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Abstract. The dynamic vibration absorber (DVA) has been widely applied in various technical 

fields. Using the Taguchi’s method, this paper presents a procedure for designing the optimal 

parameters of a dynamic vibration absorber attached to a damped primary system. The values of 

the optimal parameters of the DVA obtained by the Taguchi’s method are compared by the 

results obtained by other methods.  
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1.  INTRODUCTION 

Taguchi’s method for the product design process may be divided into three stages: system 

design, parameter design, and tolerance design [1-7]. Taguchi’s method of parameter design is 

successfully applied to many mechanical systems: an acoustic muffler, a gear/pinion system, a 

spring, an electro-hydraulic servo system, a dynamic vibration absorber. In each system, the 

design parameters to be optimized are identified, along with the desired response. 

The dynamic vibration absorber (DVA) or tuned-mass damper (TMD) is a widely used 

passive vibration control device. When a mass-spring system, referred to as primary system, is 

subjected to a harmonic excitation at a constant frequency, its steady-state response can be 

suppressed by attaching a secondary mass-spring system or DVA. Design of DVA is a classical 

topic [8-12]. The first analysis was reported by Den Hartog [10]. The damped DVA proposed by 

Den Hartog is now known as the Voigt-type DVA, where a spring element and a viscous 

element are arranged in parallel, and has been considered as a standard model of the DVA. 

Thenceforth, the DVA has been widely used in many fields of engineering and construction. The 

reasons for those applications of the DVA are its efficiency, reliability and low-cost 

characteristics. 
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Basically, the solution of optimization problem is the minimization of the maximum 

vibration amplitude over all excitation frequencies. In the design of the Voigt-type DVA, the 

main objective is to determine optimal parameters of the DVA so that its effect is maximal. 

Because the mass ratio of the DVA to the primary structure is usually few percent, the principal 

parameters of the DVA are its tuning ratio (i.e. ratio of DVA’s frequency to the natural 

frequency of primary structure) and damping ratio.  

There have been many optimization criteria given to design DVAs for undamped primary 

structures [10-12]. The study of optimal design of parameters of dynamic vibration absorber 

installed in damped primary system becomes interesting problem in recent years [13-20]. In this 

paper, a procedure for optimal design of the DVA installed in damped primary system based on 

Taguchi’s method is presented and discussed. 

The remaining contents of this paper are organized as follows. Section 2 presents briefly 

the structural mathematical model and the optimization problem. In Section 3, a procedure for 

optimal design of the DVA parameters for damped primary system is described in detail. In 

Section 4, some obtained results by Taguchi’s method are compared with the results obtained by 

other methods to verify the proposed procedure. Section 5 includes some concluding remarks 

and future work proposals. 

2. CALCULATION OF VIBRATION OF DAMPED PRIMARY SYSTEM AND 

DYNAMIC VIBRATION ABSORBER 

 

A system shown in Fig.1 is a dynamic vibration absorber installed in the primary structure. 

The primary structure includes a main mass , a spring element  and a damping element  

and is subjected an external force 0( ) sin .ef t F t  The mass of the DVA is  and its spring 

and damping coefficients are  and  respectively.  

 

 

 

 

 

 

 

. 

Figure 1. Dynamic vibration absorber applied to a force-excited system with damping.  

In the design optimal procedure, the desired response is a level of vibrational amplitude, the 

control factors are mass ratio , damping ratio , and tuning ratio . Let  and denote the 

displacements of the primary structure and the DVA, respectively. By using Lagrange’s 

equations, we get the equations of motion 
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 0( ) sin ,

0.

s s s a s a a s a s a a s

a a a s a a a s a a

m x c c x c x k k x k x f t F t

m x c x c x k x k x
                           (1) 

2.1. Frequency response of the damped primary system 

We find the solution of Eq. (1) in the form  

0( ) , ( ) ( )i t i t i t

s s s a af t F e x t u e x t u e .                   (2) 

Substitution of Eq. (2) into Eq. (1) yields 

2

0

2

,

0.

s a s s a s a a a

a a s a a a a

k k m i c c u k ic u F

k ic u k m ic u
                                    (3) 

Eq. (3) denotes a set of linear algebraic equations with two  unknowns su and au . It follows that   

2

0

2 2 2 2 2

0

2 2 2 2 2

,

,

a a as
s

s s a a a a s a s a a s s a a a s

a aa
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k m k m k m c c i c k c k c c m c m
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k m k m k m c c i c k c k c c m c m

 

 (4)                     

and 

2
2 2 2

0

2 2
2 2 2 2 2 2

.
a a a

s s

s s a a a a s a s a a s s a a a s

F k m c
H u u

k m k m k m c c c k c k c c m c m

 (5)      

The formula (5) will be chosen as the target function of the Taguchi’s optimization problem. 

