham T. K., Chau V. M., Nguyen P. T., Phan V. K. Premnaodoroside A and 10-O-trans-p-methoxycinnamoylcatalpol, two iridoid glycoside derivatives from the leaves of *Premna integrifolia* L. Vietnam J. Chem. **47** (2009) 230-235.
- 8. Yadav D., Tiwari N., Gupta M. M. Diterpenoids from *Premna integrifolia*, Phytochem. Lett. **3** (2010) 143-147.
- Rahman A., Sultana Shanta Z., Rashid M. A., Parvin T., Afrin S., Khodeza Khatun M., Sattar M. A. - In vitro antibacterial properties of essential oil and organic extracts of *Premna integrifolia* Linn, Arabian J. Chem. 9 (2016) S475-S479.
- 10. Kurup K. K., Kurup P. A. Antibiotic substances from the root bark of *Premna integrifolia*, Naturwissenschaften **51** (1964) 484.
- 11. Khatun H., Majumder R., Al M., Alam E. K., Jami S. I., Alam B. Preliminary pharmacological activity of the methanolic extract of *Premna integrifolia* barks in rats, Avicenna J. Phytomed. **4** (2014) 215-224.
- 12. Barik B. R., Bhowmik T., Dey A. K., Patra A., Chatterjee A., Joy S., Susan T. A. M., Kundu A. B. Premnazole, an isoxazole alkaloid of *Premna integrifolia* and *Gmelina arborea* with anti-inflammatory activity, Fitoterapia **63** (1992) 295-299.
- 13. Majumder R., Akter S., Naim Z., Amin A., Alam B. Antioxidant and anti-diabetic activities of the methanolic extract of *Premna integrifolia* bark, Advan. Biol. Res. **8** (2014) 29-36.
- Gokani R. H., Lahiri S. K., Santani D. D., Shah M. B. Evaluation of anti-inflammatory and antioxidant activity of *Premna integrifolia* root, J. Complement Integr. Med. 8 (2011) 1-19.
- Al-Reza S. M., Rokonuzzaman M., Afroz M., Hussain M. I., Rashid M. A., Rahman A. -Chemical composition and antioxidant activity of essential oil and organic extracts of *Premna integrifolia* Linn, Braz. Arch. Biol. Technol. 59 (2016) 1-8.

- Nguyen Q. V., Eun J. B. Antioxidant activity of solvent extracts from Vietnamese medicinal plants, J. Med. Plants. Res. 5 (2011) 2798-2811.
- 17. Alamgir M., Rokeya B., Hannan J. M., Choudhuri M. S. The effect of *Premna integrifolia* Linn. (Verbenaceae) on blood glucose in streptozotocin induced type 1 and type 2 diabetic rats, Pharmazie **56** (2001) 903-904.
- Sridharan G., Brindha P., JaiGanesh C., Sivasubramanian S. Anti tumor potential of *Premna integrifolia* Linn against ehrlich ascites carcinoma cell lines, Pharmacologyonline 2 (2011) 438-450.
- Subramani C., Rajakkannu A., Rathinam A., Gaidhani S., Raju I., Kartar Singh D. V. -Anti-atherosclerotic activity of root bark of *Premna integrifolia* Linn. in high fat diet induced atherosclerosis model rats, J. P. A. 7 (2017) 123-128.
- He J., Hu X. P., Zeng Y., Li Y., Wu H. Q., Qiu R. Z., Ma W. J., Li T., Li C. Y., He Z. D. -Advanced research on acteoside for chemistry and bioactivities, J. Asian Nat. Prod. Res. 13 (2011) 449-464.
- Sudo H., Takushi A., Ide T., Otsuka H., Hirata E., Takeda Y. Premnethanosides A and B: Phenylethanoids from leaves of *Premna subscandens*, Phytochemistry 46 (1997) 1147-1150.
- 22. Otsuka H., Kubo N., Sasaki Y., Yamasaki K., Takeda Y., Seki T. Iridoid diglycoside monoacyl esters from stems of *Premna japonica*, Phytochemistry **30** (1991) 1917-1920.
- Otsuka H., Watanabe E., Yuasa K., Ogimi C., Takushi A., Takeda Y. A verbascoside iridoid glucoside conjugate from *Premna corymbosa* var. abtusifolia, Phytochemistry 32 (1993) 983-986.
- 24. Otsuka H., Kashima N., Hayashi T., Kubo N., Yamasaki K., Padolina W. G. -Premnaodorosides A, B and C, iridoid glucoside diesters of an acyclic monoterpenediol from leaves of *Premna odorata*, Phytochemistry **31** (1992) 3129-3133.
- 25. Tundis R., Loizzo M. R., Menichini F., Statti G. A., Menichini F. Biological and pharmacological activities of iridoids: recent developments, Mini Rev. Med. Chem. 8 (2008) 399-420.