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POSTERIOR PROBABILITIES TO MITIGATE THE CLASS  

IMBALANCE PROBLEM 
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ABSTRACT 

Class imbalance is one of the problems which degrade the classifier's performance. 

Researchers have introduced many methods to tackle this problem including pre-processing, 

internal classifier processing, and post-processing – which mainly relies on posterior 

probabilities. Bayesian Network (BN) is known as a classifier which produces good posterior 

probabilities. This study proposes two methods which utilize Bayesian posterior probabilities to 

deal with imbalanced data.  

In the first method, we optimize the threshold on the posterior probabilities produced by 

BNs to maximize the F1-Measure. Once the optimal threshold is found, we use it for the final 

classification. We investigate this method on several Bayesian classifiers such as Naive Bayes 

(NB), BN, TAN, BAN, and Markov Blanket BN. In the second method, instead of learning on 

each classifier separately as in the former, we combine these classifiers by a voting ensemble. 

The experimental results on 20 benchmark imbalanced datasets collected from the UCI 

repository show that our methods significantly outperform the baseline NB. These methods also 

perform as good as the state-of-the-art sampling methods and significantly better in certain 

cases.  

1. INTRODUCTION 

In binary classification problems, class imbalance can be described as the majority class 

outnumbering of the minority one by a large factor. This phenomenon appears in many machine 

learning applications, such as credit card fraud detection, intrusion detection, oil-spill detection, 

disease diagnosis, and many other areas [1 - 3]. Most classifiers in supervised machine learning 

are designed to maximize the accuracy of their models. Thus, when learning from imbalanced 

data, they are usually overwhelmed by the majority class examples. This is the main problem 

that degrades the performance of such classifiers [1, 2]. It is also considered as one of ten 

challenging problems in machine learning research [4]. 

Researchers have introduced many techniques to deal with class imbalance, as summarized 

in [1] and [2]. These techniques can be categorized into 3 main groups: Pre-processing, internal 

classifier processing, and post-processing. In the pre-processing group, most of them focus on 

(re)sampling methods such as in [5, 6]. In the internal classifier processing group, the algorithms 

are differently designed for different classifiers such as for SVM [7], for C4.5 [8], for ensemble 

learning [9], or for other classifiers [2]. 
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This work focuses on the last group - post-processing method1, which mainly relies on the 

posterior probabilities produced by the classifiers. Most the literatures have incorporated the 

posterior probabilities with cost-sensitive learning (CSL) [10 - 12]. For examples, they have 

applied CSL to C4.5 [10, 11], to Naive Bayes (NB) [13], or to SVM [12]. Since the method in 

this group bases on posterior probabilities, it is important to know that which classifiers  that one 

choose should produce good and reliable probabilities. Moreover, as discussed in [14, 15], 

averaging on the probabilities can give the result better than on the label voting. Bayesian 

Network (BN) is a good candidate for this choice, but as far as we know, most previous works 

focused on C4.5, SVM, and NB - a classifier which has a strong assumption on the 

independence among the variables given the target class. When relaxing on this assumption, one 

can get the better results [16, 17]. 

Inspired from those discussions, this study proposes two methods which learn the optimal 

threshold on the Bayesian posterior probabilities to deal with imbalanced data. Concretely, the 

contributions of this work are described as in the followings: 

1. In the first method, we locally optimize the decision threshold for the posterior 

probabilities produced by several BNs (e.g. general BN, TAN, BAN, or Markov Blanket 

structure42) to maximize the F1Measure. Once the optimal threshold is archived, we use it for 

the final classification.  

2. In the second method, instead of learning on each classifier separately, we combine 

the results of these classifiers  by a voting ensemble. 

3. We compare the proposed methods with not only the baseline NB and general BN, but 

also the state-of-the-art sampling methods such as SMOTE [6] and TOMEK LINK [5].  

Experimental results show that our methods significantly outperform the baselines. These 

methods also perform as good as the state-of-the-art methods and significantly better in certain 

cases. 

In the rest of the paper, section 2 reviews some related works; section 3 summarizes some 

techniques to deal with class imbalance; section 4 outlines some BN types; section 5 presents 

our methods; section 6 introduces the datasets; section 7 shows the experimental results; and 

finally, section 8 is the conclusion. 

