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Abstract. Next-generation nanotechnology demands new materials and devices that are highly 

efficient, multifunctional, cost-effective and environmentally friendly. The need to accelerate the 

discovery of new materials therefore becomes more pressing than ever. In this regard, among 

widely regarded fabrication techniques are self-assembly and directed assembly, which have 

attracted increasing interest as they are applicable to a wide range of materials ranging from 

liquid crystals to semiconductors to polymers and biomolecules. The fundamental challenges to 

these bottom up techniques are to design the assembling building blocks, to tailor their 

interactions and to engineering the assembly pathways towards desirable structures. We will 

demonstrate how molecular simulation, particularly Molecular Dynamics and Monte Carlo 

methods, has been a powerful tool for tackling these fundamental challenges. We will review 

through selected examples the insights from simulation that help explain the roles of the shape of 

the building blocks and their interactions in determining the morphology of the assembled 

structures. We will discuss testable predictions from simulation that serve to motivate future 

experimental studies. Aided by data mining techniques and computing capacities, the 

cooperative efforts between computational and experimental investigations open new horizons 

for accelerating the discovery of new materials and devices. We will address the theoretical 

background of self-assembly studies; simulation methods and data analysis tools commonly used 

in this highly multidisciplinary research area. 
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1. INTRODUCTION 

The performance and quality of future technology are expected to be dictated at smaller 

length scales and shorter time scales. The search for new nanomaterials that have controllable 

properties and cost-effective has captured much interest in the past decade in a large part 
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because they would benefit a broad range of applications including, but not limited to, catalysis, 

electronics, energy conversion and storage, optical devices, and drug delivery. Much needed are 

fabrication methods that allow for precise control over the morphology of the underlying 

nanostructures and for ready for large-scale production. Towards this end, self- and directed-

assembly techniques offer real opportunities to address such requirements. Self-assembly, a 

mechanism observed in most biological systems (e.g., protein folding and cell membrane 

formation), leads to the spontaneous organization of molecular and nanoscopic units, e.g., liquid 

crystals, polymers, nanoparticles and biomolecules, into thermodynamically stable structures. 

From the materials design perspectives, the fundamental challenges to these bottom up 

approaches include designing assembling building blocks, tuning their interactions and 

identifying possible routes toward target nanostructures. 

The remarkable advances in synthetic techniques over the past decades allow for synthesis 

of assembling building blocks in almost arbitrary shapes, sizes and compositions. The building 

blocks may also be functionalized with short ligands, polymers and/or DNAs [1-11] to facilitate 

their assembly. In certain cases, these so-called colloidal molecules are able to respond to 

changes in temperature, ionic strength and electromagnetic frequencies in a similar fashion to 

actual molecules. Furthermore, the nature of the interactions between these building blocks is 

non-covalent, e.g., van der Waals forces, Coulombic forces, hydrogen bonding and 

hydrophobic/hydrophilic forces [12, 13], which are independent of chemical specificity. As a 

result, self- and directed-assembly at nanoscale is a problem well suited for molecular simulation 

studies, where coarse-grained models are often sufficient to represent the relevant interactions 

between the units.  

Molecular simulation has been a powerful, and in many cases, indispensable, tool for 

investigating systems ranging from atomic to molecular to mesoscopic scales. Additionally, the 

past three decades have witnessed groundbreaking advances in electrical engineering, computer 

engineering and simulation algorithms. These accomplishments have made it possible to tackle 

problems on many orders of magnitude greater in time and length scales than earlier. Perhaps 

more interesting is the fact that nanomaterials design has become multidisciplinary, involving 

physics, chemistry, biology, mathematics, statistics and computer science. In this report, we aim 

to introduce a broad picture of computational studies on materials design via bottom up 

techniques and their roles in facilitating the discovery and design of new materials and devices. 

Given the rapid growth of these multidisciplinary research areas, it is inevitable that this report 

cannot be comprehensible. While we have attempted to discuss the work from pioneering 

research groups and influential studies in the field, the report is by no means comprehensive. 

