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ABSTRACT                                                                           

Superlens imaging has been known as one of the most intriguing applications of 

metamaterials due to its capability of sub-wavelength imaging. In this report, we numerically 

demonstrate the possibility to make an amplifying superlens, which can focus and consequently 

enhance electromagnetic signals emitted at GHz frequencies. Simulations using the finite 

integration technique are performed to explore the amplifying mechanism of the proposed 

superlens. It is found that the focused signals can be considerably intensified at a selected 

position. The results show potential uses of metamaterial superlenses for future wireless energy 

transfer devices and novel energy harvesting applications. 
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1. INTRODUCTION 

In recent years, increasing attention has been paid to metamaterials. This novel class of 

materials has fantastic electromagnetic features that do not exist in natural materials, including 

the negative refractive index, perfect absorption, and electromagnetically-induced transparency 

[1, 2]. The charming ability of metamaterials generally originates from their structure rather than 

from their composition. Metamaterials often are composed of periodically-arranged 

subwavelength electromagnetic resonators and each resonator can be considered as a “meta-

atom”. By changing the sorting rules of these "meta-atoms", one can independently tailor the 

electric and magnetic responses of metamaterial media and this nearly at will. The most 

intriguing property of metamaterials, the negative refractive index, could be obtained for the first 

time in 1968 by simultaneously combining negative permeability μ < 0 and negative permittivity 

ε < 0 [3]. One of the ground-breaking applications of the negative refractive index lies in the fact 
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that it can be used to construct a superlens, a negative-refractive lens, to focus electromagnetic 

waves at a desired range of frequencies [4].  

There have been numerous explorations on using superlens for exciting purposes such as 

constructing subwavelength images (providing the image of two light sources that are separated 

by an interval smaller than the used wavelength) [5] and transferring wireless energy [6]. More 

recently, the use of metamaterials in energy harvesting has become an attractive research topic 

[7,8]. It is known that properly designed metamaterials can absorb and possibly transform 

electromagnetic energy in the ambient to electric currents as a source of cheap and renewable 

energy [9]. The motivation of ultilizing metamaterials in energy harvesting is to capture, store, 

and reuse the energy in those waves, rather than losing it to the environment. This can be done 

by the implementation of metamaterial absorbers, for instance, to make batteries powered by 

wireless GHz hotspots [10] as illustrated in Fig. 1(a).  However, the applicability of energy 

harvesting devices based on metamaterial absorbers has been seriously challenged by the fact 

that the electromagnetic energy rapidly decays in the space due to divergence of the beam and 

absorption in the air. In the other words, the energy harvesting is effective only if the distance 

between the source and the absorber is short. While the original form of the superlens is flat so 

that it can focus the electromagnetic energy from a source at infinity, later studies have shown 

that the geometric form of negative-refractive superlens can be arbitrarily designed for various 

purposes. In this work we propose a metamaterial-based superlens operating as an amplifier for 

electromagnetic waves in the GHz regime. As shown in Fig. 1(b), if the microwave 

electromagnetic waves are emitted from a source at infinity, the energy absorbed by small-

surface metamaterial absorbers can be greatly enhanced by focusing the electromagnetic waves 

using a concave negative-refractive superlens. The negative refractive nature of the superlens is 

numerically analyzed using the finite integration simulation technique. The wave propagation 

and energy distribution in space, with and without the superlens, are simulated to elaborate our 

idea.   

 

Figure 1. (a) A schematic drawing of an energy harvesting device using metamaterial absorbers and (b) an 

ideal case of wave propagation from a source at infinity through a concave negative-refractive superlens. 

2. SIMULATION SETUP 

The proposed metamaterial is composed of periodically-arranged double-sided fishnet 

structures, whose unit cell consists of paired disks merged with crossed continuous wires as 

shown in Fig. 2(a). The lattice parameter, the width of the wire, and the radius of the disk are 
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defined as a, w, and R, respectively. The front and back metallic patterns are separated by a 

dielectric substrate. The used dielectric material is commercial-type Duroid 5880 with a 

thickness of 0.25 mm. Copper is selected as the metal material with a 17.5 μm thickness. It 

should be noted that the choice of the dielectric substrate material has a significant impact on the 

efficiency of the negative index metamaterial since the substrate losses dramatically influence 

the transmission of the whole structure [11]. For this reason, the Duroid material with a relative 

dielectric constant εr = 2.2 is chosen. It has a small tangent δ = 0.0009 at microwave frequencies. 

