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ABSTRACT 

This paper investigates the problem of speech separation from a mixture of two speech 
signals without source localization information in a room environment. Due to the lack of source 
information, the use of spatial detector comes at an expense of permutation ambiguity. To solve 
the problem, a permutation alignment algorithm based on correlation is employed to group the 
beamformer outputs into the correct sources. Evaluations using recordings from a real room 
environment show that the proposed beamformer offers a good interference suppression level 
whilst maintaining a low distortion level of the desired source.  

1. INTRODUCTION 

In recent year, microphone arrays have seen increasing application for the acquisition of 
speech in hand-free, distant-talker scenarios. Based on beamforming, microphone arrays are 
especially promising system in term of interference reduction. These systems can be used to 
reduce noise in hearing aids, teleconferencing systems, hands free microphones in automobiles, 
computer terminals, speaker phones, and speech recognition systems. Multichannel optimum 
filtering requires statistical knowledge about the noise statistics, the environment and the source 
statistics. The beamformer coefficients are optimized in such a manner that a focused beam is 
steered to a desired source direction, whilst suppressing the contributions coming from other 
directions [1, 2]. The filter weights are designed using the information about the location of the 
target signal and the array geometry. From those parameters, a spatial, spectral and temporal 
filter are formed to match the beamforming requirement [3, 4]. 

Most of the beamformers considered so far require information about the desired source 
spatial correlation matrix. This information, however, may not be readily available especially 
when the source is spatially non-stationary. Hence, the estimation is performed blindly without 
possessing information each source, such as its location and active time. This paper considers 
the case of separating a speech mixture where the desired source spatial correlation matrix is not 
available, see Fig. 1. Thus, a spatial detector is proposed for estimating this information based on 
the noisy received data. Briefly, the proposed spatial detector employs the principle component 
analysis (PCA) to obtain the desired source subspace and consequently estimates the sources 
spatial information. An optimum beamformer is then developed based on these spatial 
information. 
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Figure 1. Position of two speakers and the microphone array in the two dimensional space 

The performance of the proposed beamformer will be compared with the conventional 
second-order blind signal separation approach and the MVDR beamformer with calibration. 

2. PROBLEM FORMULATION 

Denote by  a  discrete-time vector of the observed signal, see Fig. 1. For 
simplicity, we concentrate on an “offline” situation with only two speech signals. The approach 
in this paper, however, can be extended to a general case with more than two sources.  

The observed signal  can be expressed as 

        (1) 

where  and  are  discrete-time vectors from the first and the second speech 
sources, respectively, at the time index . In the frequency domain, the observed signal can be 
written as 

         (2) 

where ,  and  are the contribution from the observed signal, the first and 
the second speech sources, respectively. The objective is to separate the speech signals from the 
observed signal. As such, one speech source is treated as a desired source while the other 
becomes an undesired source. In this case, the VAD cannot be employed to detect the desired 
source active or inactive periods because both sources are speech signals. In the following, a 
source spatial detector is proposed to estimate the source spatial information based on the 
statistics of the observed signal. 

3. SPATIAL DETECTION OF SPEECH SOURCES 

Let us divide the sequence of observed signal into  blocks, each consisting of  samples 
with the index   The estimated correlation matrix of the 
observed signal in the  block can be obtained as 
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      (3) 

By assuming that the speech signals are statistically independent, the matrix  can 
be decomposed as  

       (4) 

where  and  are the correlation matrices for the first and the second speech 
signals, respectively. We have 

       (5) 

where , and ,  are, respectively, the PSD and the spatial correlation 
matrices of the first and the second speech signals. 

Denote by  the estimated correlation matrix of the observed signal for  blocks. This 
matrix can be obtained based on  as 

.       (6)
 

Clearly, during the conversation either speech sources can be active and nonactive. 
Therefore, there exists periods in which both speech sources are nonactive. Since  in (6) is 
the average of all the estimated correlation matrices , this matrix can be used to detect 
non-speech blocks or blocks with low speech presence. Thus, we propose to use a threshold 

to detect the speech presence where  is a preset tolerance, , and  is a 
reference microphone. The value  is the  element of the matrix . 

Denote by  the index of all the blocks with at least one active speech source. Based on the 
proposed threshold, this set can be obtained as 

       (7) 

where  is the  element of the matrix . Note that,  is not an empty set 
since   is the average of , see (6). 

For each , denote by  the normalized correlation matrix of the  block 

 .       (8)
 

Since the  elements of the normalized spatial correlation matrices  and   
are one, it follows from (5) that (8) can be rewritten as 

       (9)
 

This equation can then be expressed as  

        (10) 

where the values  and  represent, respectively, the proportions of the matrices 

 and   in the normalized correlation matrix , i.e., 

        (11)
 

and 
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       (12)
 

Since  and  , we have 

         (13) 

and 

 .        (14) 

In the sequel, a spatial detection method using the subspace approach is proposed. 

3.1. Spatial Detection using Signal Subspace Approach 

Signal subspace is employed in a variety of signal processing applications including 
spectral estimation and direction of arrival (DOA) estimation [5]. In signal subspace processing, 
the noisy speech signal is projected into the “desired signal" or the “noise” subspace. Parameter 
estimation can be made by retaining only the components in the desired signal or the noise 
subspace. 

