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Abstract. Using the Kronecker product, a much larger size matrix can be formed from two 

matrix operands; therefore, the capability of matrix algebra in analyzing the kinematics and 

dynamics of multibody systems are extended. This paper employs Khang’s definition of the 

partial derivative of a matrix with respect to a vector and the Kronecker product to define 

translational and rotational Hessian matrices. With these definitions, the generalized velocities in 

the expression of a linear acceleration or an angular acceleration are collected into a quadratic 

term. The relations of Jacobian and Hessian matrices in relative motion are then established. A 

new matrix form of Lagrange’s equations showing clearly the quadratic term of generalized 

velocities is also introduced. 
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1. INTRODUCTION 

Matrix operations are commonly used in the field of multibody system due to the 

convenience of writing generalized formulas. However, basic operations such as matrix 

multiplication and addition are not enough in certain cases. For instance, while rotational and 

translational Jacobian matrices are popular, their partial derivatives, Hessian matrices, are 

defined differently by different authors [1, 2] and are much less common. Another example is 

that the Coriolis/centripetal matrix is usually calculated using Christoffel symbols [3] instead of 

matrix operations. 

Using the Kronecker product, research by Khang [4, 5] presents a consistent definition of 

the partial derivative of a matrix with respect to a vector and its properties. Khang’s work does 

not bring about any new physics but the convenience of using pure matrix notation while 

establishing equations of motion of multibody system. Equations establishment is usually not 

visible in publications so that it is hard to tell how much interest the work has drawn. 
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Nevertheless, a few research groups, aside from Khang’s, clearly state that they adopt his work 

[6, 7]. To the main author’s point of view, the most notable citation is Taghirad’s book [8] 

because it may effectively introduce the use of Kronecker product to researchers and students 

who are new to this field so that they will more probably use this method while experienced ones 

may prefer the method they are already familiar with. Khang’s own book serves the same 

purpose for Vietnamese readers [9]. 

Seeing Khang’s work to be potentially subject to development, this paper seeks to extend it 

to achieve better matrix formulations in kinematic and dynamic analysis of multibody system. 

2. MATRIX ALGEBRA WITH KRONECKER PRODUCT AND SOME OTHER 

MATRIX OPERATORS 

2.1. Kronecker product and partial derivative of a matrix with respect to a vector 

Definition 1. Kronecker product of two matrices 

The Kronecker product of two matrices [ ]m n ijaA  and p qB  is an mp nq  matrix given 

by [10, 11, 12]  

 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a

a a a

B B B

B B B
A B

B B B

. (1) 

Some of the important properties of the Kronecker product are [10, 11, 12] 

 ( ) ( )A B C A B C , (2) 

 ( )T T T
A B A B , (3) 

and if there exist matrix products AC  and BD , we have 

 ( )( ) ( ) ( )A B C D AC BD . (4) 

Definition 2. Partial derivative of a matrix with respect to a vector 

There are many ways to define the partial derivative of a matrix with respect to a vector. 

Here the definition by [4, 5] is used. The partial derivative of an r s  matrix ( )A x  which is a 

matrix function of an 1n  vector x  with respect to vector x  is an r sn  matrix given as 

 1 2( ) saa aA x

x x x x
 (5) 

where ia  is the i -th column of matrix A  

 1 2 sA a a a . (6) 

Definition 3. Vec operator of a matrix 

The vec operator of matrix A  in (6) is given as [11, 12] 
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1

2
( )

s

vec

a

a
A

a

. (7) 

With this operator, all the elements in A  are rearranged to form a vector. 

Theorem 1. The derivative with respect to time of an r s  matrix function ( )A x where ( )tx  is 

an 1n  vector function of time t  satisfies [4, 5] 

 
( ) ( )

( ) ( )s

d

dt

A x A x
A x E x

x
 (8) 

where sE  is the s s  identity matrix. 

Theorem 2. The partial derivative with respect to an 1n  vector x  of a matrix product 

( ) ( )A x B x satisfies [4, 5] 

 
( ( ) ( )) ( ) ( )

( ( ) ) ( )n

A x B x A x B x
B x E A x

x x x
. (9) 

Theorem 3. The vec operator of a matrix product AXB  satisfies [11, 12] 

 ( ) ( ) ( )Tvec vecAXB B A X . (10) 

Using theorems 1 and 2 and properties of the Kronecker product, the following theorems are 

also proved 

a) 1( ( ) ) ( )
( ) ( )r n nd

dt

J q q J q
J q q q q

q
. (11) 

Proof. 