In this study, we consider a negative-refractive metamaterial operating at 36-42 GHz. To address 

this frequency range the unit cell has a periodicity a of 4.9 mm, while the metal slabs have a 

width w of 1.45 mm and a disk radius R of 2.3 mm. Due to the symmetric configuration, the 

structure works for arbitrary linear polarizations. The propagation direction of the incident 

electromagnetic wave is perpendicular to the metamaterial surface. Shifting the working 

frequency for a particular emitted source can be easily adapted by the well-known frequency-

dimension scalability of metamaterials [12].  

In the following, the results are divided into two parts. In a first series of simulations, we 

characterize the negative refractive index of the fishnet metamaterial structure. The 

electromagnetic simulations are performed by CST Microwave Studio with the finite-integration 

technique [13]. The unit cell is placed between two waveguide ports, which act like the 

transmitter and receiver antennas with periodic boundary conditions. In the second series of 

simulations, the concave negative-refractive superlens is composed by stacking metamaterial 

layers in descending order from the left and right sides to the center. Two concave superlens 

with different radius as illustrated in Figs. 2(b) and 2(c) are considered to show how we control 

the focal point of the electromagnetic energy. These two superlens have the same length                       

L = 93.1 mm but different radius, r1 of 73.8 mm corresponding to a height H1 of 5.2 mm [Fig. 

2(b)] and r2 of 36.1 mm corresponding to a height H2 of 9.4 mm [Fig. 2(c)], for long and short 

focal points, respectively. The source at infinity is simulated by a plane wave and guided by a 

perfectly electric conducting waveguide. 

 

Figure 2. (a) Computational unit cell of the negative-refractive metamaterials and the corresponding 

metamaterial superlens with radii of (b) 73.8 and (c) 36.1 mm (heights of 5.2 and 9.4 mm, respectively). 
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The final aim of two simulation series is to demonstrate that the microwave radiation 

emitted from a source at infinity can be amplified after passing through a negative-refractive 

superlens. For focusing of the radiation beam, the incident waves are required to travel through a 

phase correction and amplitude amplification process. The metamaterial negative-refractive 

superlens provides both phase correction and amplitude amplification of the waves [14]. In our 

simulation setup, the position of the superlens is 16 mm away from the plane-wave port in the z 

direction. With the concave geometry of the negative-refractive superlens, one can expect that 

the refraction beam inside the superlens will be on the same side with the incident beam and the 

electromagnetic energy can be focused at a certain point as illustrated in Fig. 1(b). By changing 

the radius of the concave geometry, the beam's convergence distance, and consequently the 

distance between the source and the focusing point, can be controlled.  

3. RESULTS AND DISCUSSION 

3.1. The negative refractive index of metamaterials 

The purposes of this section are i) to demonstrate the negativity of the refractive index of 

the proposed fishnet metamaterials, which is the key factor to build the superlens; and ii) to 

maximize the applicability of the proposed metamaterial by optimizing the transmission at the 

negative refractive frequency. The higher the transmission, the more energy is sent through the 

superlens, and the greater the signal amplification factor. Therefore, we have determined the 

transmission and reflectance of the fishnet structure. Complex frequency dependent                     

S-parameters, S11 and S21, were obtained from simulations. The transmission T(ω) is equal to 

|S21|
2
 and the reflection R(ω) is equal to |S11|

2
. 

Fig.3 shows the simulation results of the transmission-optimized metamaterial. To optimize 

transmission, the free space and metamaterial impedance must be equal [15]. The condition for 

the optimal impedance of the material is given by the formula: 

                                                          1Z



  .                                                                 (1) 

Since  is often fixed by the magnetic resonant frequency, it is more convenient to tune  

for matching with  by shifting the plasma frequency of the continuous metal wires as [15,16]: 

                                                        

2
2 0

22 ln
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d

w


 ,                                                           (2)      

where fp is the plasma frequency, d is the distance between two wires, w is the width of the wire, 

and co is the speed of light in vacuum. During the optimization process, we adjusted the width of 

the continuous wires (not shown here) to tune permittivity and permeability for impedance 

matching.  