Interested readers are encouraged to find excellent literature in Refs. [12-15].  

The report is structured as follows. A short overview to the theoretical background, 

simulation methods and tools commonly used in self-assembly studies in Section 2. In Section 3, 

we will review several examples to demonstrate how simulation has helped explain the complex 

assembled structures and processes observed in experiment. In Section 4 we discuss the 

predictions provided by molecular simulation, which can be used as guidance to further 

experimental efforts. Finally, we envision the roles of molecular simulation in support of data 

mining techniques and computing capabilities accelerating the discovery of new nanomaterials. 

2. THEORY, SIMULATION METHODS AND TOOLS 

2.1. Theory: Statistical mechanics and thermodynamics 
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At and close to equilibrium self- and directed assembly can be described by the second law 

of thermodynamics, whereby the system free energy is minimized. For instance, in the canonical 

ensemble, i.e. constant number of particles, constant volume and constant temperature, the 

Helmholtz free energy F = U - TS is minimized, where U is potential energy, T is temperature 

and S is entropy [14, 15]. Starting from any initial configuration, the system will evolve so that 

U is decreased and S is increased simultaneously. In principle, the building blocks will 

eventually form a thermodynamically stable structure, the morphology of which is determined 

by the competition between the energetic term, U, and entropic term, -TS. The entropic term 

dominates at high temperature. As temperature is lowered, the energetic term becomes 

influential and the system exhibits certain structural ordering at the expense of the entropy. The 

transition from disorder to order is usually a first order phase transition. For self-assembly 

applications in soft matter systems, the disorder-order transition point is of particular interest. 

Statistical mechanics is the most widely used tool for studying the phase transition occurred 

in self-assembly processes. In the statistical mechanics framework, macroscopic properties are 

computed based on the collection of microscopic configurations of assembling building blocks, 

which are sampled with relevant probability distributions [14, 15]. Specifically, the expected 

value of a macroscopic quantity A is computed from the weighted average: A  = AP(A), where 

P(A) is the probability of observing the configurations with A and the sum is performed over all 

the sampled configurations. The key assumption here is that the building block system of interest 

is at equilibrium with the surrounding environment under certain thermodynamic constraints, 

e.g., constant temperature, or constant temperature-constant pressure or constant chemical 

potential. The fundamental challenge to statistical mechanics-based methods is to yield 

statistically accurate results, particularly when the free energy landscape is generally unknown a 

priori. For directed assembly processes that are away of equilibrium, such as those induced by 

evaporation, shear flows and electrical field, non-equilibrium statistical thermodynamics 

techniques will be required [15]. 

2.2. Design approaches 

Numerous approaches to designing nanostructures from bottom up have been proposed and 

employed in the past decade. In the inverse statistical mechanics approach, the goal is to find the 

optimal parameter set for the interaction between the building blocks, which presumably has a 

known analytical form, that leads to a given target structure [16-18]. The optimized interaction is 

tested by molecular simulation to check if the target structure results. The challenge with this 

approach is to realize the obtained interaction in experiment. Another route is to propose the 

candidate phases (often crystalline phases) and then perform free energy calculations to find the 

thermodynamically most stable structure [19-21]. Alternatively, molecular simulation is 

employed with the physical models of the building blocks interacting based on van der Waals 

and Coulombic interactions. The relevant control parameters such as concentration, temperature, 

pressure, building block geometry and interaction strength are varied. This approach has become 

routine in practice for several reasons. First, the physical models can be justified by experiment. 

Second, the design space can be explored efficiently by varying the control parameters 

systematically. Finally, simulation is useful to explore regions of the parameter space that are 

inaccessible by experiment at the time. 