2. RELATED WORK 

Previous works have tuned the decision threshold by some di erent ways. For examples, 

[18] has experimented on the moving of decision threshold of the ROC curve and adjusted the 

cost matrix to deal with unbalanced and unknown cost data. They compared the results of C5.0, 

Nearest Neighbor, and NB; In [11], the authors used a method varied from [10] called 

Thresholding. This method used C4.5 as a base classifier and selected a proper threshold from 

training instances according to the misclassification costs. The results are reported in term of 

total cost and took the misclassification costs into account. [19] proposed an ensemble of NB 

classifiers  with an adjusted decision threshold trained on random undersampling data to deal 

with class imbalance. 

                                                           
1 We choose post-processing method because we would like to investigate on the posterior probabilities of the 

classifiers. 
2 We will introduce in section 4. 
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In this study, we optimize the decision threshold on the posterior probabilities produced by 

several BN classifiers  as well as combine their results using an ensemble in order to improve the 

classifier's performance. Different from the Thresholding method [11] which has to know the 

cost matrix (or at least the cost ratio) before learning process, our method does not require this 

cost ratio. 

3. DEALING WITH CLASS IMBALANCE 

3.1. Main Techniques 

To deal with imbalanced datasets, many techniques have been introduced as summarized in 

[1, 2]. We just brie y introduce some of them, which are used in this study. 

Tomek's Link (TLINK) [5] is a method for cleaning data. Given two examples  and  

belonging to different classes,  be the distance between   and . A pair   is called 

a TLINK if there is no example el such that  or . If there is 

a TLINK between 2 examples, then either one of these is noise or both of them are borderline 

examples. We want to use TLINK as undersampling method, so only majority examples are 

removed. 

The Synthetic Minority Oversampling Technique (SMOTE) is an oversampling method 

introduced by [6] which generates new artificial minority examples by interpolating between the 

existing minority examples. This method first finds the  nearest neighbors of each minority 

example; next, it selects a random nearest neighbor. Then a new minority class sample is created 

along the line segment joining a minority class sample and its nearest neighbor. 

3.2.  Evaluation Metrics 

When evaluating on imbalanced data, the accuracy metric becomes useless. For example, 

suppose the dataset has 990 negative examples and only 10 positive examples (this minority is 

usually the interest one). Since most classifiers  are designed to maximize their accuracy, in this 

case, they will classify all examples belong to the majority class to get the maximum of 99% 

accuracy. However, this result has no meaning because all the positive examples are 

misclassified. To evaluate the model in such case, researchers usually use F-Measure and the 

area under the ROC curve (AUC), which are related to some other metrics described in the 

following. 

Table 1. Confusion matrix 

 Predict classes 

  Positive  Negative 

Actual classes 
Positive True Positive  False Negative  

Negative False Positive  True Negative  

From the confusion matrix in Table 1, we can determine some other metrics. The Recall 

also called True Positive Rate  is the proportion of positive examples correctly 

classified as belonging to the positive class, determined by  The Precision 

 is the positive predictive value determined by  F-Measure is an 
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evaluation metric which considers both the Recall and the Precision (  is usually set equal to 1, 

called F1-Measure). 

 
Another metric is GMean, which balances both true positive rate (TPR) and true negative 

rate (TNR)  We will use these metrics to evaluate our models in section 7. 

 

4. BAYESIAN NETWORK CLASSIFIERS 

4.1. Bayesian Networks 

Bayesian Network (BN) is defined by a pair  where  is the directed acyclic 

graph with a set of nodes represent random variables, and edges represent the 

direct dependencies between these variables, and  is a set of parameters of the network [16]. 

Naive Bayes (NB) is a type of BN which has assumptions that all the variables are 

conditionally independent given the class variable and are directly dependent on the class 

variable, as in Fig. 1a3.  

Tree Augmented Naive Bayes (TAN) [16] relaxes the assumption in NB by allowing arcs 

between the children of the target node, as in Fig. 1b. 

Bayesian Network Augmented Naive Bayes (BAN) [17] is a BN which all other nodes are 

children of the target node, but a complete BN is constructed between the child nodes rather than 

just a tree as in TAN, as in Fig. 1c. 

The Markov Blanket Bayesian Classifier (MB) [20] is a BN which has Markov Blanket 

property at a target node. The Markov Blanket for a node in BN consists of its parents, its 

children, and the parents of its children, as in Fig. 1d. 