                   1

( ( ) ) ( ( )) ( )
( ) ( ) ( )( )n

d d

dt dt

J q q J q J q
J q q q J q q q E E q

q
 

            1

( ) ( )
( ) ( ) ( ) ( ) ( )n

J q J q
J q q qE E q J q q q q

q q
. 

b) 1 1( ) ( )( )p n p m m nE x A d A E d x . (12) 

Proof. 

 1 1( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )p p p n nE x Ad E x Ad E E Ad xE Ad E x A E d x . 

c) 1 1 ( )p n nd x d E x . (13) 

Proof. 

 1 1 1 1( ) ( ) ( )( ) ( )p n n n nd x dE E x d E E x d E x . 

d) 1 1 1( ) ( ) ( )( )( )p n p rm r m r n nmE x A E y d A E d E y x .       (14) 

Proof. 
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 ( ) ( ) ( ) ( ) ( ) ( )( )p r p r r p r mE x A E y d E x A E y E d E x A E E d y  

   ( ) ( ) ( )( ) ( )( )( )p n n nmE x A d y A E d y x A E d E y x  

in which (12) and (13) are also used.  

2.2. Skew-symmetric matrix associated to cross product and its generalization 

To present the cross product of two 3 1 vectors in the form of the matrix product, the skew-

symmetric matrix of vector  

 1 2 3

T
a a aa   

is defined as [9, 13] 

 

3 2

3 1

2 1

0

0

0

a a

a a

a a

a . (15) 

We can also define the block skew-symmetric matrix of a 3-row matrix 

 

1

2

3

T

T

T

α

A α

α

 

as 

 

3 2

3 1

2 1

T T T

T T T

T T T

0 α α

A α 0 α

α α 0

. (16) 

With this definition, we have 

 3( )Aa A E a  (17) 

and 

 3 ( )m maA A a E . (18) 

3. TRANSLATIONAL AND ROTATIONAL JACOBIAN AND HESSIAN MATRICES 

3.1. Translational and rotational Jacobian matrices 

Consider two frames ( ) : a a a aa O x y z  and ( ) : b b b bb O x y z , the linear velocity of frame ( )b  with 

respect to frame ( )a  is determined in the form of an algebraic vector a

bv  as 

 ( ) ( )a a a a

b bv d  (19) 

where a

bd  is the algebraic form of a bO O . The right superscripts indicate the frames on which 

the vectors are based. 
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The angular velocity of frame ( )b  with respect to frame ( )a  a

bω  can be calculate as follows [9, 

13] 

 ( ) ( ) ( )a a a a T

b b bω A A  (20) 

or 

 ( ) ( ) ( )a b a T a

b b bω A A  (21) 

where ( )a

bA  is the direction cosine matrix of frame ( )b  with respect to frame ( )a  and is 

determined as 

 ( ) ( ) ( ) ( )[ , , ]a a a a

b b b bA x y z  (22) 

with ( )a

bx , ( )a

by  and ( )a

bz  are the unit vectors of the axes of frame ( )b  written in frame ( )a . 

Note that 

 ( ) ( )a T b

b aA A  (23) 

and 

 ( ) ( ) ( )b a b

aA u u  (24) 

with (.)
u  is the algebraic form of an arbitrary vector. 

Now suppose that the position and direction of frame ( )b  with respect to frame ( )a  is 

determined by a vector of variables q  

 1 2

T

nq q qq . (25) 

It means 

 ( ) ( ) ( )a a a a

b bd d q  (26) 

and 

 ( ) ( ) ( )a a

b bA A q . (27) 

Taking derivative of (26) with respect to time and noting (19) yield 

 
( )

( ) ( )a a
a a b

b

d q
v q

q
. (28) 

With the introduction of the translational Jacobian matrix ( )

b

a a

TJ  of frame ( )b  with respect to 

frame ( )a  

 
( )

( ) ( )
( )

b

a a
a a b

T

d q
J q

q
, (29) 

equation (28) can be rewritten as 

 ( ) ( )

b

a a a a

b Tv J q . (30) 

Denoting 
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( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

b b

a a
a b b b a ab

T a a T

d q
J q A q A q J q

q
, (31) 

we also have 

 ( ) ( )

b

a b a b

b Tv J q . (32) 

In general, one can write 

 ( ) ( )

b

a k a k

b Tv J q  (33) 

and 

 ( ) ( ) ( )

b b

a k k a l

T l TJ A J  (34) 

but it should be noted that (.)

b

a

TJ  in this case may depend on variables other than those in q  and 

(34) is only valid if the elements in q  are linearly independent. 