2.3. Methods: Molecular Dynamics and Monte Carlo simulations 
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Particle-based simulation methods can be roughly classified into two families: Molecular 

Dynamics (MD)-based and Monte Carlo (MC)-based methods. MD and MD-based methods 

such as Brownian Dynamics (BD) and dissipative particle dynamics (DPD) sample microstates 

by integrating the Newtonian equation of motion of all the particles under thermodynamic 

constraints. For mesoscopic simulation methods such as BD and DPD, the equations of motion 

of individual particles are stochastic as they include additional terms representing the collective 

effects of implicit solvent molecules and counterions on the particles. Meanwhile, MC-based 

methods sample the system configurations using a priori probability distributions. For instance, 

most conventional MC methods employ the Metropolis acceptance criteria, which are based on 

the Boltzmann distribution. Hybrid MD/MC methods have also been developed to maximize 

their advantages [22]. We should note that simulation methods that couple MD with quantum 

mechanical calculations such as ab initio MD simulations and quantum mechanics/molecular 

mechanics (QM/MM) are also widely used in computational materials design but are beyond the 

scope of this report.  

Molecular simulation methods are developed based on statistical mechanics [23-25], which 

connects macroscopic observables such as temperature, density and free energies to statistics of 

microscopic configurations. Particularly, in conventional MD and MC methods, when the 

number of sampled configurations is sufficiently large, the probability of observing microstates 

with energy E at temperature T is proportional to P(E, T) ~ (E) exp(-E/kBT), where is (E) the 

density of states, kB is the Boltzmann constant and T is temperature. The sampling process is 

governed by the Boltzmann factor, exp(-E/kBT). For studies on non-equilibrium processes and 

rare-event kinetics [26, 27] and those involving free energy calculations [28], state-of-the-art 

methods are often needed, as will be described below. The optimal simulation method for a 

specific problem is of course strongly dependent upon the length and time scales of the 

phenomena of interest as well as the questions to be addressed. Interested readers are referred to 

classical textbooks such as Refs. [23-25] for thorough discussion.  

While molecular simulation is clearly a powerful tool, care should be taken by its 

practitioners [29]. It is evident that the physical model determines if the extent to which 

simulation results are relevant to the actual system. Meanwhile, the chosen simulation method 

often influences the statistical accuracy of the simulation results and computational efficiency. 

For example, if the objective is to predict the ordered structures assembled at low temperatures 

and/or with strong attractive forces between the building blocks, using conventional brute-force 

MD (or MC) simulations would not help because the system will be kinetically arrested in 

disordered metastable states. To mitigate the negative effects due to kinetic effects, most studies 

resort to either (1) running multiple simulations from different initial configurations and/or (2) 

cooling the system slowly step by step in temperature and combining annealing with cooling. 

The first approach helps ascertain that the results are not biased by initial conditions, and the 

second helps the system relax at each intermediate temperature and hence more likely escape 

from kinetic traps. In many cases, advanced sampling techniques such as umbrella sampling, 

replica exchange and non-Boltzmann sampling should be employed to improve the statistical 

accuracy of the sampling process [24, 25, 28]. Techniques that generate overlapping 

distributions and flat-histograms of the order parameters (or reaction coordinates) typically 

invoke conventional MD or MC simulations as their sampling engines, adding biasing 

forces/potentials to the particles so that the system can overcome high energy barriers that are 

unknown a priori. 

2.4. Simulation software and data analysis tools 
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In 1957 Alder and Wainwright [30] conducted the first Molecular Dynamics simulation 

study with 32 hard spheres in a cubic box. Since then, molecular simulation has benefitted from 

the enormous progress made in algorithms, software engineering and computer hardware. MD 

simulations of hundreds of nanometers and nanoseconds have become routine on medium-sized 

clusters and supercomputers. For materials design studies, advances in multiscale modeling, 

sampling techniques and scientific computing have accelerated the investigation of assembled 

structures, characterization of their properties and analysis of their responses to external fields.  

The primary interactions between the assembling building blocks at nano- and mesoscales, 

such as van der Waals forces, Coulombic interactions and hydrophobic/hydrophilic interactions, 

are non-covalent in nature. Van der Waals interactions decay with 1/r
6
, where r is the distance 

between particles. Coulombic interactions between charged particles, if screened by medium 

polarizability and ionic strength, decay exponentially with r or substantially faster than 1/r
3
. 

