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Abstract. Cardiac arrests remain leading causes of deaths for thousands of people annually. One 

of the most common methods for cardiac arrest treatment is cardiopulmonary resuscitation 

(CPR) that provides chest compressions. It has been shown that the quality of chest compression 

is considered as one of key indicators for assessment of CPR performance. In this paper, we 

present an approach for CPR quality evaluation using ECG contaminated with CPR artifact and 

thoracic impedance. The proposed approach contains two key steps: First, the CPR artifact 

signal is estimated via variational mode decomposition (VMD) and a mode selection algorithm 

based on mode’s frequency and frequency of thoracic impedance signal. In the second step, CPR 

parameters performed on the estimated CPR signals are computed and compared with those 

derived by reference CPR. The proposed approach is applied for a dataset including patients 

presenting with asystole, ventricular tachycardia, and pulseless electrical activity. Quantitative 

results validate the performance of the proposed approach for CPR quality assessment. 

Keywords: cardiopulmonary resuscitation, spectrum analysis, thoracic impedance, cardiac    

arrest, variational mode decomposition. 
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1. INTRODUCTION 

Cardiac arrest is a medical emergency, that causes sudden cardiac death if cardiac arrest is 

not treated immediately. A good quality of cardiopulmonary resuscitation (CPR) can help 

increase survival rates from the cardiac arrest [1, 2]. Therefore, it is necessary to assess the CPR 

performance performed by emergency medical technicians. In the treatment of cardiac arrest, it 

has been proved that the chest compressions play a key role. According to guideless in [2], the 

compressions should be 100 to 120 compressions per minute (cpm), to allow full chest recoil 

and minimum interruptions in compressions [1, 2, 3]. To improve the delivery of CPR, the 

quantitative assessment of CPR quality is of high demand.  

There have been many works on estimation of cardiopulmonary resuscitation quality. The 

most common approach for estimation of CPR is the use of extra signals acquired from 

accelerometers like thoracic impedance, in combination with an adaptive filter. Abella et al. [4, 
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5] and Wik et al. [6] used accelerometer interface between the rescuer and the patient’s chest to 

measure the presence and the frequency of chest compressions. To quantify the chest 

compression quality, Valenzuela et al. [7] used automated external defibrillator 

electrocardiograms. Irusta et al. [8] proposed an algorithm for CPR artifact removal based on the 

compression frequency using a least mean square filter. Ayala et al. [9] used adaptive filter 

approach using the compression depth and thoracic impedance signals to characterize the chest 

compression. Recently, the approaches of using Empirical Mode Decomposition (EMD) [10] 

have been introduced. Lin et al. [11] used EMD and autocorrelograms to automatically quantify 

the chest compression performance from ECG signal acquired by AEDs. Lo et al. [12] proposed 

a framework to identify the CPR fluctuations by combining dominant modes from EMD to 

reconstruct a CPR-related fluctuation and applying a least mean square based adaptive filter to 

estimate the CPR artifact. Though having advantages in chest compression estimation, the 

adaptive filter and Empirical Mode Decomposition, have shortcomings. In the adaptive filter 

approach, the artifact removal performance is sensitive to the reference signal. In the Empirical 

mode decomposition, the mode-mixing problem should be handled, and the periodic properties 

of the mode might not to be offered. As an alternative to the EMD approach, variational mode 

decomposition (VMD) has been proposed to address shortcomings of EMD.  

Since first introduced in 2014 by Dragomiretskiy and Zosso [13], VMD has attracted a lot 

of interests from many researchers in various signal processing applications such as wheel set 

bearing fault diagnosis, detecting rub-impact fault of the rotor system, and power quality events. 

In this paper, inspired by the VMD, we present an automatic method to detect the chest 

compressions using the ECG acquired from defibrillators and thoracic impedance (TI) signals. 

The ECG signal that is contaminated with CPR artifact, is first decomposed into different 

subsignals (also called modes) by the VMD. After decomposition of the ECG signal, the 

instantaneous frequencies of the modes are calculated and compared with the fundamental 

frequency of the thoracic impedance signal. The mode whose frequency coincides with TI 

frequency will be assigned as the estimated CPR signal. Based on the estimated CPR signals, the 

CPR quality parameters are computed and validated.  