2.2. The matrix form of the differential equations for the motion of primary system and 

dynamic vibration absorber 

Equation (1) can then be written in the compact matrix form as 

Mx + Dx + Kx = f(t) ,                           (6) 

where  

0

0
; ; ,

0

; sin( ).
0

s s s a a

a a a a

s a a

a a

x m c c c

x m c c

k k k F
t

k k

x M D

K f

             (7) 

Eq. (6) can also be written in the following matrix form as follows    



 
 

Nguyen Van Khang, Vu Duc Phuc, Do The Duong, Nguyen Thi Van Huong 

652 

sin cos .t tMx + Dx + Kx = a b                                               (8) 

The particular solution of Eq.(9) can be found in the form 

sin cos .t tx u v                                          (9) 

The derivative of vector x  by time one obtain 

               

2

( cos sin ) ,

( sin cos ) .

t t

t t

x u v

x u v
 

Substituting the terms of , ,x x x  into Eq.(8), then comparing  the coefficients of sin t  and 

cos t , we obtain the system of linear algebraic equations to determine the vectors u and v  

2

2

K M D u a

v bD K M
 .                                                  (10) 

If the determinant of the coefficient matrix in Eq.(10) is not zero, then the vectors u and v  are 

uniquely determined. The solution of Eq.(8) is given by 

  

sin cost tx u v ,                                                  (11) 

where u and v are determined from Eq.(10). 

3. APPLICATION OF TAGUCHI’S METHOD TO PARAMETER DESIGN OF DVA 

3.1. Background of a procedure 

Taguchi developed his methods in the 1950s and 1960s. Taguchi’s methods provide a 

means to determine the optimum values of the characteristics of a product or process such that 

the product is robust (insensitive to sources of variation) while requiring less experiments than is 

required by traditional methods. The mathematical basis of the Taguchi method is mathematical 

methods of statistics. The Taguchi method allows to determine the optimal condition of many 

parameters of the research object. This method is applied to solve the multi-objective 

optimization problem in mechanical engineering, civil engineering, and transportation 

engineering. In this paper, Taguchi’s method is applied to optimize the parameters of DVA to 

reduce the vibration amplitude of primary system. By using the Taguchi method, we must note 

the following two important points. The first is that it needs to determine the quality 

characteristics of the problem. The second option is that we need to select the orthogonal arrays. 

The Taguchi’s methods begin with the definition of the word quality. Taguchi employs a 

revolutionary definition: “Quality is the loss imparted to society from the time a product is 

shipped” [5]. In this paper the quality characteristics are also called the signal-to-noise ratio 

(SNR). It is defined for a nominal-the-best procedure as [2] 

                                 

2

10 min10log ( )actualSNR H H  ,                 (12) 

where actualH  is the target function in experiment j, and minH is desired value of target function. 

Taguchi developed the orthogonal array method to study the systems in a convenient and rapid 
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way, whose performance is affected by different factors when the considered system becomes 

more complicated with increasing number of influence factors [1-4].  

3.2. Determine optimal parameters of a DVA at the resonant frequency 

Now Taguchi’s method is applied to optimize the parameters of a DVA to reduce the 

vibration amplitude of primary system. The parameters of primary system are listed in Table 1. 

                                        Table 1. Parameters of primary system. 

Parameter  Variable Value Unit 

mass 
sm  250 kg 

damping coefficient 
sc   200

 
Ns/m 

spring coefficient  
sk   1.5x10

6
 N/m 

amplitude of ext. force 
0F   250 N 

frequency of ext. force   77.46 rad/s 

 

Step 1: Selection of control factors and target function  

Because the mass ratio of the DVA to the primary structure is usually few percent, the 

principal parameters of the DVA are its tuning ratio (i.e. ratio of DVA’s frequency to the natural 

frequency of primary structure) and damping ratio. The mass of the DVA firstly selected as 

ma=12.5 kg. The control factors are chosen as follows 

                 
1 2 3

T T

a a a
x x x m c kx  .      (13) 

The target function H is chosen according to the formula (5). Damping and spring coefficients of 

the DVA , ac and ak , are control factors. Three levels of each control factor are given in Table 2. 