These interactions are short-ranged, meaning that a particle only interacts with neighboring 

particles within a certain distance, usually in the same order of magnitude as its size. In low 

dielectric constant media, however, electrostatic interactions are weakly screened and special 

techniques are required to evaluate the long-range contributions to the particle forces and 

Coulombic potential energy. Widely used techniques such as particle-mesh Ewald (PME) and 

particle-particle particle-mesh (PPPM) compute the long-range contributions in the reciprocal 

space using Fourier transformations, the computational complexity of which are O(Nlog(N)), 

where N is the number of charged particles. Alternatively, one can use multipole expansion 

methods, which yield better scaling, i.e. O(N), for large scale systems [23, 24]. It is the non-

covalent nature of these interactions that enables the development of coarse-grained models to 

improve the computational efficiency while preserving the key physics of the phenomena of 

interest. 

Because of the short-ranged nature of the interactions in coarse-grained models, force and 

energy computation can be performed concurrently by a large number of processing units. 

Efforts for parallelizing MD simulations have been developed since the 1980s and greatly 

improved along with the advances in computer engineering. Parallel algorithms for MC 

simulations have been rather limited mostly due to the sequential nature of the statistical 

sampling methods. Nonetheless, recent efforts have shown promising approaches for speeding 

up large-scale off-lattice simulations using fine-grained parallelism [31]. Popular open-source 

molecular simulation codes in the field such as GROMACS [32], AMBER [33], DLPOLY [34], 

MCCCS Towhee [35], LAMMPS [36], NAMD [37], Desmond [38], and recently, HOOMD-

Blue [39, 40] and OpenMM [41] all support multiple parallelization options. The advantages of 

using these software package include verified accuracy and reliability, high computational 

efficiency, regularly maintained and upgraded functionalities. More importantly, the use of the 

same simulation code and workflow allows for data reproducibility, which is crucial for data-

driven materials design approaches.   

Over the last two decades, the rapid development in computer engineering and parallel 

computing techniques has boosted the performance of molecular simulation codes substantially. 

With the performance of traditional multi-core central processing units (CPUs) being capped by 

the transistor density and cooling issues, the use of accelerators such as general-purpose graphics 

processing units (GPGPUs) and many-core coprocessors has been growing steadily. GPGPUs, in 

fact, are now having a considerable share in scientific computing because of the availability of 

free-of-charge software libraries such as NVIDIA’s CUDA and the OpenCL framework. When 

the most time-consuming tasks in molecular simulation, i.e. force and energy computation, are 

implemented to exploit the fine-grained parallelism provided by these coprocessors, it is evident 
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that simulations become substantially faster than earlier. For instance, using HOOMD-Blue v2.2 

a simulation of a block copolymer melt consisting of 64000 particles (a typical size nowadays) 

run on an Intel Xeon E5-2680 v4 CPU coupled with an NVIDIA Tesla P100 GPU is an order of 

magnitude faster than the CPU-only runs [40]. Newer generations of NVIDIA GPUs generally 

offer better speedup as the number of streaming processors, core clock rate and memory 

bandwidth are all increased. 

The greatly improved performance of the simulation enables investigation of much larger 

system sizes and much longer simulations and allows for launching more simulations given a 

certain time frame. By doing so, we can exclude finite size effects as well as enhance statistical 

accuracy of the simulation results. As the amount of data produced is proportionally increased, it 

is important to realize the roles of data storage facilities and data analysis software. In offline 

analysis, i.e. simulation output data is written to, and read from, hard drives and analyzed 

independent of the simulation runs. For large data sets (up to several terabytes), state-of-the-art 

visualization and analysis software packages, such as VMD [42] and VisIt [43], are usually 

needed because they support parallel data input/output (I/O) across multiple compute nodes and 

with GPU acceleration. VMD also supports scripting through the Tcl/Tk interface, allowing for 

batch processing in text mode, which proves useful for handling a large number of frames on 

data storage compute nodes. For online analysis, i.e., analyzing data during the course of 

simulation runs, there is no need to produce a large amount data on the hard drives but it is up to 

the capacity of the simulation packages. Open-source codes like LAMMPS and HOOMD-Blue 

provide a programming interface for users to implement their customized online analysis tools as 

extensions to the main codes. 

