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ABSTRACT 

A top-down approach begins with Global Climate Models (GCMs) is a common method 

for assessing climate change impacts on water resources in river basins. To overcome the coarse 

resolution of GCMs, dynamic downscaling by regional climate models (RCMs) with bias-

correction procedures is utilized with the aim to reflect the meteorological features at the river 

basin scale. However, the results still entail large uncertainties. This paper examines the ability 

to capture the observed baseline temperature and precipitation (1986-2005) in the Ba River 

Basin from GCM outputs, RCM outputs, bias-corrected GCM outputs and bias-corrected RCM 

outputs by analyzing statistical indicators between historical simulations and observed data in 4 

temperature and 6 rainfall stations. Bias-corrected results of both GCM and RCM have 

significantly smaller errors compared to the unbias-corrected ones. The uncertainty of future 

climate projection for the mid and late 21
th
 century of the bias-corrected GCMs and RCMs are 

evaluated. It is found that there is still uncertainty in projected results. A concept of “Decision-

Scaling” which combines top-down and bottom-up approaches is proposed to assess the climate 

change impacts on hydrological system to take into account uncertainties of climate projections 

by models. 

Keywords: uncertainty, climate model outputs, hydrologic system, Ba River basin, decision 

scaling. 
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1. INTRODUCTION 
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Anthropogenic climate change with manifestation of increased temperature and changed 

precipitation is predicted to affect water resources in river basins. The method used in traditional 

international and Vietnamese researches assessing impacts of climate change on water resources, 

e.g. [1–4], is top-down approach which  uses Global Climate Model (GCM) projections in a very 

starting point. Because of the coarse resolution of GCMs, downscaled and bias corrected climate 

variables are then used as input to hydrologic models, the output of which is used to drive water 

system models, bringing basis to determine adaptation options. It must be admitted that, top-

down approach provides effective information on the potential impacts of climate change to 

river basins using an intended future economic development and emission scenarios. However, it 

entails problems for decision makers to utilize the results due to a number of uncertainties, 

which derive from different sources, such as imperfect knowledge of the functioning of climate 

system, variability of climate factors in the affected systems, or future economic development 

and emission scenarios [5–7].  

Ba River Basin (BRB) is the largest river basin in Central Vietnam with total natural area 

of 13,417 km
2
. Majority of the basin is in Gia Lai, Dak Lak and Phu Yen Provinces. Comparing 

to other river basins in Vietnam, the BRB has limited amount water resources with about 25.72 

l/s.km
2
 of average annual flow module. Moreover, the annual flow is unevenly distributed, with 

70 -75 % of flow concentrated in 3-4 months during the flood season, creating problems of 

droughts, floods and salinity intrusion, etc. in many places in the basin [4]. It is projected that 

under climate change condition, the river flow tends to increase in the flood season and decrease 

in the dry season [8]. Therefore, the BRB is supposed to face with more serious water related 

disasters and extreme climatic events in the future. Like other researches on ll the previous 

researches about the impacts of climate change on the BRB is based on top-down approach [4], 

[8], [9]. Because of uncertainties of the climate models and scenarios, these researches have 

limited assistance for identifying adaptation policies at different levels. 

In order to find a better approach to tailor climate information into adaptation policy 

strategies in BRB, this paper evaluates the uncertainties of baseline simulations and future 

projections of 4 groups of climate models: Global Climate Models (GCMs), Regional Climate 

Models (RCMs), bias-corrected GCMs, bias-corrected RCMs. To overcome the uncertainties of 

climate projections, a concept of “Decision-Scaling” is introduced to assess the climate change 

impacts on hydrological system. 

2. METHODOLOGY 

2.1. Data 

- Observed data: Daily temperature and precipitation data from 1986-2005 at 4 temperature 

stations (An Khe, AyunPa, M Drak and Tuy Hoa station) and 6 precipitation stations (An Khe, 

PoMeRe, AyunPa, Son Thanh, M Drak and Tuy Hoa station) (collected from Vietnam National 

Hydro-meteorological Information Center) are used as the basis for evaluating uncertainties of 

the baseline simulations. 