Based on the idea of the subspace approach, the observed signal  is projected into 
either the desired or undesired signal subspace by using a   vector . To avoid the 
scaling problem, the vector vector is constrained to 

.        (15) 

Denote by  and the power corresponding with the spatial correlation matrices 

 and   , respectively, 

        (16) 

and 

.        (17) 

These values can be viewed as the projection gains for the first and second sources. Since 

and  are spatial correlation matrices, these values are nonnegative. 

We now investigate the condition on  and  so that the projection focuses on one 
of the sources, i.e., either the desired or undesired signal subspace. If  

         (18) 

Then 

      (19) 

Thus, the projection does not focus on any signal subspace. On the other hand, if 

         (20) 

then we have 

         (21) 

Without loss of generality, assume that 
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         (22) 

The case  can be dealed with similarly. From (10) we have  

     (23) 

Or 

 

.      (24) 

Note that the term  can also be viewed as the output-to-input power 
ratio of the projection for the observed signal during the  block as the input signal power is 

 and the output power is . Following from (14), (22) and 

(24), a large value of  results in a large value of  while a large value 

of   gives a low value of . As such, the values of  
for all  can be used for detecting the blocks with high proportion of each source. In other 

words, blocks with high proportion of the first source have high values of .  

while blocks with high proportion of the second source have low values of . 

The task now is to find a projection vector  such that the projecting subspace focuses 
into one of the sources. Next, the principal component analysis (PCA) technique is employed to 
obtain . 

3.2. Principle Component Analysis for Projection Vector 

Principal component analysis (PCA) is a well-known technique of multi-variance analysis. 
This technique gives principal components that are by definition uncorrelated from a data set [6]. 
In blind source separation applications, PCA technique is implemented separately or as a pre-
processor in combination with other techniques such as independent component analysis (ICA). 

The PCA is obtained based on the covariance matrix of the data set . From (3), the 
correlation matrix  is Hermitian and can be decomposed as  

         (25) 

where  is an orthonormal matrix consisting of eigenvectors of  and  is a diagonal 
matrix containing the corresponding eigenvalues. Thus, the projection vector  is chosen as 

          (26) 

where is the eigenvector corresponding with the maximum eigenvalue of the correlation 
matrix . In the following,  will be used to determine the blocks with high proportion of 
either the first or the second sources. 

3.3. Spatial Source Detection 

As discussed earlier, blocks with highest values of  have high 

contribution from the first source while the blocks with lowest values of  
have high contribution from the second source. Thus, we propose to estimate the spatial 
correlation matrices for the first and the second sources by taking the average of the estimated 
normalized correlation matrices corresponding to  blocks with highest or lowest values of 
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. The value I is chosen smaller than half of the number of elements in . The 
average is employed to reduce the estimation error which can occur due to limited number of 
samples in each block. 

Denote by and  the index of  blocks corresponding, respectively, with 

 highest and lowest values of . The spatial correlation matrix  for the 

first source can be estimated based on  as 

.        (27) 

The spatial correlation matrix   for the second source can be estimated based on 

 as  

        (28) 

Note that in the case where the difference between the maximum and minimum values of 

 

is small, then  is chosen as the eigenvector corresponding with the largest eigenvalue that 
results in a large difference between these two values. As long as the two speech sources are in 

different positions in space, the two corresponding spatial correlation matrices and  
are different, and hence this task is always feasible. 

Based on the fact that there are only two speakers in this context and each of the speakers 
has the active and nonactive time during their conversation. As such, block length $N$ can be 
chosen low enough for obtaining the one-speech blocks from the observed signal. Thus, the 

proportion of the non-dominated source in the matrices   and   is approximately 
equal to zeros and this proportion can be neglected. These matrices are now used to estimate the 
optimum beamformer in each frequency bin. 

4. OPTIMUM BEAMFORMER USING SPATIAL INFORMATION 

Based on the estimated spatial correlation matrices   and  , an optimum 
beamformer is obtained for each frequency bin . Denote by  the beamformer weight for 
the first source. This weight vector can be obtained by solving the optimization problem 

        (29) 

where  is the estimated cross-correlation vector between the first source and a  reference 

microphone. This vector is also the column of the matrix . Similarly, the beamformer 
weight  for the second source can be obtained as the solution to the optimization problem 

        (30) 
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where  is the  column of the matrix  The solutions to these optimization problems 
can be expressed as  

        (31) 

and 

        (32) 

The beamformer outputs for the two sources are calculated as  

        (33) 

and 

 .      (34) 

The remaining problem is to align the beamformer output in different frequency bins to the 
same source. This problem is also referred to as permutation alignment problem as there is 
permutation ambiguity in the solution. In the sequel, the correlation between the beamformer 
outputs in neighboring frequencies is employed to overcome the permutation problem. 