For self-assembly studies it is often necessary to characterize the structural properties of the 

system during the course of the assembly process. The local ordering of the building blocks 

within the structures can be characterized by certain metrics. A natural metrics is the system 

potential energy, which decreases upon the aggregation of the building blocks. However, 

potential energy may be rather insensitive with regards to how the building blocks orient with 

each other. For instance, to monitor the alignment of liquid crystal molecules in nematic or 

smectic phases, the nematic order parameter, P2, is often used. P2 is defined as the largest 

eigenvalue of the 3 by 3 matrix, p  = 3u
(i)

u
(i)

- /2, u
(i)

 = [ux
(i)

, uy
(i)

, uz
(i)

] where is the unit 

length director of the rod-like particle i; ,  = x, y, z;  is the Kronecker delta, and ·  

represents the time averaging over all the particles in the system. P2 varies from zero to unity, 

corresponding to an isotropic phase and a nematic phase with a preferential aligned direction of 

the directors, respectively. It is possible to combine multiple relevant metrics into a shape 

descriptor, or more generally, a morphology feature, for more sophisticated structures [44, 45]. 

If two shape descriptor instances can be quantified to distinguish two phases, one can identify 

the obtained structure from simulation with those in a reference library. Shape descriptors can 

also be used for monitoring the self-assembly process toward a target structure can be 

monitored, and mapping phase diagrams automatically [44-46]. Specifically, state points with 

similar shape descriptors are grouped into the same phase, reminiscent of the k-nearest neighbor 

(KNN) algorithm used in statistical modeling and pattern recognition [47]. Note that this is 

where data science concepts and techniques (e.g., shape descriptors, data mining and machine 

learning) prove helpful for materials science problems. 

Given the well-established foundation of simulation methodology and the dramatically 

increased capacity of simulation software and data analysis tools, it is interesting to see how 

computer simulation has benefited the design of nanomaterials using bottom up approaches such 

as self-assembly over the past decades. In the following sections, we will show that computer 
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simulation can provide not only novel insights into intriguing experimental results, but also 

reliable predictions to motivate ongoing experiments. 

3. MODELING EXPERIMENTAL SYSTEMS 

Advances in synthetic techniques maturing over the past decades have led to nano building 

blocks of a wide variety of materials including metallic nanoparticles, semiconductors, polymers 

and biomolecules and their composites [9, 11]. Also reported are assembled nanostructures in a 

broad range of morphologies and complexity, ranging from cubic-centered phases, hexagonally 

packed cylinders, double gyroids and lamellae as regularly seen with block copolymers (see Ref. 

[48] and the references therein) to crystalline structures [49, 50] to superlattices by mixtures of 

colloids [51, 52] and superstructures [53-58]. The assembly processes span multiple length and 

time scales from atomic to molecular to mesoscopic scales, i.e., from tens of Angstroms to 

hundreds of nanometers in length and from nanoseconds to microseconds in time. It is the 

diversity in assembling systems and the broad spectrum of spatial and temporal scales that pose 

fundamental challenges to experiment as to understand the assembly mechanisms and to predict 

the resulting structures. Moreover, impurities, polydispersity and non-equilibrium effects are in 

many cases avoidable factors that make the realization of the key physics of the systems of 

interest much difficult in experiment. 

 

Figure 1. Simulation corroborating experimental results: (A) Superstructures formed by octopod-shaped 

nanoparticles: an isolated particle (top left); a linear chain from interlocking particles (top right). Bottom: 

linear chains packing side by side to form the superstructure. The structure predicted by simulation is 

shown in the inset. Reprinted from Ref. [59] with permission. Copyright 2011 Springer Nature. (B) 

Assembled structure by rhombic nanoplates from experiment (top) and from MC simulation (bottom). 