- Climate model data: totally 50 members from 20 GCMs with different AR5 scenarios 

(RCP2.6, RCP4.5, RCP6.0, RCP8.5) of Intergovernmental Panel on Climate Change (IPCC) are 

exploited from website of Program for Climate Model Diagnosis & Intercomparison 

(http://cmip-pcmdi.llnl.gov/cmip5/) on 15
th
 March 2018. These outputs are interpolated from 

grid points onto the coordinates of the above 4 temperature and 6 precipitation stations by 

bilinear interpolation method. 

https://pcmdi.llnl.gov/index.html
http://cmip-pcmdi.llnl.gov/cmip5/
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2.2. Methods for evaluating the uncertainty of climate model outputs 

In recognition of adverse effects of uncertainties in climate model simulations on utilizing 

the results of climate change impacts assessment on water resources into reality, a number of 

researches concentrate on evaluating them. In [10], ANOVA analysis is used to quantify four 

sources of uncertainty in temperature climate model outputs for North America, including 

differences in GCMs, internal variability simulated by GCMs, differences in RCMs, and 

statistical downscaling including internal variability. In [11] and [12], uncertainty in projections 

from GCMs is estimated by Square root error variance (SREV). In general, uncertainty of 

climate projections is estimated using different statistical indicators according to two 

approaches: through comparison of historical simulations with observed data; and through 

analysis of the consistency between multiple climate model simulations.  

In this paper, the former approach is used for estimating uncertainty of baseline simulations 

by analyzing Mean Error (ME), Mean Absolute Error (MAE) indicators and annual variation. 

The other approach is used to calculate future projections uncertainty using standard deviation 

(SD) and variation range for analysis. The periods of time in the research includes: 1986-2005 

for the baseline, 2016-2035 for the near future, 2046-2065 for the middle of century and 2080-

2099 for the end of century. Four groups of climate models are examined:  

(1) GCM outputs: 50 members from 20 GCMs in different AR5 scenarios (RCP2.6: 10 

members, RCP4.5: 20 members, RCP6.0: 10 members, RCP8.5: 10 members);  

(2) RCM outputs: some of the GCM outputs above are dynamically downscaled by RCMs 

including CCAM, clWRF and PRECIS in different scenarios. There are totally 20 members of 

this group (RCP4.5: 10 members, RCP8.5: 10 members); 

(3) Bias-corrected GCM outputs (BC-GCMs): the results from (1) are systematic-errors 

adjusted by quantile mapping procedure [1]; and 

(4) Bias-corrected RCM outputs (BC-RCMs): the results from (2) are systematic-errors 

adjusted by quantile mapping procedure [1]. 

Table 1 shows the list of GCMs and RCMs used in the research.  

Table 1. List of GCMs and RCMs used in the research. 

GCMs 
RCMs 

Model Calculated scheme 

ACCESS1-0; BCC-CSM1-1; CanESM2; CCSM4; 

CESM1-CAM5; CNRM-CM5; CSIRO-Kk3-6-0; 

GFDL-CM3; GFDL-ESM2G; GFDL-ESM2M; 

HadCM3; HadGEM2-AO; HadGEM2-CC; 

INMCM4; IPSL-CM5A-LR; MIROC5; MPI-ESM-

LR; MPI-ESM-MR; MRI-CGCM3; NorESM1-M 

CCAM 
ACCESS1-0; CCSM4; CNRM-CM5; 

GFDL-CM3; MPI-ESM-LR; NorESM1-M 

clWRF NorESM1-M 

PRECIS CNRM-CM5; GFDL-CM3; HadGEM2-ES 

3. RESULTS  

3.1. The uncertainty of baseline simulations of Climate Models 
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To evaluate the uncertainty of baseline simulations, outputs of 4 groups of Climate Models 

are compared with the historical data by analyzing statistical errors and annual variation. 