Table 2. Control factors and levels of control factors.  

Levels 
Control factors 

am  [kg] ac  [Ns/m] ak  [N/m] 

1 2 80 1.0x10
5 

2 4 100 2.0x10
5 

3 8 120 3.0x10
5 

 

Step 2:  Selection of orthogonal array and calculation of signal-to-noise ratio (SNR) 

Three levels of each control factor are applied, necessitating the use of an L9 orthogonal 

array [1, 4]. Coding stage 1, stage 2, stage 3 of the control parameters are the symbols 1, 2, 3. By 

performing the experiments and then calculating the corresponding response results, we have the 

values of actual target function H as shown in the Table 3, in which a minimal target value of 

Hmin = 0 is selected. 

The experimental results are then analyzed by means of the mean square deviation of the 

target function for each control parameter, namely the calculation of the SNR of the control 

factors according to the formula 
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2

j 10 min( ) 10log ( ) , 1,...,9j jSNR H H j  ,    (14) 

where j
H  is the actual target function in experiment j, and minH is desired value of target 

function. 

Step 3: Analysis of signal-to-noise ratio (SNR) 

Table 3. Experimental design using L9 orthogonal array. 

Trial 
Factor Result 

am  ac  ak  H SNR 

1 1 1 1 0.0120609292 38.3723846061 

2 1 2 2 0.0124341452 38.1076813202 

3 1 3 3 0.0125461249 38.0298078553 

4 2 1 2 0.0079540421 41.9882422795 

5 2 2 3 0.0082290805 41.6929738354 

6 2 3 1 0.0070425160 43.0454431023 

7 3 1 3 0.0042178069 47.4982661359 

8 3 2 1 0.0026607102 51.5000484940 

9 3 3 2 0.0038334828 48.3281297317 

 

From Table 3 we can calculate the mean value of the SNR of the control parameter of 

1a
m x  corresponding to the levels 1,2,3  

                  

1

1

2

1

3

1

( ) ( (1) (2) (3)) / 3

( ) ( (4) (

38.1699579272

42.2422197395) (6)) 1

49.1088147872

/ 3

( ) ( (7) (8) (9)) / 3

SNR x SNR SNR SNR

SNR x SNR SNR SNR

SNR x SNR SNR SNR

  

In which 1 2 3

1 1 1( ), ( ), ( )SNR x SNR x SRN x  are the mean square deviation of the control parameter 

am  at the levels  1,2,3, respectively. Similarly we calculate the mean square deviation of the 

SNR for the levels 1,2,3 of the control parameter 2 3,a ac x k x
       

                

1

2

2

2

3

2

( ) ( (1) (4) (7)) / 3  

( ) ( (2) (

42.6196310072

43.76690121655) (8)) / 3  

( ) ( (3) (6) (9) 43.134460229) 8/ 3

SNR x SNR SNR SNR

SNR x SNR SNR SNR

SNR x SNR SNR SNR

 

1

3

2

3

3

3

( ) ( (1) (6) (8)) / 3

( ) ( (2) (

44.3059587341

42.8080177774) (9)) 1

42.4070159422

/ 3

( ) ( (3) (5) (7)) / 3

SNR x SNR SNR SNR

SNR x SNR SNR SNR

SNR x SNR SNR SNR

 

Then we draw the SNR Ratio Plot for optimization of seat displacement as shown in Figure 2. 
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Figure 2. SNR Ratio plot for optimization of seat displacement of 

1a
m x , 2ac x  and 3ak x . 

