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ABSTRACT 

A concept of a planar vector magnetic sensor comprising in-plane tunnel magnetoresistive 

(TMR) sensors and an active flux-guide (AFG) was introduced in this work. The AFG redirected 

the magnetic flux at high-frequency benefiting a vertical detection capability and suppressing the 

field noise of the TMR at low-frequency measurement. The vertical sensitivity of 19.5 V/T was 

close to the in-plane sensitivity of 19.2 V/T. In addition, the 1-Hz field noise was suppressed 

from 6 nT/ Hz down to 0.4 nT/ Hz. The flux bending effect of the AFG was also verified by 

the angular measurements with the angular deflection was found to be about 50º. It revealed that 

the vertical field component was certainly detected by the in-plane sensor, and the proposed 

method was a feasible approach for the development of the low-noise planar vector magnetic 

sensor. 
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Tunneling magnetoresistance sensors (TMR) were widely used in the magnetic sensing 

applications by its advantages of high magnetoresistance ratio, low cost and low power 

consumption [1, 2], e.g. current measurement, electronic compass, automation, and geomagnetic 

applications [3]. To expand the applications of the magnetic sensors, the high-performance 

magnetic sensor should be developed, including the miniature, the co-planarization, the multi-

axis vector sensors and so on. In the past decade, many research groups developed the vector 

magnetometers using the solid-state sensors [4, 5] owing to its advantages, including the CMOS 

compatibility of TMR so that the devices have been easily integrated. Excluding the traditional 

three-axis design that used three sensors for three axes, in which three sensors were aligned 

respectively their sensing directions along three vectors of the Cartesian coordinate system [6]. 

Whereas, the flux-guide technique was proposed in recent years to construct a vector 

magnetometer using co-planar sensors [4, 5]. In fact, flux-guide helps to induce the in-plane 

magnetic field component, which can be measured by an in-plane sensor. However, the 

drawbacks of the flux-guide are hysteresis of its materials and there is no contribution to 

improving the noise of the incorporated sensors. Although, the detectivity of the TMR sensor 

has been known on the order of pico-tesla (pT) [7], and noise spectral density was less than 1 

nT/ Hz at several of kilohertz [8]. Unfortunately, the resolution of TMR sensors in low field 

measuring applications was severely restricted by the low-frequency (1/f) noise. Many efforts to 

suppressing 1/f noise have been reported, e.g. the micro-electro-mechanical-system (MEMs) flux 

concentrators (FC) [9, 10] and modulated flux densities [11]. The modulation technique said that 

the hysteresis of a magnetic sensor incorporated with a soft magnetic FC could be eliminated by 

modulating the permeability of the FC played as an active flux-guide (AFG) [12]. In our 

previous work proved that the 1/f noise of a TMR was improved by a factor of 12 and the noise 

level at 1-Hz was about 0.33 nT/ Hz@1Hz using a shielding chopper [13].  

In this work, we present a concept of a vector magnetic sensor comprising a square hollow 

AFG, so that a TMR sensor was aligned at the position where flux was redirected nearby the 

outer edge of the AFG. Therefore, the vertical field component (Bz) would be redirected 

becoming an in-plane magnetic field component, which easily caught by a planar sensor. The 

working principle of AFG can be interpreted as follows. Normally, with only tubular Metglas 

core, its function likes a passive flux-guide, which induced the in-plane field components. 

Besides, the flux density nearby sensor is concentrated leading to boosting the sensitivity of the 

sensors. In this design, the permeability of the core material was oscillated leading to the core 

being switched from the unsaturated to the saturated states. It means that the flux densities 

around the sensor were modulated at high frequency, which helps to move the operating point of 

the TMR sensor to the high-frequency regime, where there is the only white noise level. Thus, 

the 1/f noise of the TMR sensor is suppressed. The AFG is not only contributed to suppressing 

1/f noise but also a promising method to develop a vector magnetometer for sensing 

geomagnetic field using planar TMR sensors. The sensitivity, angular responses, and noise 

characteristic of the engineered sensor were realized and verified. The experimental results are 

presented.  