2. BACKGROUND 

2.1. ECG signals and abnormal heart rhythms 

An electrocardiogram (ECG) is a recording of the electrical activity of the heart muscles as 

it changes over time [14]. The ECG signals can provide valuable information about 

abnormalities in the heart function. Cardiac arrest is the abrupt loss of heart function in a person 

who may or may not have diagnosed heart diseases. Cardiac arrest is resulted from the heart’s 

electrical system malfunctions, and the cardiac arrest death results when the heart suddenly stops 

working properly [2]. This is caused by abnormal, or irregular, heart rhythms which called 

arrhythmias. The arrhythmias of the cardiac arrest can be analyzed by automated external 

defibrillators (AED) to shockable or un-shockable rhythm. The un-shockable rhythm is treated 

by CPR [11].   

The arrhythmias are categorized into four groups: Ventricular fibrillation, Ventricular 

tachycardia, Asystole, and Pulseless electrical activity [15]. Ventricular fibrillation (VF) is a 

condition in which there is uncoordinated contraction of the cardiac muscle of the ventricles in 

the heart, making them quiver rather than contract properly. Ventricular fibrillation is the most 

commonly identified arrhythmia in cardiac arrest patients. Ventricular tachycardia (VT) is a fast 
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heart rhythm that originates in one of the ventricles of the heart. This is a potentially life-

threatening arrhythmia because it may lead to ventricular fibrillation, asystole, and sudden death. 

Asystole (AS) is a state of no cardiac electrical activity. This arrhythmia is often treated with 

chest compressions and ventilations. Pulseless electrical activity (PEA) occurs when there is an 

organized electrical activity but there is no pulse. 

2.2. Thoracic impedance signal and chest compression 

The electrical impedance of biological tissue is found via measuring the voltage drop when 

passing a current through the tissue and using the Ohm’s law. The tissue impedance changes 

with the distance between electrodes, the redistribution and movement of fluids contained in the 

tissue. Since the acquired impedance signal is sensitive to the movement, the CPR causes 

artifacts in analyzing the heart rhythm [16].  

Pressure signal is acquired from the sensor fitted on the extra-pad of the defibrillator. The 

sensor is sensitive to the movement of the chest, and the information on a card fitted to the 

defibrillator is delivered [17]. The chest compressions are done by pressing the chest between 

the breastbones generally from 4 to 5cm and necessary to provide the vital organ with circulation 

of blood. These compressions should be repeated with the rate from 100 to 120 compressions 

per minute (cpm).  

2.3. Variational Mode Decomposition 

Variational Mode Decomposition (VMD) [13] is a signal processing technique that 

decomposes a real-valued signal f(t) into different subsignals (called levels modes) uk.  These 

modes have specific sparsity properties. It is assumed that each mode k to be concentrated 

around a center pulsation k determined during the decomposition process. Thus, the sparsity of 

each mode is chosen to be its bandwidth in spectral domain.  

 The decomposition process of VMD is realized by solving the following optimization 

problem: 
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where f(t) is the main signal to be decomposed; {uk}={u1,…,uk} and {k }={1 ,…, K } 

implicates the set of all modes and their center frequencies, respectively. (t) is the Dirac 

distribution, and * denotes convolution. In order to address the constraint, both penalty term and 

Lagrangian multipliers  are considered. The combination of the two terms benefits both from 

the nice convergence properties of the quadratic penalty at finite weight, and the strict 

enforcement of the constraint by the Lagrangian multiplier. Therefore, the above optimization 

problem is changed to unconstraint one as below: 
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Then the alternate direction method of multipliers (ADMM) is used for solving the original 

minimization problem (2) by finding the saddle point of the augmented Lagrangian L in a 

sequence of iterative sub-optimizations. Plugging the solutions of the sub-optimizations into the 

ADMM, and directly optimizing in Fourier domain. 

3. METHODOLOGY 

3.1. Signal Preprocessing and analysis 

All ECG data acquired from defibrillators were recorded with a sampling rate of 250 Hz. 