Reprinted from Ref. [60] with permission. Copyright 2013 Springer Nature. (C) Superlattice assembled by 

octahedral-shaped silver nanoparticles in experiment (top) and MC simulation (bottom). The highlighted 

particles reveal their local packing in the superlattice. Reprinted from Ref. [61] with permission. 

Copyright 2012 Springer Nature. 

To address such fundamental challenges, coarse-grained (CG) models are often developed 

so to capture the essential physics relevant to the relevant length and time scales of the self-

assembly process. CG models are essentially a more compact representation of the actual 

systems, where high frequency degrees of freedom are averaged out so that molecular 

simulation, energy minimization and stability analysis can be performed more efficiently. In 
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many cases, advanced techniques are needed for developing CG models from higher-resolution 

models, i.e. at quantum mechanical and all-atom levels [62]. Given a suitable model molecular 

simulation and numerical analysis can help elucidate the mechanism of intriguing processes, 

which appear nontrivial with experimental approaches alone. As an instance, Miszta et al. used 

simulation to explain how octopod-shaped nanoparticles into complex superstructures as shown 

in Figure 1A [59]. They showed that the particles assemble into dimers, which are more 

kinetically accessible than other competing configurations, to minimize their van der Waals 

attraction. The dimers subsequently grow at two ends where additional particles are entropically 

favored to attach to form chains. The linear chains then align and pack into the final structure to 

maximize translational entropy. Here nanoscale modeling and simulation provide insights into 

the influences of the irregular building block geometry on the local packing and assembly 

pathway toward the assembled structure. 

Another type of hierarchical assembly of nano building blocks that has also been of great 

interest is the formation of terminal supraparticles, i.e. self-limited clusters with a uniform size. 

The formation of these terminal assemblies has been experimentally shown to be consistent for 

various systems including semiconductors [58] and mixtures of semiconductors and proteins 

[63]. Understanding the mechanism of this type of hierarchical assembly is therefore vital as we 

want to precisely control the dimension of the assembled clusters. By developing generic 

phenomenological models that captures the renormalized repulsion between the building blocks 

when they aggregate, we have shown that the self-limited organization of such supraparticles 

results from the balance between the on-the-fly renormalized repulsion and the short-ranged 

attraction between the building blocks [64]. The model also explains why the reduced size 

polydispersity of the assemblies even when the assembling building blocks are considerably 

polydisperse in size, as observed in experiment. 

Multiscale modeling is often required when chemical specificity plays important roles. In 

the experiment by Murray group [60], it was found that highly faceted planar lanthanide fluoride 

nanocrystals assemble into regularly ordered structures at the liquid-air interface (Figure 1B). 

Note that the nanocrystals have a highly faceted shape. The authors first performed first-

principle calculations with atomic-level details to find that the nanocrystals are more attractive to 

each other at the edges. They then conducted MC simulations on a coarse-grained model of the 

nanocrystals, showing that the edge-edge attraction and shape anisotropy are key factors that 

lead to the ordered structure observed in experiment. As another example, experimental studies 

showed that silver nanocrystals in various polyhedral shapes assemble into their theoretically 

predicted densest packings, except those with an octahedral shape (Figure 1C) [61]. The 

octahedral-shaped nanocrystals form a superlattice with a previously unknown packing pattern 

composed of two distinct motifs: lines and counter-rotating helices. Using a CG model and 

Monte Carlo simulations, Henzie et al. demonstrated that it is the depletion attractions between 

the octahedra that are responsible for the formation of such motifs. Further examples of self-

assembly studies that involve both experimental and computational efforts can be found in Refs. 

[54, 58, 65-67]. 

4. COMPUTATIONAL DESIGN OF NEW MATERIALS 

Compared to experimental studies, which are limited by accessible synthetic techniques at 

the time, computational studies allow for much flexibility because in principle there are no 

constraints in “computer experiments”. Predictions from simulation can at the very lease be 

useful for experimental studies as to provide qualitative behaviors of the systems under 

investigation. In simulation studies, systematic investigation of control parameters such as 
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temperature, concentration and building block geometry can be done straightforwardly. 