Equation (20) can be rewritten as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

b T b b T b

a a a a

a a b T b b T b b T b

b a a a a a a

b T b b T b

a a a a

x y x z

ω A A y x y z

z x z y

. (35) 

Hence, 

 

( )
( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

b
b T a

a

b T b b T b

a a a a
b

a a b T b b T b b T a
b a a a a a

b T b b T b

a a a a b
b T a

a

z
y

q
z y y z

x
ω x z z x z q

q
y x x y

y
x

q

. (36) 

Now denote the rotational Jacobian matrix of frame ( )b  with respect to frame ( )a  

 

( )
( )

( )
( ) ( )

( )
( )

( )
b

b
b T a

a

b
a a b T a

R a

b
b T a

a

z
y

q

x
J q z

q

y
x

q

. (37) 

Equation (36) is rewritten as 

 ( ) ( )

b

a a a a

b Rω J q . (38) 

Similarly, from (21) we have 

 ( ) ( )

b

a b a b

b Rω J q  (39) 

where 
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( )
( )

( )
( ) ( )

( )
( )

( )
b

a
a T b

b

a
a b a T b

R b

a
a T b

b

y
z

q

z
J q x

q

x
y

q

. (40) 

Similar to the case of translational Jacobian matrix, one can write 

 ( ) ( )

b

a k a k

b Rω J q  (41) 

and, if the elements in q  are linearly independent, 

 ( ) ( ) ( )

b b

a k k a l

R l RJ A J . (42) 

It is important in dynamics to determine not only the motion of the frame origin but also the 

velocity of the center of mass of a rigid body attached to that frame. Denote (.)

bp  as the algebraic 

vector of b bO G , we have 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

b

b b b

b b

a a a a a a a a b a a a b a a a a T a b

G b b b b b b b b b b b b b

a a a a a a a a a a a a a a a

b b b T b b T b R

a a a a a

T b R

d d

dt dt
v d p d A p v A p v A A A p

v ω p J q p ω J q p J q

J p J q

 (43) 

or 

 ( ) ( )

b b

a a a a

G TGv J q  (44) 

with ( )

b

a a

TGJ  is the translational Jacobian matrix of point bG  on frame ( )b  with respect to frame 

( )a  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
b b b b b

a a a a a a a a a a a a

TG T b R T R b nJ J p J J J p E . (45) 

Similarly, we have 

 ( ) ( )

b b

a b a b

G TGv J q  (46) 

where 

 ( ) ( ) ( ) ( )

b b b

a b a b b a b

TG T b RJ J p J . (47) 

Base-changing rule is also valid in this case 

 ( ) ( ) ( )

b b

a b b a a

TG a TGJ A J . (48) 

Equations (44)-(48) are applicable to any point fixed on frame ( )b . 

3.2. Translational and rotational Hessian matrices 

Taking derivative of (30) with respect to time and noting (11) yield 
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( )

( ) ( ) ( )b

b

a a

Ta a a a

b T

J
v J q q q

q
. (49) 

The left-hand side of (49) is the linear acceleration ( )a a

ba  of frame ( )b  with respect to frame 

( )a : 

 ( ) ( )a a a a

b ba v . (50) 

We now introduce the translational Hessian matrix ( )

b

a a

TH  of frame ( )b  with respect to frame 

( )a  

 

( ) 2 ( )
( )

2

( ) ( )
( ) b

b

a a a a
Ta a b

T

J q d q
H q

q q
 (51) 

and rewrite (49) as 

 ( ) ( ) ( ) ( )
b b

a a a a a a

b T Ta J q H q q . (52) 

However, note that (51) is not the only matrix ( )

b

a a

TH  satisfying (52) because the elements in 

( )q q  are not linearly independent. 

It should also be noted that in mathematics, the Hessian matrix might be understood to be a 

square matrix with elements being second derivatives of a scalar function [14], which is not 

applicable here because the position of a frame is a vector function. 