2. EXPERIMENTAL 

The concept of a planar TMR sensor for the vertical detection with an AFG is shown in 

Fig.1. The TMR sensor used in this work was the commercial TMR2102 sensor provided by 

MDT Inc. [14]. The sensor has the inner structure consisting of four active TMR arrays formed 

in a full Wheatstone bridge. Each TMR array was circuited in series of the hundreds of magnetic 
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tunnel junction (MTJ). The sensor’s nonlinearity is below 1% in the range of ±30 Oe. The 

intrinsic sensitivity of the sensor is 4.9 mV/V/Oe within the linear range [14]. The AFG 

constructed by a soft magnetic core and an excitation coil. The AFG was designed in a square 

hollow shape, which was 14 mm in length and 7 mm of the square edge. In our previous design 

[13], the cylindrical chopper was used. However, the edge of Metglas core hardly bends in a 

perfect circle leading to the distribution of the flux density being uniform. Hence, this design 

with a square shape, the edge of the metglas was a line. It helps easily to form the shaped tube 

and the flux distribution is more uniform. The core’s material is the Metglas-2714A, from 

Metglas Inc. [15]. The thickness is about 0.6 mil (~ 15 µm). The metglas is easily saturated with 

an external magnetic field below 0.1 Oe [15]. The single core of the AFG was wrapped with 

copper wires to modulating the permeability of the Metglas. The number of turns of the 

excitation coil was about 100, which induced a magnetizing field of 0.2 Gauss for the 

modulation. The wiring configuration of the AFG is shown in Fig. 1. Fig. 1(a) shows the 

complete isometric view of the AFG design, while Fig. 1(b) show the sectional top view of the 

AFG, including the metglas core and copper wires. Figs. 1(c) and (d) show the sectional side 

view of the AFG in the simulation. In order to simply show the bending effect of the AFG, the 

cutting side of the AFG was chosen in the 2D simulation so that two sides of the AFG tube are 

illustrated by two slide bars. The simulation was carried out using Maxwell V16.0 simulator to 

show the bending effect of the AFG [16]. The TMR sensor was placed at the position nearby the 

outer edge of the chopper tube, where the in-plane magnetic field component induced by the 

AFG could be detected, as illustrated in Fig 1(d). In Figs. 1(c) and (d), only applied field was 

shown, while the magnetizing field induced by excitation coil was not. When the magnetizing 

field is ON (current ON), it magnetizes the metglas core so that the permeability is low leading 

to the applied magnetic field is homogeneous, as shown in Fig. 1(c). Whereas, when current is 

OFF the core is demagnetized so that the core has an extremely high permeability making the 

flux density being concentrated, which was so called “bending effect”, as shown in Fig. 1(d). 

The optimal position of the TMR with a flux-guide has also been reported by the author in 

previous work [12, 13, 17]. The sensor must be placed as close as possible to the outer edge of 

the chopper tube. The flux bending effect of an AFG could be estimated by the function between 

the sensitivity and the excitation current. Fig. 2 shows the bending effect of the AFG with DC 

current passing the excitation coil. TMR sensor was biased by a 3.5 V DC voltage. The effective 

sensitivity changed from 109 V/T to 38 V/T with the current changing from 0 A to 0.4 A, 

respectively. Due to the trade-off between the power consumption and the effective sensitivity, 

and the sensitivity was slightly reduced from 0.2 to 0.4 A of DC current so that the amplitude of 

the excitation current has been set at 0.2 A of a square wave. The square wave excitation signal 

was set about 1 kHz that far enough from the 1/f corner. The excitation signal was generated by 

an Oscillator 2 MHz and divided by a binary divider (CD4020). The output of the sensor was 

amplified via an instrumentation amplifier (INA129), and a lock-in amplifier using a mixer of 

AD630. An active low-pass filter (LPF) with a cutoff frequency of 10 Hz was used to narrow the 

bandwidth for further suppressing noise and retrieving the dc signal that is proportional to the 

measuring magnetic field.  

The sensitivity of the sensor was determined by taking the slope between the referenced 

magnetic field and the response output of the TMR sensor. The reference magnetic field was 

generated by a Helmholtz coil with the sweeping frequency of 0.5 Hz and amplitude of ± 60 µT. 