5. PERMUTATION ALIGNMENT 

The permutation alignment problem can be overcome by using correlation, localization or 
source statistic property [7]. The correlation approach is preciseness. This approach, however, 
might not be robust as a misalignment at one frequency affects the results of other frequencies. 
Since we consider only two speech sources, the correlation approach is chosen for the 
permutation alignment. As such, permutation decision is based on inter-frequency correlation of 
the output signal amplitudes. This is done based on the assumption that the amplitudes of the 
output signals from the same source for adjoining frequencies are correlated. 

The permutation alignment can be performed continuously from a reference frequency. In 
this case, this frequency is chosen in the middle of the frequency range. Permutation correlation 
is then performed in two directions, with increasing and decreasing frequency indexes until the 
end of the frequency range. More specifically, for two neighboring frequencies  and  , the 
following correlations between the two beamformer outputs are obtained 

     (35) 

     (36) 

     (37) 

and 
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     (38) 

Here  is the absolute operation while  and  are, respectively, the mean and the 
standard deviation of . Permutation alignment is performed if the following equation is 
satisfied 

+ > +  .      (39) 

Finally, two frequency domain output signals are passed through the synthesis filterbank to 
obtain the time domain output representations. 

6. EVALUATIONS 

Measurements and evaluations have been performed in a real room environment using a 
linear microphone array consisting of  microphones. The distance between two adjacent 
microphones is  cm. The positions of the two speakers are shown in Fig.  1 with and 

. The value  was chosen as the number of samples in  s period while  and  were 
chosen as  and , respectively. 

 

Figure 2. Time domain plots and spectograms of the original speech signals and the 
obversed signal at the 4th microphone 

 
Figure 3. Time domain plots and spectograms of the proposed beamformer outputs 
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Figure 4. Spectograms of two speech dominant outputs of the second-order gradient base 
BSS algorithm 

To quantify the performance of the proposed beamformer, the interference suppression (IS) 
and source distortion (SD) measures in [8] are employed. Here, one speaker is viewed as the 
desired signal while the other is the undesired or interference signal. 

The proposed beamformer is performed in the frequency domain with the same parameters 
as in [8]. Its performance is compared with the gradient based second-order blind signal 
separation (BSS) algorithm and the MVDR beamformer using calibrated information [9]. Note 
that for the case with two speech sources, the MVDR beamformer with calibration is also a fixed 
optimum beamformer using calibration which aims to minimize the average undesired source 
output power. 

 

Figure 5. Time domain plots and spectograms for the outputs of the MVDR beamformmer 
with calibrated information 

Figure 2 shows time domain plots and spectrograms of the two speech signals and the 
observed signal. The duration of the observed time is $60$~s. The speech signals from the two 
speakers occur at different times and can overlap with each other in the observed signal. 
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Table 1. The interference suppression and the source distortion levels in the outputs 
of the proposed methods, the second-order gradient based BSS and the MVDR 

using calibrated information 

Methods 
First Output Second Output 

IS(dB) SD(dB) IS(dB) SD(dB) 

Proposed beamformer 11.2 -28.9 10.8 -27.5 

Second-order BSS 7.3 -25.5 7.17 -26.3 

MVDR with calibrated 
information 

13.8 -30 11.9 -7.6 

 

Figures 3 depict, time domain plots and spectrograms of the proposed beamformer outputs 
with permutation alignment. The first output is the speech signal from the first speaker while the 
second output is from the second speaker. Thus, the proposed beamformer can separate the two 
speech signals from the observed mixture. Informal listening tests suggest good quality speech 
signal outputs from the propose structure. 

The time domain plots and the spectrograms of the second order BSS and the MVDR 
beamformer with calibrated information are depicted in Figs. 4, 5. For the BSS algorithm, the 
number of output is the same with the number of microphones. Both beamformers recover the 
two speech signals with low distortion. 

Table 1 shows the IS and SD levels for the two outputs of the proposed beamformer, the 
second-order gradient based BSS and the MVDR beamformer using calibration. The table shows 
an improvement in the IS and SD levels of the proposed beamformer when compared with the 
gradient based second-order BSS. More specifically, the proposed method improves 
approximately  in the IS measures and  in the SD measures over the second-
order BSS. 

The IS levels of the proposed beamformer is slightly lower than that of the MVDR 
beamformer using calibration. On the other hand, the SD measures of the proposed beamformer 
the MVDR beamformer remain approximately the same. Thus, the source spatial correlation 
matrices estimated by using the proposed spatial detector closely match with those obtained by 
using calibration.  

7. CONCLUSION 

In this paper, a spatial detector in multi-speaker environment is developed for the case 
where source localization or calibration information is not available. An optimum beamformer 
with permutation alignment is then proposed with includes an estimation of the source spatial 
correlation matrices. The performance of the proposed beamformer is then compared with the 
second-order gradient based BSS and the MVDR beamformer with calibration information using 
real data. Simulation results show an improvement of the IS and SD levels of the proposed 
beamformer over the second-order BSS algorithm. In addition, the IS levels of the proposed 
beamformer are slightly lower than that of the MVDR beamformer while the SD levels remain 
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approximately the same. Thus, the spatial correlation matrices estimated by using the proposed 
detector closely match with that of the MVDR beamformer using calibration.  
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