The acquired ECG data are contaminated with CPR artifact. The thoracic impedance signals are 

used in the proposed algorithm to separate the CPR artifacts from the ECG signals. In addition, 

the compression depths are also available and used as the reference CPR signals to evaluate the 

performance of the automatic CPR estimation algorithm. The reference CPR and thoracic 

impedance signals are all resampled to 250 Hz, sampling rate of ECG signals, for conventional 

interpretation. Input signals are first filtered with a 4th order Butterworth band-pass filter (0.5-

30Hz for ECG signal, and 0.7 - 5 Hz for TI and reference CPR signals) to remove baseline 

wander and high frequencies. The data is analyzed in one-minute segments, each segment is 

divided into ten-second epochs. 

3.2. ECG signal decomposition 

After being filtered by bandpass filter, the ECG signals are applied to the VMD method 

[13]. By the VMD algorithm, the signal can be separated into modes. Figure 1 shows an example 

of the decomposition step by VMD for a representative segment. In this segment, the VMD 

decomposes the ECG signal into 5 modes. The frequency obtained by performing Fast Fourier 

Transform (FFT) for each mode is also provided in the time-series plot of each mode. The 

spectrograms of ECG signal and modes are also provided.  

3.3. ECG mode’s frequency and mode elimination 

As validated in previous studies [8,9], the fundamental frequency of thoracic impedance 

signal is associated with the chest compression depth. In other words, the frequency of the TI 

signal can be used for estimation of the fundamental frequency of CPR signal. The association 

between the input ECG, TI and the reference CPR signals is interpreted in Figure 2. In this 

figure, the time-frequency via Gabor spectrograms, and frequency distributions of these signals 

are also provided. As can be observed from the figure, the frequency of TI signal (1.76 Hz), is 

close to the fundamental frequency of the reference CPR signal (1.83 Hz, equivalent to 110 

compressions per minute). The frequency of the CPR signal is coincided with the highest peak in 

the frequency distribution of the ECG signal, that is contaminated by CPR artifact. Back to 

Figure 1, we can see that the reference CPR frequency is also coincided with the frequency of 

the IMF 1 (mode 1),  one of decomposed modes by VMD on the ECG signal.   

 Based on ECG and TI signals, in this study, we propose a new approach for CPR 

estimation. Our approach stems from the fact that the acquired ECG signal is contaminated with 

CPR artifact, and the artifact presents an almost periodic waveform, whose fundamental 

frequency is of the chest compressions. Accordingly, it is reasonable to estimate the CPR signal 

from the decomposed ECG’s modes. The idea behind using TI to estimate the CPR is that the TI 
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signal is normally available in AED acquisition system whereas the reference CPR signals are 

normally not available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. ECG signal and its decomposed modes, and the corresponding spectrograms:  

(a) signals intime domain, and (b) spectrograms. 

 

The paradigm for the proposed approach to estimate the CPR signal is described as follows: 

For each signal segment, we decompose the ECG into modes, then compute the frequency of 

each mode. Besides, we calculate the frequency of the thoracic impedance signal (fTI) of that 

segment. The frequencies are computed via taking the Fast Fourier Transform (FFT). Then, we 

compare the frequency of the modes (f1, f2,.., fN) with the TI frequency. If the frequency of one 

mode coincides with TI frequency, with a tolerance of 0.2 Hz, it is considered as a candidate 

mode for the estimated CPR signal. If no candidate component is found, the estimated CPR 

signal is set to zero for that segment. If there exist more than one candidate modes, all modes are 

combined (added). The combined signal is then considered as the estimated CPR signal. 
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Figure 2. Signals, corresponding frequency distributions, and spectrograms of (a) ECG, Reference CPR, 

and TI signals. (a) Signals in time domain; (b) Gabor Spectrograms; (c) Frequency distributions. The 

reference CPR in this segment is with 1.83 Hz, approximate to 110 compressions per minute (cpm), 

coincided with that in the ECG, and close to TI frequency. 