 

Figure 1. Bayesian Network types 

4.2. Learning in Bayesian Networks 

Like other literatures [16, 17, 20, 21], this study focuses on the discrete and non-missing 

value variables4. The learning tasks in BN consist of two steps. The first step is to learn the 

network structure and the second step is to compute the conditional probability tables (CPTs). 

To learn the structure  of the BN, we consider it as an optimization problem [21] and 

                                                           
3 Picture source: [20] and Wikipedia(en.wikipedia.org/wiki/File:MarkovBlanket.png). 
4 We can discretize the numeric attributes, and replace all missing values for nominal and numeric attributes with the 

modes and means, respectively. 
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need to maximize the quality measure  of  given dataset . In this study, we use the Bayesian 

metric as a quality measure, determined by the following Eq: 

 

(1) 

where  is prior probability of  is the number of variables;  is a Gamma function; 

and  are the cardinality of node and a set of its parents , respectively;  is  for 

which  takes its  value;  is   for which  takes its  value and for which  takes 

its  value;  and  represent choices of priors on counts restricted by 

  [21]. Since  is constant, to maximize , we just need to  maximize the 

second inner product in equation (1) as the following 

 

(2) 

To do this, we use  algorithm [22] which initially assumes that a node has no parents, 

and then adding incrementally its parent that can increase the probability of the resulting 

network. This process repeats greedily until the addition of the parent does not increase the 

network structure probability. Concretely, each iteration of , an arc is added to node  from 

the node  that maximizes  , where is the set of parents of node . If 

 then no arc is added [20]. 

After network structure is learned, we can estimate the CPTs by: 

 
(3) 

Once having the CPTs, one can infer for any new event. The probability of an arbitrary 

event  is determined by 

 

(4)

Given a dataset D consists of a class variable  and a set of attribute variables 

, we can infer the class value for  by calculating the  from 

the probability distribution in equation (4). 

5. PROPOSED METHODS 

We propose two methods which learn the optimal decision threshold on Bayesian posterior 

probabilities to deal with imbalanced data. We implement these methods using WEKA5. We just 

focus on binary classification problems, thus, we denote the positive class (+1) as the minority 

class, and the negative class (1) as the majority one. 

Method 1: We optimize the threshold on the hold-outset to maximize the  

(we maximize the Recall for the minority class but also taken into account the Precision to 

prevent the degradation of the overall model). Once having an optimal , we use it for the final 

classifier. We apply this method for several BNs such as general BN, TAN, BAN, and Markov 

Blanket structure which named as BNOpt, TANOpt, BANOpt, and MBOpt respectively. 

                                                           
5 www.cs.waikato.ac.nz/ml/weka. 
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Method 2: Instead of learning optimal threshold for each classifier separately as in method 

1, we combine these classifiers by a voting ensemble (we use average on probabilities as a 

combination schema). This method is called EnsBNOpt. 

We compare these methods with not only the baseline NB and BN but also the state-of-the-

art sampling methods such as SMOTE and TLINK. 

The first method is formulated in Fig. 2, called LearnBNOpt. For each BN type , we 

optimize its threshold as in line 2 and Fig. 3. The next steps are to learn the structure of that BN 

and compute the CPTs as in line 3. Once the optimal threshold is found and CPTs is constructed, 

we can use them for inferring the new examples as in line 4, The indicator function  gives 

the positive class if the expression is true, and negative class for the inverse. 

1: procedure LEARN-BNOPT ( ) 

     Input:  

  

     Ouput:Label for new example x
*
 in  

2:   

3: Learn the structure and CPTs of  as in equation (1,2,3) 

 
4: Test for new example x* from  

 
5: end procedure 

Figure 2. Learning optimal threshold for Bayesian Network 

1: procedure OPTIMIZETHRESHOLD  

Input:   

Output: the best threshold for F1Measure  

2: for  do 

3:   split for 5-fold cross-validation 

4: (  

5:  

6: end for 

7:   average on 5-fold CV 

8: Get unique values from  

9:  

10: for each  do  

11:  Calculate   based on  

12: if ( ) then 

13:  

14:  

15: end if  

16: end for  

17: return   

end procedure 

Figure 3. Optimize the threshold on the holdout set 
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Figure 3 describes how to get the optimal threshold. We do 5-fold cross validation to get 

the average results (lines 27) (Of course, one can use any other number of folds for this, but for 

consistence with the main procedure we use 5-fold cross validation).  