The optimized transmission and reflection spectra are plotted in Fig. 3(a). Fig. 3(b) presents 

the permittivity, permeability, and refractive index for a single layer of fishnet metamaterials, 

which are extracted from the scattering parameters by the standard retrieval procedure [17]. It is 

clear that a negative value of the refractive index emerges from 36 GHz to 42 GHz with the 

highest transmission being 0.8 at 37 GHz. In the superlens, due to the strong interaction between 

metamaterial layers, the overlap between the negative permittivity and negative permeability 

changes and consequently, the negative refractive band is slightly shifted. The highest 
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transmission is found around 39 GHz for the superlens. Therefore, to examine the amplifying 

ability of the negative-refractive superlens, we consider its functionality at the frequency of 39 

GHz.  

 

Figure 3. (a) Transmission and reflection of the fishnet structure. (b) The effective refractive index, 

permittivity, and permeability. n = 0 is represented by a thin solid line. 

3.2. Energy focusing 

The electromagnetic waves propagating in free space are simulated and their electric field 

intensity is presented in Fig. 4(a). As one might expect, the farther away from the source, the 

lower the field intensity. As comparison, Fig. 4(b) shows the situation in which the superlens 

with large radius (r1 = 73.8 mm, H1 = 5.2 mm) is used. It can be seen that the waves converge at 

a focusing area before diverging again. Due to imperfectness of the concave geometry, the 

electromagnetic waves cannot be focused into a point as expected. The divergence observed 

after the converging range is consistent with the prediction. The distributions of electric field 

intensity along the propagation direction with and without the superlens are shown in Fig.4(c) 

for comparison. It is obvious that the electric field intensity is greatly enhanced by the superlens. 

In particular, using the superlens the electric field intensity is 6.3 times stronger at 90 mm (the 

focal point) away from the port (corresponding to about 74 mm from the superlens) compared 

with the case without superlens. 

In principal, the focal  length can be controlled by properly selecting the lens radius.    

Figure 5 shows the relation between the focal length, the refractive index, and the lens radius. As 

can be seen, the large radius superlens (r1 = 73.8 mm, H1 = 5.2 mm) has a focal length f1 = 71.6 

mm, while the small radius superlens (r2 = 36.1 mm, H2 = 9.4 mm) has a focal length f2 = 35.8 

mm. In this case, we can use the classical Lensmaker’s equation with negative value of n to 

describe the relation between f, r, and n: 

                                   
1 1 1

( 1)( )
back

n
f r r
                                              (3)                                                 
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Figure 4. Distribution maps of electric field intensity for the propagation of 39 GHz wave in the                

z-direction (a) in free space  and (b) with superlens (r1 = 73.8 mm, H1 = 5.2 mm). (c) The difference 

between time-average electric field intensity distributed at the centre of the z-direction with and without 

the superlens. 

          

Figure 5. Distribution maps of the electric field intensity at 39 GHz for negative-refractive superlenses 

with two different concave radius corresponding to (a) r2 = 36.1 mm (small radius) and  (b) r1 = 73.8 mm 

(large radius). The higher intensity for z<0 in (a) is related to the larger reflection by the superlens given 

the larger number of layers. 
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In this case backr   , so the focal length scales linear with the front radius r of the 

superlens. The values of (negative) n determined for the two superlenses using Eq. (3) are in 

good agreement: n1 = -2.03 and n2 = -2.01. It is confirmed that the different shapes of 

superlenses have almost no effect on their refractive index, but considerably alter the focal 

length. 

4. CONCLUSIONS 

We have demonstrated that it is possible to design microwave metamaterial-based 

superlens operating at the microwave frequency range. It is shown that using the proposed 

superlens the microwave electromagnetic from a source at infinity can be greatly amplified at a 

certain area. In our simulations, the focused electric field intensity is 6 times greater than that the 

original one. In addition, we have shown that the focal length can controlled by changing the 

concave radius of the superlens. These findings put a solid step toward the experimental 

demonstration of superlenses for promising applications in wireless power transmission and wifi 

energy harvesting. 
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