The sweeping signal was generated by a multifunction synthesizer (HP-8904A). The applied 

field orientations were installed in three cases: Ux(Bx), Ux(By), and Ux(Bz). The sweeping fields 

and the demodulated output were recorded by a data acquisition device (NI-MyDAQ) from the 

National Instruments. To analyze the noise spectral densities, the sensor was shielded by a tri-



 
 
Application of the Flux bending effect in an active Flux-guide for Low-noise planar vector TMR … 

 

717 

layer magnetic shielding to set zero fields around TMR sensor for preventing the interference 

from the magnetic fields induced by the electrical equipment. The shielding chamber was made 

by Mu-metal with an extremely high permeability (> 100000). The thickness of the Mu-metal 

was about 1 mm. The dimension of the chamber was designed in 500 mm high and a diameter of 

200 mm. The space between each layer was about 20 mm. The TMR sensor with AFG was 

placed at the center of the shielding chamber and three caps of the shielding chamber were also 

made by Mu-metal. A spectrum analyzer, HP-3582A, was used to record the noise signal. The 

responses of the sensor to each external magnetic field were measured the peak-to-peak output 

of the sensor when the TMR sensor was manually being rotated in the tri-axis sweeping fields of 

the Bx, By, and Bz of the three-dimensional Helmholtz coils and their strength was about ± 60 µT. 

 

Figure 1. Structure of the AFG: (a) isometric view, (b) sectional top view, (c) 2D simulation of the flux 

bending effect with excitation current ON, and (d) current OFF.  

 

Figure 2. Flux bending effect as a function of DC current passing the excitation coil. 
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3. RESULTS AND DISCUSSION 

3.1. The sensitivities of the TMR sensor with and without an AFG  

Table 1 shows the sensitivities of the sensor with and without of the AFG. In the case of no 

AFG, the applied field was set up in parallel to the normal sensing direction of the sensor, 

Ux(Bx), the obtained sensitivity was 165 V/T. Whereas in the case of the external field was 

applied along the z-axis, Ux(Bz), an obtained low sensitivity was about 1.3 V/T. It indicated that 

the TMR sensor was nearly insensitive to the vertical magnetic field. A low vertical sensitivity 

may be caused by the cross-detection error. In the case of the AFG, the sensitivity of the sensor 

was 19.2 V/T, which was resulted by the modulated efficiency. When incorporating the sensor 

with an AFG, the exposed magnetic field was bent from out-of-plane to the normal sensing 

direction of TMR, Ux(Bz), the sensitivity of the sensor was about 19.5 V/T and the maximum 

sensitivity of 21 V/T at the 50º from the normal sensing direction of the TMR, where was the 

angle between the x-axis and the z-axis. The obtained results revealed that the benefit of AFG to 

redirect the flux line from the vertical component to the horizontal component, which can be 

caught easily by a planar TMR sensor.  

Table 1. Horizontal and vertical sensitivities of the TMR sensor with and without an AFG. 

dV/dB (V/T) 

Without AFG  With AFG 

Ux(Bx)  Ux(Bz) Ux(Bx) Ux(Bz)  Ux@( 50ºx-z)(Bz) 

165 1.3 19.2 19.5 21 

3.2. The outputs of TMR sensor response to the applied magnetic fields  

The responses of the TMR sensor with and without of the AFG to each Bx, By and, Bz 

components were carried out. The system was placed on an accurate rotation stage for verifying 

the angular response to the three sweeping magnetic fields, as shown in Figs. 3(a, b) and 4(a, b). 

The sensor was rotated manually in a completed 360º with the interval of 10º. The first, the TMR 

sensor was rotated about the square hollow axis of the AFG, i. e. along the z-axis (Bz). After that 

sensor was rotated about the y-axis (By) to verify the bending effect of the AFG. The 

experiments were set up with both cases of the TMR sensor without and with an AFG for 

comparison. 

3.2.1. Rotation system about the vertical axis of the sensor 

Figure 3 shows the setup and the output of TMR sensor rotating about the axis of the square 

hollow AFG in the reference magnetic fields in both cases of without (Fig. 3.a) and with the 

AFG (Fig. 3.b). The output of the TMR sensor without AFG was about ± 2 V smaller than that 

in the case of the TMR incorporated AFG was ± 6 V. The results were caused by the fact that we 

only focused on the bending flux so that we kept the small gain of 50 in the bare TMR case, and 

increased the TMR incorporated with AFG high enough, which was about 2350, for showing 

clearly response of the measurement. The angular responses (Ux) to the Bx and By were differed 

by 90
o
, revealing that the referenced magnetic fields were pretty orthogonal. Additionally, the 

output (Ux(Bz)) of the bare TMR sensor (without AFG) was only 0.1 V, it seems to be the 

almost insensitive state to the Bz of the sensor. Whereas, with AFG, the output of the sensor was 
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constant at 7 V with the vertical magnetic field (Bz). It confirmed again that the vertical field 

component could be caught by a planar sensor owing to the bending effect of the AFG. 