For temperature variables: Table 2 indicates that ME indicators are mostly negative for 

GCM and RCM outputs (-0.59 and -1.23 in average, respectively), showing a smaller mean 

value of simulated results compared to the observed data. Moreover, MAE of GCM outputs is 

slightly larger than that of RCM outputs, but both of them show a significant magnitude of errors 

(1.49 and 1.29 in average for GCMs and RCMs, respectively). After bias correction procedure is 

applied, the outputs of GCM and RCM models have much better ability to capture the reality. 

Particularly, ME values at all the stations in the basin are equal to 0.2 for BC-GCMs and 0.0 for 

BC-RCMs. The magnitudes of errors are also much improved, with 0.37 – 0.41 for BC-GCMs 

and 0.31-0.36 for BC-RCMs. Table 2 illustrates ME and MAE value of baseline simulated 

temperature compared with observed data in BRB.  

Table 2. Mean Error and Mean Absolute Error of baseline simulated temperature by                                      

Climate Models compared with observed data.

Station GCMs RCMs BC-GCMs BC-RCMs 

ME -0.59 -1.23 0.02 0 

MAE 1.49 1.29 0.40 0.34 

Table 3. Mean Error and Mean Absolute Error of simulated precipitation by Climate Models                    

compared with the baseline observed data. 

Station 
GCMs RCMs BC-GCMs BC-RCMs 

Rain Dry Ann Rain Dry Ann Rain Dry Ann Rain Dry Ann 

ME -28.9 47.1 -10.9 3.6 119.0 27.6 2.0 6.4 3.3 1.2 2.7 1.7 

MAE 42.6 78.1 34.9 40.6 136.2 49.5 35.6 48.0 30.3 34.3 40.4 27.8 

 

Figure 1. Historical simulated and Observed Annual precipitation variation in An Khe and MDrak station. 

For precipitation variables: Table 3 shows that, the mean values of both unbias-corrected 

GCM and RCM simulations are moderately different from the observed data, with ME(GCMs)  

= (-10.9) and ME(RCMs) = 27.6, especially in dry season. After correcting systematic biases, 

the mean errors of both GCMs and RCMs are substantially reduced, better result for BC-RCMs 

(ME = 1.7) than for BC-GCMs (ME = 3.3). However, the mean absolute errors are unclear 

improved (MAE of annual values are equal to 30.3 and 27.8 for BC-GCM and BC-RCM 
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outputs, respectively). The improvement of MAE is quite better in the dry season than in rainy 

season; however, these values are still at high levels. Comparison between simulated and 

observed annual precipitation variation (Figure 1) in the baseline period shows an apparent 

better results of the bias corrected climate model simulations, especially in rainy season. 

In short, in baseline period, there is not a considerable improvement in climate models 

results through downscaling process for both temperature and precipitation variables. However, 

bias correction procedure seems to be more effective to get these simulations closer to the 

reality. Therefore, the next part only concentrates in evaluating uncertainties of the bias-

corrected results of GCM and RCM (BC-GCMs and BC-RCMs) in BRB in the future. 

3.2 The uncertainty of future projections of BC-GCMs and BC-RCMs 

The consistency between bias-corrected outputs from different member of GCMs and 

RCMs are analyzed in order to access uncertainties of these 2 groups.  

For temperature variables: In general, standard deviation of BC-GCMs is quite larger than 

that of BC-RCMs with higher magnitude in near future than in distant future (Table 4).  

Table 4. Standard deviation of BC-GCMs and BC-RCMs for temperature variables at different            

percentiles and mean value. 

Percentile 

Station 

BC-GCMs BC-RCMs 

10
th

 50
th

 90
th

 MEAN 10
th

 50
th

 90
th

 MEAN 

2016-2035 0.47 0.50 0.53 0.47 0.23 0.28 0.39 0.28 

2046-2065 0.67 0.72 0.75 0.70 0.52 0.63 0.70 0.61 

2080-2099 1.07 1.12 1.16 1.12 0.98 1.03 1.08 1.03 

 

Figure 2. Temperature change during 21
st
 century simulated by BC-GCMs (left) and BC-RCMs (right)             

at An Khe station. 