Similarly, denoting 

 

( )

( )
( )

( ) b

b

a b

Ta b

T

J q
H q

q
, (53) 

we have 

 ( ) ( ) ( ) ( )
b b

a b a b a b

b T Tv J q H q q . (54) 

However, it should be noted that 

 ( ) ( )a b a b

b bv a  (55) 

and 

 ( ) ( ) ( )( ) ( )
b b

a b b a a

T a TH q A H q . (56) 

The two Hessian matrices are related by the following expression 

 
( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ( ) )
b b b b

a
a a a a b a a b a bb

T b T b T T n

A
H A J A H J q E

q q
. (57) 

Denoting 

 *( ) ( ) ( )

b b

a b b a a

T a TH A H , (58) 

we have 

 ( ) ( ) *( ) ( )
b b

a b a b a b

b T Ta J q H q q . (59) 

Similarly, we define the rotational Hessian matrices 
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( )

( )
( )

( ) b

b

a a

Ra a

R

J q
H q

q
 (60) 

and 

 

( )

( )
( )

( ) b

b

a b

Ra b

R

J q
H q

q
. (61) 

Taking derivative of (38) and (39) with respect to time yields 

 

( )

( ) ( ) ( ) ( ) ( )( ) ( )b

b b b

a a

Ra a a a a a a a a a

b b R R R

J
α ω J q q q J q H q q

q
 (62) 

and 

 

( )

( ) ( ) ( ) ( )( ) ( )b

b b b

a b

Ra b a b a b a b

b R R R

J
ω J q q q J q H q q

q
. (63) 

Unlike the case of translation, we have the simple relation of angular acceleration 

 ( ) ( )a b a b

b bω α . (64) 

This can be proved as follows 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

b a a
a b b a a b a a b a a a a T b a aa b

b a b a b a b b b a b

d

dt

A ω
ω A ω A ω A α A A A ω  

 ( ) ( ) ( ) ( )a b a b a b a b

b b b bα ω ω α . 

As a consequence, from (62)-(64) one can write 

 ( ) ( ) ( )( ) ( )
b b

a b b a a

R a RH q q A H q q . (65) 

It should be note that we cannot simply eliminate ( )q q  from both sides of (65) because this 

vector includes linearly dependent elements. Nevertheless, in practice, the Hessian matrices 

always go with ( )q q  so when calculating Hessian matrices, one does not have to care much 

about this problem. 

Deriving (44) with respect to time, one obtains 

 ( ) ( ) ( ) ( )
b b b

a a a a a a

G TG TGa J q H q q  (66) 

where 

 

( )

( ) b

b

a a

TGa a

TG

J
H

q
. (67) 

Equations (52) and (62) are practical forms to express accelerations and angular accelerations as 

functions of generalized coordinates and their time derivatives. In these forms, the generalized 

coordinates q  lie only in the Jacobian and Hessian matrices and these matrices are treated as 

coefficients for q  and ( )q q  respectively. Hence, these forms are capable of displaying two 

important characteristics of accelerations and angular accelerations: they are linear functions of 

generalized accelerations and are quadratic functions of generalized velocities. 

3.3. Jacobian and Hessian matrices in relative motion 
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Consider the third frame ( ) : c c c cc O x y z . The velocities of this frame with respect to frame ( )b  

are 

 ( ) ( )

c

b b b b

c Tv J q , (68) 

 ( ) ( )

c

b b b b

c Rω J q , (69) 

 ( ) ( )

c c

b b b b

G TGv J q . (70) 

By deriving the position relations 

 ( ) ( ) ( ) ( )a a a a a b b

c b b cd d A d , (71) 

 
( ) ( ) ( )a a b

c b cA A A , (72) 

 
( ) ( ) ( ) ( ) ( )

c c

a a a a a b c

G c b c Gr d A A p
 (73) 

with respect to time, we obtain 

 ( ) ( ) ( ) ( ) ( )a a a a a a b a b a

c b b c cv v ω d v , (74) 

 ( ) ( ) ( )a a a a b a

c b cω ω ω , (75) 

 ( ) ( ) ( ) ( )

c c

a a a a a a a

G c c Gv v ω p . (76) 

Thus, 

 ( ) ( ) ( ) ( ) ( )

c b b c

a a a a b a a a b a

T T c R TJ J d J J , (77) 

 ( ) ( ) ( )

c b c

a a a a b a

R R RJ J J , (78) 

 ( ) ( ) ( ) ( )

c c c c

a a a a a a a

TG T G RJ J p J . (79) 

Rewriting (77)-(79) in frame ( )c  yields 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

c b b c

a c c a b c b b a b b c

T b T b c R TJ A J A d J J , (80) 

 ( ) ( ) ( ) ( )

c b c

a c c a b b c

R b R RJ A J J , (81) 

 ( ) ( ) ( ) ( )

c c c c

a c a c c a c

TG T G RJ J p J . (82) 