Next, from the average score outputs, we get the unique values for the minority class (line 

8). We consider each score value as a threshold and re-calculate the F1-Measure then update the 

one which has the maximal value (line 916). We can do another way by treating this threshold as 

a hyper-parameter and do the hyper-parameter search as in [3, 12], but this method need more 

times than the current one. 

The second method is called LearnEnsBNOpt, which learns an ensemble classifier of 

several BNs, as described in Fig. 4. Concretely, we train each classifier  and get its model  

respectively, as in lines 24. We combine these models by averaging on the probabilities as in 

line 56. The reason for this combination is that it is well-known that an ensemble on several 

models can work better than any best single model. Moreover, as discussed in [14, 15], 

averaging on the probabilities can give the result better than on the label voting. In the next step, 

we learn the optimal threshold on the aggregated model the same as in the rst method. Finally, 

we predict the new examples in the test set as in line 7, where  is the posterior probability 

of class  given example  in the aggregated model. 

1: procedure LEARN-ENSBNOPT   

Input:    

Output: Label for new example x
*
 in  

2: for each  do 

3: Learn the structure and CPTs of  as in equation (1,2,3), get model  

 

4: end for  

5: Combine all  to aggregated model  by average of probabilities  

6:  Optimize threshold for aggregated model   

7: Test for new example x*   from  

end procedure 

Figure 4. Learning optimal threshold on ensemble of Bayesian Networks 

6. DATA SETS 

We have experimented on 20 imbalanced datasets collected from the UCI repository7, as 

described in Table 2. Some multiclass datasets are converted to binary-class using one-versus-

the-rest. We encode the class which has the smallest number of examples as the minority 

                                                           
6 We use the “Vote” method in [21]. The interesting readers can see [23, 24] for more details about how to combine 

the models. 
7 http://archive.ics.uci.edu/ml/ 
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(positive) class, and the rest as the majority (negative) one. The imbalance ratio between the 

majority and minority examples ranges from 1.77 to 64.03 (the highest one in this study). 

7. EXPERIMENTAL RESULTS 

We use the paired t-tests (2tails) with significance level 0.05 for all the experiments. The 

results are averaged from 5-fold cross-validation. Table 3 presents the detailed results of 

F1Measure and the average results of other metrics (Recall, Precision, and AUC). We report the 

results of our methods together with 4 other classifiers : NB and BN without optimizing the 

threshold, SMOTE, and TLINK. 

Table 2. Datasets 

Dataset #Examples #Attributes #Minority Imbalanced Ratio 

Abalone 4.177 9 391 9.68 

Allbp 2,800 30 133 20.05 

Allhyper 3,772 30 102 35.98 

Allrep 3,772 30 124 29.45 

Ann 7,200 22 166 42.37 

Anneal 898 39 40 21.45 

Breastcancer 699 11 241 1.90 

Diabetes 768 9 268 1.86 

Dis 3,772 30 58 64.03 

Haberman 306 4 81 2.77 

Heartdisease 294 14 106 1.77 

Hepatitis 155 20 32 3.84 

Hypothyroid 3,163 26 151 19.95 

IJCNN 49,990 22 4,853 9.70 

Nursery 12,960 9 328 38.51 

PimaIndian 768 9 268 1.87 

Sick 2,800 30 171 15.37 

Tictactoe 957 10 332 1.88 

Transfusion 748 5 178 3.20 

Winered 1,559 12 199 7.04 
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In the first experiment from Table 3, we use NB as a baseline. Clearly, we can see that 

BNOpt, TANOpt, MBOpt, and TLINK easily win this baseline. The EnsBNOpt gives the best 

average results among the others while BNOpt has more win times (14/6/0). From this 

experiment, we can see that NB does not work well. We also optimize the threshold for NB but 

the results are not better than the other classifiers  (we do not report those results here). The 

reason could be because of its independent assumption, as discussed in the literatures [16, 20]. 

Since NB does not work well, in all the remaining experiments, we use general BN as a base 

classifier8 for SMOTE and TLINK which reported in SMOTE and TLINK columns of Table 3, 

respectively. 