In 2016-2035, standard deviations values of BC-GCMs at 10
th
 and 90

th
 percentiles are 0.47 

and 0.53 respectively, while these indicators of BC-RCMs are 0.23 and 0.28. At the end of the 

century, the improvement is not considerable. Analyzing variation range of temperature change 

(Figure 2), it can be seen that, the ranges of both BC-GCMs and BC-RCMs are getting larger 

during 21
st
 century. In 2100, these range are up to 3-4

o
C.  
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For precipitation variables: In overall, the uncertainties of BC-GCMs at all percentiles are 

at high levels (Table 5). In 2016-2035 period, standard deviation value is 455.33 and 1264.36 at 

10
th
 and 90

th
 percentile, respectively. Until the end of the century, these values are 494.83 and 

1320.00 respectively, showing a slight increase of inconsistency between different BC-GCM 

outputs through the century. For the BC-RCMs, the results are improved significantly, but still at 

high levels. Specifically in near future, standard deviations at 10
th
 and 90

th
 percentiles decrease 

to 186.82 and 355.66. Until the end of the century, these values are 227.96 and 505.36 

respectively. However, variation ranges of precipitation change (Figure 3) show a limited 

amendment of BC-RCMs compared with BC-GCMs.  

In brief, to some extent, it can be said that BC – RCM members have more consistency 

than BC-GCM members. However, significant uncertainties are still found in the BC-RCM 

results, especially in distant future.  

Table 5. Standard deviation of BC-GCMs and BC-RCMs for precipitation variables at different 

percentiles and mean value. 

Percentile 

Station 

BC-GCMs BC-RCMs 

10
th

 50
th

 90
th

 MEAN 10
th

 50
th

 90
th

 MEAN 

2016-2035 455.33 636.94 1264.36 761.41 186.82 231.57 355.66 212.83 

2046-2065 468.59 677.05 1342.24 747.03 171.43 247.92 401.43 256.57 

2080-2099 494.83 713.92 1320.00 768.22 227.96 311.39 505.36 322.84 

 

Figure 3. Precipitation change during 21
st
 century simulated by BC-GCMs (left) and BC-RCMs (right)              

in Tuy Hoa station. 

4. INTRODUCTION OF DECISION SCALING METHOD 

Top-down approach, which begins with GCM/RCM projections, is commonly used to 

assess climate change impacts on water resources in the BRB in previous researches. In this 

approach, climate projections from a single or several GCMs are statistically or dynamically 

downscaled and systematic bias-corrected with the aim to reflect the meteorological features at 

the river basin scale. The climate outputs are then used to drive the hydrologic and water 

resources system models to determine the vulnerabilities of the river basin under a changing 

climate. Adaptation solutions are finally proposed. It can be seen that this approach produces 
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Risk Discovery 

Stochastic analysis to identify  climate 
sensitivity of the system 

Creation of the climate response 
function linking climate statistics to 
performance indicators 

Identification of climate states according 
to decision optimality 

 

Climate Informed Risk Estimation 

Produce estimates of future values of 
the climate  variables defining the 
climate sectors 

Estimate relative  probabilities of 
climate states 

Consideration of residual risks 

Discussion of past climate effects 

Creation of system model 

Identification of performance 
indicators and thresholds 

Identification of Climate Hazards 

Figure 4. Diagram of Decision Scaling Method [6].  

useful basis for adaptation strategies for an intended future [5]. However, it fails to assist the 

proposal adaptive measures in the BRB at different levels due to a large range of uncertainties. 

 The above results for uncertainties evaluation of climate outputs in the BRB in baseline 

shows that dynamic downscaling with RCMs is not effective in capturing meteorological 

conditions in the BRB. Once bias correction technique is applied, the results have been 

improved significantly for temperature values, but the results for precipitation are still limited. 