Continuing to take derivative of (74)-(76) with respect to time yields 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

a a a a a a b a a a b a b a

c b b c b c c

a a a a b a a a b a a a a a b a b a

b b c b c b b c c

a a α d ω d v

a α d ω v ω ω d a
, (83) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a a a a b a a b a b b a a b a a a b a

c b c b a b c b c b cα α α A A A ω α α ω ω , (84) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c c

a a a a a a a a a a a a

G c c G c c Ga a α p ω ω p . (85) 

Therefore, using (11)-(14) and (16), we have 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( 2 ( ) ( )( ) )( ),

c

b b b c b b c

a a

T

a a b a a a a a b a a a a a b a a b b

T c R R T n R R n c nn b T

H q q

H d H J J E J J E d E A H q q
 (86) 
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 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ( ))( )
c b c b c

a a a a a b b a a b a

R R b R R R nH q q H A H J J E q q , (87) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ( )( ))( )
c c c c c c c

a a a a a a a a a a a a

TG T G R R R n G nnH q q H p H J J E p E q q . (88) 

Rewriting (86)-(88) in frame ( )c  yields 

 

*( ) ( ) *( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) *( )

2 ( )

( )( )

c b b b c

b b c

a c c a b b c c a b c a b b c

T b T c b R b R T n

c a b c a b b c b c

b R b R n c nn T

H A H d A H A J J E

A J A J E d E H
, (89) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ( ))( )
c b c b c

a c c a b b c c a b b c

R b R R b R R nH q q A H H A J J E q q , (90) 

 *( ) *( ) ( ) ( ) ( ) ( ) ( )( ) ( ( )( ))( )
c c c c c c c

a c a c c a c a c a c c

TG T G R R R n G nnH q q H p H J J E p E q q . (91) 

It can be seen that these matrix relations are analogous to the known vector relations for relative 

motion. 

4. A NEW MATRIX FORM OF LAGRANGE’S EQUATIONS  

The general form of Lagrange’s equations of second kind for a n -DOF serial multibody is 

written as 

 

T T

d T T

dt
f

q q
,    (92) 

in which q  is a 1n  vector containing generalized independent coordinates, f  is a 1n  vector 

containing generalized force, and scalar T  is the kinetic energy of the whole system which is 

usually expressed as 

 
1

( )
2

TT q M q q  (93) 

or with (.)vec  function as 

 
1

( ) ( ( ))
2

T TT vecq q M q  (94) 

where the inertia matrix is determined as follows 

 
1

( ) ( )
i i i i i

n
T T

i TG TG R G R

i

mM q J J J I J . (95) 

where im  and (.)

iGI  are the mass and the matrix of inertia tensor of the i -th body, respectively. In 

(95), the superscripts are omitted for the sake of simplicity. The left superscripts are all zeros 

while the right superscripts should be the same for all the matrices that are multiplied to each 

other. 

Substituting (93) into (92), one obtains [3, 5] 

 ( ) ( , )M q q C q q q f  (96) 

where  
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( ) 1 ( )

( , ) ( ) ( )
2

T

n n

M q M q
C q q E q q E

q q
 (97) 

is a new form of the Coriolis/centripetal matrix, which is usually calculated by Christoffel 

symbols [9]. Matrix equation (96) does not explicitly show that the second term is a quadratic 

function of q . To derive an equation with a quadratic expression of q , the derivatives of T  are 

calculated as follows 

 
( ) ( )

( ( ) ) ( ) ( ) ( ) ( )

T

n

d T d

dt dt

M q M q
M q q M q q E q q M q q q q

q q q
, (98) 

 
1 ( ) 1 ( )

( ) ( )
2 2

T T T

T TT vec vecM M
q q q q

q q q
. (99) 

Now (92) can be rewritten as 

 *( ) ( )( )M q q C q q q f  (100) 

where the velocity-free Coriolis/centripetal matrix is given as 

 * ( ) 1 ( )
( )

2

T

vecM q M
C q

q q
. (101) 

5. APPLIED EXAMPLE 

Consider a stacker used in mining field (Fig. 1). Its schematic diagram with Denavit-

Hartenberg coordinate systems is shown in Fig. 2 and the symbolic kinematic parameters are 

given in Table 1 and kinetic parameters in Table 2. Here the kinetic parameters are simplified to 

make it simple when comparing the considered form of Lagrange’s equations with the 

conventional forms. 

 

Figure 1. The stacker used in mining field (without bucket grab). 
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Figure 2. The stacker’s schematic diagram with Denavit-Hartenberg coordinate systems. 

Table 1. Denavit-Hartenberg parameters of the stacker. 