 

Figure 3. Rotating system about the z-axis of the AFG: (a) single TMR, and 

 (b) TMR incorporated with the AFG. 

3.2.2. Rotation system about the y-axis 

The angular bending effect could be figured out by the results of the rotating system about 

the y-axis. Interestingly, the responses of the TMR sensor in both case without and with the AFG 

were shifted by an angle of 50º. It indicated that the flux lines were bent by an angle that formed 

by the Bz to the normal sensing direction of the TMR. The result was also consistent with the 

output of TMR could be reached a maximum of 8 V@ 50º (Fig. 4b). Whereas, in the without 

AFG case, the maximum of the TMR’s output was reached a maximum value of 2 V@ 90º 

(Fig.4a). In Fig. 4b, the output of TMR at 50º was higher than that in the case of the TMR 

incorporated AFG and rotating sensor about z-axis by 90º, as shown in Fig. 3b, which could be 

interpreted by fact that the sensitivity of the TMR sensor at 50º was higher, as mentioned in 

Table 1. The response of the TMR sensor to the By field component was almost constant owing 

to the external field was always vertically to the sensing axis of the TMR. Additionally, the other 

field components, Bx and Bz, were observed sinusoidally between ±8 V. The obtained sinusoidal 

responses of the TMR incorporated AFG revealed that due to the flux density about the sensor 

was switched between the saturated state to the saturated state of the Metglas core. The bending 

effect was active at the unsaturated state of the core, and the magnetizing field induced by the 

excitation coil is enough to magnetize and demagnetize the core. The bending effect is active in 

the unsaturation state so that the demagnetization of the core is dominant. Therefore, the 

response of the sensor incorporated AFG is only depended on the aspect ratio (the aspect ratio is 

2 in this work and it is small enough) [17]. The AFG plays as a flux guide. Thus, flux density 

was also responded like the without an AFG case in a completed rotation of 360º. 

3.3. Impact of the AFG on the 1/f noise  
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The spectral densities of the field noises of TMR sensor with and without the AFG are 

shown in Fig. 5. The intrinsic noise of the sensor was presented for evaluating the performance 

in the reducing 1/f noise by the reduction ratio, which was determined by taking the division 

between the TMR’s noise without and with the AFG. The intrinsic noise of the bare TMR sensor 

was about 6 nT/ Hz@1Hz, and there was a small slope from 0.1-Hz to 10 Hz. According to the 

datasheet of the TMR, the 1-Hz noise could be higher (10 nT/ Hz@1Hz). With AFG, the noise 

spectrum was nearly flat within the frequency span recording. The 1/f knee was shifted to below 

0.1-Hz. The minimum noise level of TMR sensor was reached to 0.4 nT/ Hz@1Hz. The noise 

reduction could be interpreted by the benefit of the phase sensitive detection (PSD) technique in 

this work. With the PSD technique, the measured signal (applied magnetic field) is extracted 

from the modulated signal. Besides, only the signals having the angular frequencies close to the 

excitation frequency will be passed through the PSD system (1 kHz in this work). Furthermore, 

the other components, which are approximate to the excitation frequency will be further filled 

via an LPF. Therefore, the noise was suppressed certainly by the chopping technique using an 

AFG. 

 

Figure 4. Rotating system about the y-axis of the AFG: (a) single TMR, and  

(b) TMR incorporated with the AFG.     

 

Figure 5. The noise of the TMR sensor with and without the AFG.  
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4. CONCLUSIONS 

We have shown the development and experimental validation of a low noise TMR sensor 

incorporated with an AFG for the concept of a planar vector magnetic sensor. The bending effect 

and lessening noise performance were proved in the AFG. One hand, AFG deflected the flux 

lines from out-of-plane to inducing the horizontal field components that could be sensed easily 

by the planar sensors. On the other hand, AFG enhanced the sensitivity of the incorporated 

sensor. Importantly, with the modulation flux density, the working point of the TMR was moved 

to the high-frequency regime, where there was not 1/f field noise. The field noise could be 

observed of 0.4 nT/ Hz@1Hz. The proposed concept of the vector magnetometer system can be 

used to develop a low noise three-dimensional magnetic field sensor using co-planar TMR 

sensors. Due to the bending angle between the vertical axis and horizontal axis was about 50º 

and the unavoidable misalignment of the sensors leading to three axes would certainly be not 

orthogonal so that a calibration process is needed.  
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