 

3.4. Assessment of CPR quality 

To assess the CPR artifact, for one segment, the annotations of chest compressions from the 

estimated CPR signals are compared with annotations of chest compression from the reference 

CPR. The annotation of chest compressions provides us the reference to evaluate an automatic 

detection algorithm of chest compressions. In this study, we use two CPR quality parameters: 

No flow time and Compression number as the definition in the works in [3, 11]. No flow time is 

defined as a pause in chest compressions of more than 1.5 seconds. Compression number is the 

number of compressions in the segment. 

4. RESULTS  

4.1. CPR estimation 

 To show the quality of the estimated CPR signal in terms of waveform and frequency from 

the sample segment, we compare the results with the reference CPR signal, which is derived by 

compression depth. As can be seen from Figure 3, the waveform and spectrogram plots of the 

estimated CPR signal are in good agreement with the reference CPR signal. The fundamental 

frequencies from the power spectral density of the two signals are also the same, 1.83 Hz (or 110 

cpm), as in the frequency distributions of each signal in this figure.  
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Figure 3. Comparison of Estimated CPR with the reference CPR in an epoch: (a) Signals, (b) Gabor 

spectrograms, and (c) Frequency distributions. 

 

4.2. CPR quality assessment 

We have applied the proposed approach to the data set acquired from patients presenting 

AS (segments), VFVT (segments), and PEA (segments). Each segment lasts 10 seconds, 

corresponding to 2500 samples of a signal, is used for analysis. The bandpass filtering, EEMD 

implementation, and CPR quality evaluation are implemented using Matlab (MathWorks Inc., 

Natick, MA).  

 The obtained values of CPR quality parameters on the estimated CPR signals are 

compared with those derived from the compression signal used as the reference CPR. Especially, 

the correlations of no flow time and compression number parameters of CPR quality by the 

proposed method and those derived from the compression signal using the scatter and the Bland-

Altman mean-difference plots for AS, VFVT, and PEA patients are presented in Figures 4 and 5. 

As can be seen from the Bland-Altman plots for no flow time parameters in Figure 4, the CPR 

quality parameters obtained from the proposed automatic algorithm are in good agreements with 

those derived from the reference compression signals. The no flow time parameters are with 

adequate correlation coefficients (0.8 for AS, 0.79 for VFVT, and 0.81 for PEA) in scatter plots. 

Similar to the case of compression number in Figure 5, the Bland-Altman shows good 

agreements between the parameters from estimated CPR signals (automatic) and reference 

compressions (reference). The correlation coefficients are high for compression number 

parameters (0.83 for AS, 0.85 for VFVT, and 0.82 for PEA). The mean and standard deviation 

values of the parameters shown in Figures 4 and 5 are also provide in Table.1. From this table, 

the values for each parameter measures, no flow time and compression number, by the estimated 

CPR signals are close to those derived by the reference CPR.   
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Figure 4. Scatter plots (top) and Bland-Altman mean-difference plots (bottom) to examine the correlations 

between the no flow time by estimated CPR and reference CPR signal for data with (a) AS, (b) VFVT, 

and (c) PEA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Scatter plots (top) and Bland-Altman mean-difference plots (bottom) to examine the correlations 

between the compression number by estimated CPR and reference CPR signal for data with (a) AS, (b) 

VFVT, and (c) PEA. 
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Table 1. The average values for the data set of CPR quality parameters calculated from the 

              estimated CPR (automatic) and reference CPR (reference). 

 

 

 

 

 

5. CONCLUSIONS 

The study has proposed a new approach for assessment of the CPR quality from analyzing 

the ECG signals retrieved from AEDs and thoracic impedance signals in patients presenting with 

AS, VFVT, and PEA. The ECG contaminated with CPR artifact is decomposed in to modes via 

variational mode decomposition approach. The frequency of each mode is computed and 

compared with fundamental frequency of the thoracic impedance signal. Then, the CPR signal is 

estimated by combining the modes whose instantaneous frequencies coincided with the 

frequency of thoracic impedance signal. The assessment of CPR quality of the CPR is evaluated. 

A good agreements and high correlation between the results by estimated CPR signal with those 

by reference compression signals demonstrates the performance of the proposed method. 
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