    Parameter 

     Body 
id   

i
  

ia   
i
  

1 
1q   0 0 / 2   

2 
2d   

2q   0 / 2  

3 0 
3q   

3a   0 

Table 2. Kinetic parameters of the stacker. 

           Parameter 

Body 
ixxI  iyyI

 
izzI

 ixyI
 

ixzI
 iyzI

 

( )

i

i

Gp  

   2 
2xI

 2 yI
 

2zI
 

0 0 0 

2
0, ,0

T

Gy
 

   3 
3xI

 3 yI
 

3zI
 

0 0 0 
3 3 ,0,0

T
a l

 

5.1. Kinematic analysis 

 
    

  

 

 

 

0x

0y

0z

1x

1q 2d

3a

2z

1z

2x

3x

3z

2q

3q
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The kinematic of frame (3) can be characterized by its Jacobian and Hessian matrices as 

follow: 

 
3

3 2 3 3 2 3

0 (0)

3 3

3 2 3 3 2 3

0 sin cos cos sin

0 0 cos

1 cos cos sin sin

T

a q q a q q

a q

a q q a q q

J , (102) 

 
3

3 2 3 3 2 3 3 2 3 3 2 3

0 (0)

3

3 2 3 3 2 3 3 2 3 3 2 3

0 0 0 0 cos cos sin sin 0 sin sin cos cos

0 0 0 0 0 0 0 0 sin

0 0 0 0 sin cos cos sin 0 cos sin sin cos

T

a q q a q q a q q a q q

a q

a q q a q q a q q a q q

H ,

 (103) 

 
3

2

0 (0)

2

0 0 sin

0 1 0

0 0 cos

R

q

q

J , (104) 

 
3

2

0 (0)

2

0 0 0 0 0 0 0 cos 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 sin 0

R

q

q

H . (105) 

Here, the Hessian matrices are computed by using (51) and (60). The calculations can be 

performed manually or automatically. Note that the Kronecker product is already built in 

common technical software such as kron in Matlab and KroneckerProduct in 

Mathematica/Wolfram Alpha. By storing the matrices in (102)-(105), a computer program can 

easily compute all the velocities and accelerations needed for a kinematic analysis using (30), 

(38), (44), (52), (62), and (66). 

5.2. Dynamic analysis 

The mass matrix and velocity-free Coriolis/centripetal matrix are 

 
1 2 3 3 3 2 3 3 3 2 3

2 2 2

3 3 2 3 2 3 3 3 3

2

3 3 2 3 3 3 3

( ) 0

0

y y x

z

m m m m l C C m l S S

m l C C I m l I c I s

m l S S m l I

M , (106) 

3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3

* 23 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3
3 3 3 3 3 3

23 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3
3 3 3 3 3 3

0 0 0 0 0

0 0 2( ) 0 0
2 2 2 2

0 ( ) 0 0 0
2 2 2 2

y x

y x

m l S C m l C S m l C S m l S C

m l S C m l C S m l S C m l C S
m l I I S C

m l C S m l S C m l C S m l S C
m l I I S C

C . (107) 

With these matrices, the equations of motion can be obtained by (100). The result is 

confirmed by comparing with equations obtained with conventional methods. 

6. CONCLUSION 

Based on Kronecker product and Khang’s definition of the partial derivative of a matrix 

with respect to a vector, this paper introduced a theory for a kind of matrix algebra that can 

handle kinematic and dynamic analysis of a general multibody system. 
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The presented Jacobian and Hessian matrices allow one to write accelerations as a sum of 

two terms: one term depends linearly on generalized accelerations and one depends quadratically 

on generalized velocities. This kind of expressions has its own advantage over other ones: the 

relations between accelerations can be written in terms of generalized coordinates without the 

appearance of generalized velocities or generalized accelerations, which is proved through the 

analysis of relative motion. The separation of generalized coordinates and its time derivatives 

may also give more insights in the characteristics of the system when the Jacobian and Hessian 

matrices are further analyzed. 

Similarly, in the new form of Lagrange’s equations, generalized coordinates, generalized 

velocities, and generalized accelerations are collected compactly into different terms, which can 

be easily computed symbolically with the help of technical software. 

Since what was presented in this paper is a general theory, it is hard to compare it in terms 

of efficiency with existing methods that are specialized for a specific class of problems. In future 

work, this theory will be developed into methods and computational programs. At that point, 

comparisons can be used to determine which method is the most effective in a certain case. 
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manipulators in the national research project named “Studying to design, manufacture, assembly and 
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