In the rest experiments, we use general BN as a baseline. We can also see that our methods 

outperform this baseline. The best classifier in this case is BANOpt (8/12/0). In the third and the 

fourth experiments, we compare our methods with SMOTE and TLINK, respectively. For 

example, in third “wins/ties/loses” row, SMOTE is a “base" for comparison, TANOpt and 

BANOpt win 8 and tie 12 times (8/12/0) compared to SMOTE. The MBOpt loses once, while 

the remaining methods work as good as these two sampling methods and even significantly 

better in certain cases. We also note that the percentage of SMOTE has been optimized for all 

datasets. 

In this work, we just optimize the results for F1Measure, but for referencing, we also report 

the average results on 20 datasets of the Recall, Precision, and AUC in the last 3 rows of Table 3 

(because the limitation of the space, we do not report the details results here). The BANOpt 

again shows the best performance among the others for Recall, while EnsBNOpt shows the best 

Precision and AUC on average. 

Figure 5 displays the average results of true positive rate (TPR) and GMean on 20 datasets 

for NB, BN, SMOTE, TLINK, BNOpt, MBOpt, TANOpt, BANOpt, and EnsBNOpt allocated 

from the leftmost bar to the rightmost bar, respectively. When looking at these results, we can 

also recognize that the TPR  the one which focuses on the interesting class in imbalanced 

datasets  from our methods significantly outperforms the other methods (NB, BN, TLINK), and 

slightly better than SMOTE, while the overall models (evaluated by GMean) does not degrade. 

Those results are the expected ones for all methods which mitigate the class imbalance problem. 

 

Figure 5. Average of TPR and GMean: NB (leftmost), . . . , EnsBNOpt (rightmost) 

8. CONCLUSION 

Class imbalance problem is considered among ten important topics in machine learning [4]. 

This study introduces two methods which learn the optimal threshold for several Bayesian 

                                                           
8 Since SMOTE and TLINK are sampling methods, they need a base classififier 
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Networks (BN) to deal with imbalanced data. We investigate these methods on some Bayesian 

classifiers  such as general BN, TAN, BAN, and Markov Blanket structure. In the rst method, we 

optimize the threshold to maximize the F1Measure. Once the optimal decision threshold is 

found, we use it for the final classification. The second method combine several classifiers  from 

the first method by a voting ensemble. Experimental results on 20 benchmark imbalanced 

datasets show that our methods significantly outperform the baseline NB and BN. These 

methods also perform as good as the state-of-the-art sampling methods and significantly better in 

certain cases. Thus, they can be good choices for learning from imbalanced data. In future work, 

we will examine these methods on the new evaluation measure for learning from imbalanced 

data [25] as well as optimize for this new metric. 
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Table 3. The paired t-tests with significant level 0.05: Details of F1-Measure and average of other metrics 

Dataset NaiveBayes BayesNet SMOTE TLINK  LearnBNOpt  
LearnEnsBNOpt 

     BNOpt MBOpt  TANOpt BANOpt 

abalone 0.361±0.014 0.380±0.013 ○ 0.379±0.018 ○ 0.380±0.014 ○ 0.407±0.024 ○ 0.417±0.018 ○  0.432±0.031 ○ 0.421±0.022 ○ 0.429±0.026   ○ 

allbp 0.522±0.077 0.603±0.065 ○ 0.598±0.070 ○ 0.589±0.068 ○ 0.606±0.036 ○ 0.636±0.074 ○  0.569±0.052 0.608±0.028 ○ 0.608±0.047 

allhyper 0.490±0.071 0.553±0.105 ○ 0.495±0.098 0.554±0.091 ○ 0.577±0.120 ○ 0.708±0.076 ○  0.661±0.108 ○ 0.707±0.109 ○ 0.670±0.150   ○ 

allrep 0.407±0.066 0.664±0.075 ○ 0.632±0.076 ○ 0.652±0.049 ○ 0.657±0.087 ○ 0.894±0.043 ○  0.826±0.063 ○ 0.862±0.038 ○ 0.880±0.046   ○ 

ann 0.801±0.053 0.907±0.037 ○ 0.901±0.035 ○ 0.887±0.056 ○ 0.922±0.043 ○ 0.932±0.031 ○  0.938±0.021 ○ 0.941±0.027 ○ 0.935±0.031   ○ 

anneal 0.583±0.135 0.920±0.089 ○ 0.874±0.078 ○ 0.920±0.089 ○ 0.920±0.089 ○ 0.920±0.089 ○  0.920±0.089 ○ 0.920±0.089 ○ 0.920±0.089   ○ 