For the future, BC-RCM simulations have a higher level of consistency as compared to BC-

GCM outputs for both temperature and precipitation values. However, the variation ranges of 

both BC-GCMs and BC-RCMs are larger during 21st century. In 2100, this range for 

temperature is (+3) - (+4)
o
C and for precipitation is ±25% compared with baseline period. 

Temperature and precipitation are important factors of water balance in river basins. While 

precipitation relates directly to river flow, temperature affects water balance indirectly through 

evaporation. Therefore, these magnitudes of uncertainties of temperature and precipitation 

projections lead to an imprecision in hydrologic and water system models’ outputs. As a result, 

decision makers in BRB would face a grand challenge in proposing adaptation options basing on 

these results [5], [13]. 

In the context of uncertainties of future GCM/RCM projections, there is a growing number 

of alternative climate risk assessment approaches which rely less on the use of climate models. 

The stochastic method is an alternative which 

considers a wide range of possible scenarios to 

assess climate change impacts [6], [13]. Brown 

et al  [6] introduced the “Decision Scaling” 

framework which follows this approach. The 

distinguished point of this method among the 

others is the use of decision analysis as the 

framework for assessing stochastic bottom-up 

climate risks of the system with future climate 

projections from GCM.  

Figure 4 is a visual depiction of the 

Decision Scaling framework. The first stage of 

the method is identification of historical climate 

hazards. The decision analysis is given through 

“Performance threshold” which divided the 

system performance into 2 domains: taking-

action and not-taking-action. This process is 

conducted through discussion with stakeholders, 

and local authorities… The next stage is 

discovery of climate risk of the system. 

Through stochastic analysis, climate sensitivity 

of the system is identified. “Climate response 

function” is developed with the aim to 

determine the problematic climate 

conditions. The climate space is then parsed 

into states that favor 2 alternative decisions 

of “taking-action” or “not-taking-action” mentioned above. The final stage is to tailor climate 

information to assist decision making. While the top-down approach uses GCM outputs in the 

first step as the basis for the assessment process, “Decision Scaling” uses this at the final step to 
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establish the likelihood of occurrence of a particular climate state that favors an alternative 

decision [6]. 

 The “Decision Scaling” framework has three advantages. Firstly, this method considers a 

large range of GCMs as a set of plausible of future climate conditions. Therefore it considers a 

larger range of uncertainties related to future economic development scenarios. Secondly, since 

the method starts with bottom-up climate risk assessment, it is able to reflect the actual 

characteristics of the water system and consider water problems directly related to the study 

area. Thirdly, as the climate space is analyzed based on decision favors, the result of this method 

have close relevance to different decision options.  

The use of Decision Scaling method to assess climate risks of water resources in the BRB 

will be presented in the next papers.   

5. CONCLUSION 

This paper quantifies uncertainties of climate model outputs in the BRB in both baseline 

simulations and future projections. For temperature variables, in baseline, the findings show an 

apparent improvement of statistical indicators of the bias-corrected GCM and RCM simulations 

than the original ones. This proves that while the bias correction procedures seem to be effective 

to get the historical temperature simulations closer to the observations, dynamical downscaling 

techniques are found limitations in that issue. For projections, BC-RCM outputs have better 

consistency than BC-GCM outputs in near future, but in distant future, both of them have a wide 

range of variation. For precipitation variables, it is found that there is still a high level of 

uncertainties for downscaled and bias corrected outputs of GCMs both in historical simulations 

and future projections. Although these procedures help the results much better than the original 

ones, uncertainties still exist and cause difficulties in driving hydrological and water system 

models to get basis for adaptation proposals. 

Decision Scaling method, which combines top-down and bottom-up climate change 

impacts assessment, is introduced with an expectation of better tailoring climate information into 

water resources management and giving effective assistance for decision makers in the BRB. 
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