From Figure 2 we derive the optimal signal-to-noise ratio of the control parameters as follows 

   1 2 3
49.1088147872 43.7669012165( ) , ( ) (, 44.3059587341)SNR x SNR x SNR x   (15) 

Step 4: Selection of new levels for control factors 

By the formula (15), we see that the optimal signal-to-noise ratio of the control parameters 

is different. This makes it easy to perform iterative calculation. First we must select new levels 

for control parameters. Based on the level distribution diagram of the parameter (Figure 2), we 

choose the new levels of control parameters as follows. The optimal parameters are levels with 

the largest value of the parameters, namely: am  level 3, ac  level 2, ak  level 1. Therefore, we 

have the values of the new levels as follows: 

- Level 2 of the control parameter  am = 8 Ns / m (level 3 of the previous parameter set), 

- Level 2 of the control parameter  ac = 100 Ns / m (level 2 of the previous parameter set), 

- Level 2 of the control parameter 51.0 10 /ak N m  (level 1 of the previous parameter set). 

We use these values as central values of the next search, (these values are levels 2 for the 

next search). The levels of the control parameters of the following search are created according 

to the following rule: 

If level 1 is optimal then the next levels are 

 

 

 

2 _new 1_

2 _ 1_
1_ 1_

2

2 _ 1_
3_ 1_

2

level level old

level old level old
level new level old

level old level old
level new level old

  

If level 2 is optimal then the next levels are  

 

 

 

New level 1 

New level 2 New level 3 

level 2 level 3 level 1 

New level 3 New level 2 New level 1 

level 2 level 3 
level 1 
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2 _new 2 _

2 _ 1_
1_ 2 _

2

3_ 2 _
3_ 2 _

2

level level old

level old level old
level new level old

level old level old
level new level old

 

If level 3 is optimal then the next levels are 

 

 

 

 

2 _new 3_

3_ 2 _
1_ 3_

2

3_ 2 _
3_ 3_

2

level level old

level old level old
level new level old

level old level old
level new level old

 

According to the above rule, we have the new levels  of control parameters as shown in Table 4.                  

Table 4.  Control factors and new levels of control factors. 

Levels 
Control factors 

am  [kg] ac  [Ns/m] ak  [N/m] 

1 6 90 50000
 

2 8 100 100000
 

3 10 110 150000
 

 

Then the analysis of signal-to-noise ratio (SNR) is performed as the step 2. 

Step 5: Check the convergence condition of the signal-to-noise ratio and determine the 

optimal parameters of the DVA 

Table 5. Noise values of the control parameter ( )iSNR  of the control parameters.  

Trial 
Optimal noise values ( )iSNR  

1
( )SNR x   2

( )SNR x  3
( )SNR x  

1 49.1088147872 43.7669012165 44.3059587341 

2 55.9272740956 54.3189064302 58.3951488545 

3 56.1664058168 57.2013745970 60.8209778901 

4 64.2795638094 64.2062018597 65.5283802774 

    

38 68.1299451384 68.1299451384 68.1299451384 

39 68.1299451384 68.1299451384 68.1299451384 

40 68.1299451385 68.1299451384 68.1299451384 

41 68.1299451385 68.1299451385 68.1299451385 

New level 3 

New level 2 New level 1 

level 2 level 1 level 3 
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After 33 iterations, we obtain the optimal noise values of the control parameters

1 2 3
, ,

a a a
x m x c x k . The calculation results are recorded in Table 5. 

If the optimal SNR of the control parameters is equal (or approximately equal) we move on 

to step 5. If otherwise we return to step 2. According to the above analysis, after 41 iterations, 

we obtain the optimal values of the dynamic vibration absorber: 

                          
411.5 , 100 / , 6.9819 10 /

a a a
m kg c Ns m k N m                         (16) 

Step 6: Determining the vibration of the primary system  

 Knowing the parameters of the damper, using equation (11) we can easily calculate the 

vibration of the main system and of the dynamic vibration absorber. Using the optimum 

parameters (16), we plot the compliance curve in frequency domain for the damped primary 

system in Fig.3. Numerically we can find the peak values H(A) and H(B) of the normalized 

amplitude and their corresponding frequency ratios  / 0.901, / 1.116A S B Sf f f f .  

 

                                  Figure 3. The compliance curve in frequency domain.  