breastcancer 0.944±0.011 0.960±0.014 0.959±0.014 0.962±0.011 ○ 0.962±0.011 ○ 0.943±0.015 ○  0.955±0.014 0.945±0.018 0.949±0.010 

diabetes 0.645±0.089 0.646±0.077 0.651±0.054 0.662±0.071 0.646±0.067 0.644±0.055  0.645±0.056 0.645±0.056 0.652±0.052 

dis 0.276±0.031 0.521±0.085 ○ 0.430±0.058 ○ 0.477±0.075 ○ 0.514±0.098 ○ 0.490±0.090 ○  0.496±0.083 ○ 0.504±0.091 ○ 0.484±0.094   ○ 

haberman 0.303±0.174 0.155±0.214 0.483±0.059 0.465±0.154 0.404±0.023 0.404±0.023  0.404±0.023 0.404±0.023 0.404±0.023 

heartdisease 0.795±0.062 0.743±0.083 0.753±0.096 0.750±0.075 0.749±0.088 0.754±0.077  0.738±0.084 0.754±0.077 0.739±0.086 

hepatitis 0.641±0.135 0.479±0.224 0.644±0.150 0.603±0.201 0.521±0.269 0.429±0.274  0.555±0.196 0.480±0.315 0.564±0.164 

hypothyroid 0.778±0.035 0.871±0.032 ○ 0.841±0.034 ○ 0.867±0.042 ○ 0.865±0.024 ○ 0.844±0.056 ○  0.860±0.049 ○ 0.857±0.024 ○ 0.862±0.026   ○ 

ijcnn 0.304±0.019 0.410±0.025 ○ 0.515±0.015 ○ 0.415±0.023 ○ 0.525±0.008 ○ 0.623±0.017 ○  0.573±0.030 ○ 0.609±0.021 ○ 0.614±0.029   ○ 

nursery 0.380±0.035 0.387±0.035 0.680±0.039 ○ 0.548±0.021 ○ 0.768±0.020 ○ 0.859±0.015 ○  0.859±0.015 ○ 0.859±0.015 ○ 0.852±0.024   ○ 

pima 0.634±0.089 0.636±0.073 0.635±0.066 0.647±0.081 0.628±0.042 0.655±0.044  0.643±0.058 0.647±0.054 0.650±0.047 

sick 0.554±0.071 0.757±0.052 ○ 0.703±0.093 ○ 0.746±0.047 ○ 0.780±0.074 ○ 0.803±0.063 ○  0.777±0.065 ○ 0.794±0.059 ○ 0.804±0.065   ○ 

tictactoe 0.501±0.064 0.501±0.064 0.537±0.056 0.502±0.053 0.599±0.021 ○ 0.680±0.034 ○  0.658±0.035 ○ 0.709±0.041 ○ 0.713±0.040   ○ 

transfusion 0.282±0.033 0.488±0.027 ○ 0.491±0.026 ○ 0.486±0.022 ○ 0.483±0.032 ○ 0.488±0.021 ○  0.488±0.021 ○ 0.488±0.021 ○ 0.488±0.021   ○ 

winered 0.493±0.075 0.484±0.047 0.491±0.025 0.499±0.054 0.490±0.044 0.516±0.069  0.488±0.028 0.503±0.043 0.509±0.038 

F1Measure AVG 0.535 0.603 0.635 630 0.651 0.682 0.674 0.683 0.686 

wins/ties/loses base 11/9/0 11/9/0 13/7/0 14/6/0 13/7/0 12/8/0 13/7/0 12/8/0 

wins/ties/loses 0/9/11 base 3/15/2 1/19/0 4/16/0 7/12/1 7/13/0 8/12/0 7/13/0 

wins/ties/loses 0/9/11 2/15/3 base 2/15/3 4/16/0 8/11/1 8/12/0 8/12/0 7/13/0 

wins/ties/loses 0/7/13 0/19/1 3/15/2 base 5/15/0 9/10/1 6/14/0 8/12/0 8/12/0 

           Recall±average 0.617 0.628 0.709 0.679 0.736 0.759 0.751 0.764 0.745 

Precision 0.559 0.635 0.601 0.631 0.611 0.642 0.636 0.639 0.660 

AUC±average 0.879 0.885 0.888 0.889 0.885 0.894 0.893 0.894 0.895 
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