3.3. Problem formulation for determining optimal parameters of a DVA in a frequency 

domain 

When a primary system is damped, the “fixed-points” feature no longer exists. However, as 

shown in [13], when there is viscous damping on both masses, the design problem can be 

formulated as follows: Given a primary mass 
s

m , connected to the ground with a spring-dashpot 

element and subjected to the force sin
O

F t , compute the values of secondary mass 
a

m , 

stiffness 
a

k  and viscous damping 
a

c  such that the frequency response curve of the primary mass 

has two maximum amplitudes. Therefore,  it is justified to assume that the “fixed-point” theory 

also approximately holds even for the case when a damped DVA is attached to a lightly or 

moderately damped primary system. Based on this assumption,   it is reasonable to assume that 

( )H has two distinct resonance points. These are denoted A and B, with frequencies  
A

and 

B
( )

A B
. This leads to the equations  
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                ( ) max ( )
A

H H   and ( ) max ( )
B

H H      (17) 

It is well recognized that each fixed point very close to the corresponding resonance point, 

and that the trade off relation between ( ) max ( )
A

H H and ( ) max ( )
B

H H can be 

postulated. On this assumption, it is guaranteed that the optimum design is derived using 

equivalent resonance magnification factors  

                 max ( ) ( ) ( )
A B

H H H                  (18) 

The problem can also be formulated as the one that minimizes the following two functions 

[16] 

             
1 2

1 1
,

2 2
A B s Bf H H f H H        (19) 

A target function can be defined as 

                          
1 1 2 2

w w minf f f  ,                  (20) 

where 1w  and 2w  are weighting factors used to impose different emphasis on each of the target 

functions. The optimum solution can be found by using the Taguchi’s method. The calculation 

results of the equation (20) are given in Fig. 4 and in Table 6.  

 

Figure 4.  The compliance curves in frequency domain.  

Table 6. Calculated results with different weighting factors 

Weighting factors Vibration amplitude of 

the primary system 

without DVA,[mm] 

Vibration amplitude of 

the primary system 

with DVA,[mm] 

Ratio  % 
1w  2w  

0.8 0.4 16.14 1.582 90.2 

1.2 0.4 16.14 1.636 89.86 

1.8 0.4 16.14 1.563 90.32 

    1.8 0.3 16.14 1.876 88.38 

4. VERIFYING THE EFFECTIVENESS OF THE PROPOSED APPROACH 
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In this section, the optimum values of the DVA determined by the Taguchi method would 

be compared with the values calculated from the other methods. In [17, 18], Anh and Nguyen 

recently adopted the dual equivalent linearization technique for handling the variant DVA 

model, which transforms approximately the damped primary system to an equivalent undamped 

system as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. The approximation of the primary system [18]. 

According to Anh and Nguyen [17, 18], two design parameters of dynamic vibration 

absorber are determined by the following formulas 

                  

2

2

2
2 2

2 22

32
2

2 22

,

1 1
22

2 3
.

8 1
1

22

a s
a

r s s

a s r
a

r

s s

m
k

m

m m
c

m

                                   (20)                                     

 

Figure 6. The compliance curves in frequency domain with 200 /sc Ns m . 

The calculation results are given in Figs. 6 and 7. Fig. 6 shows the compliance curves in 

frequency domain. Figure 7 shows the response of the damped primary system at the resonance 
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frequency. Figs 6 and 7 show that the compliance curves in frequency domain from the proposed 

in this paper are closer to the curves from the expression (20) given by Anh and Nguyen. 

         

Figure 7. The response of the primary system with DVA and without DVA with 200 /
s

c Ns m . 

5. CONCLUSIONS 

When a damped primary system is excited by a harmonic force, its vibration can be 

suppressed by attaching a DVA. The DVA has the effect of reducing vibrations in the resonance 

region, and has almost ineffective far out of the resonance region. In this paper, a procedure for 

the optimal design of parameters of the DVA installed in damped primary system was 

investigated from the viewpoint of suppressing vibration amplitude in the damped primary 

system in the resonant region. Based on the obtained results, the following concluding remarks 

can be reached: 

- The use of the Taguchi’s method to design the optimal parameters of the DVA installed in 

damped primary system is relatively simple and convenient.  

- The Taguchi’s method has the good effect of reducing vibration in a narrow band of the 

resonant frequency (the ratio is approximately 90 %).  

- In the narrow band of the resonant frequency, the vibration reduction effect of the 

Taguchi method is similar to that of Anh and Nguyen. 

We note that Taguchi's method has the following advantages: It does not need to use the 

derivative of the target function to calculate the optimal parameters, allowing the determination 

of multiple control parameters to reduce vibration for complex structures. In addition, the control 

parameters can be selected the same or different. This problem is being studied at the Hanoi 

University of Science and Technology. 
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