Typically, the predictions from simulation are summarized in the form of “phase diagrams”, 

which show the relationship between the control parameters and the resulting morphologies. 

Phase diagrams of metallic alloys, block copolymers [68] and liquid crystals [69] are among the 

most popular examples, where the phases are reported with respect to thermodynamic 

parameters such as pressure versus density or temperature versus volume fraction. 

 

Figure 2. Assembled morphologies predicted by computer simulation: (A-D) Polyhedra forming various 

complex crystal and quasicrystal phases. The phases are entropically stabilized by the particle shape 

anisotropy. Reprinted from Ref. [70] with permission. Copyright 2012 Science. (E) Patchy particles 

assembling into a diamond crystalline structure. Reprinted from Ref. [71] with permission. Copyright 

2005 American Chemical Society.  (F-G) Polymer-tethered nanospheres with different angles, , between 

the tethers forming tetragonally and [6;6;6] columnar structures. Reprinted from Ref. [72] with 

permission. Copyright 2009 American Chemical Society. (H) Polymer tethered nanorods forming bilayer 

sheets and honeycomb grid assemblies. Reprinted from Ref. [73] with permission. Copyright 2010 

American Chemical Society. (I) Spherical and elongated micelles self-assembling into a dodecagonal 

quasicrystal approximant. Reprinted from Ref. [74] with permission. Copyright 2011 National Academy 

of Sciences. 

In addition to thermodynamic parameters, the building block anisotropy opens new 

horizons to designing materials from bottom up. Glotzer and Solomon [75] in 2007 proposed a 

generic framework in which building block anisotropy in terms of shape, aspect ratio, patchiness 

and faceting are the new “knobs”, with which nanostructures with arbitrary complexity can be 

achieved. Figures 2A-E show several examples of the assembled structures predicted by 

simulation. An interesting approach to tuning anisotropy is to functionalize nanoparticles and 

colloids with immiscible polymers or DNAs [72, 76-80] (Figures 2F-I). Note that the resulting 

morphologies, e.g., micelles, hexagonally packed cylinders, perforated lamellae and lamellar 

phases, resemble those observed with block copolymers and liquid crystal molecules. The rich 

phase behavior is attributed to the immiscibility between the nanoparticles and the tethers and 
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the local packing governed by the shape of the nanoparticles. Remarkably, certain assembled 

structures were shown to reconfigure from one to another in response to minor changes in the 

particle geometry. For instance, the bilayer sheets assembled by polymer-tethered nanorods 

transition into the honeycomb grid upon lengthening the rod segments, and vice versa (Figure 

2H) [73]. Higher-order assemblies, such as terminal clusters [81] and unusual complex crystals 

and quasicrystals [20, 70, 82, 83], are predicted to form by patchy particles, Janus particles and 

faceted polyhedra. MD simulation also predicted that a dodecagonal quasicrystal approximant 

could form in a mixture of spherical and elongated micelles (Figure 2I) [74], which is to be 

realized in experiment. 

 

Figure 3. Examples of the phase diagrams predicted by MD and MC simulations: (A) End-tethered 

nanorods in solution forming body-centered cubic micelles (BCC), long micelles (LM), hexagonally 

ordered chiral cylinders (H), tetragonally and hexagonally perforated lamellae (TPL, HPL), and smectic C 

lamellae (L). Reprinted from Ref. [84], with the permission of AIP Publishing. (B) Polymer-tethered 

nanospheres forming lamellae (L), perforated lamellae through the headgroup (PLH), hexagonally packed 

cylinders (H), perforated lamellae through tethers (PLT), cubic ordered spherical micelles (C) and 

disordered phases (D). Fv is the excluded volume ratio of the nanosphere (yellow) versus the tail (red 

spheres). Reprinted from Ref. [85] with permission. Copyright 2005 American Chemical Society. (C) 

Octapod-shape colloidal particles in slab confinement forming stable square-lattice crystal (SC), binary-

lattice square crystal (BSC), rhombic crystal (RC), and hexagonal plastic crystal (HR) phases. L/D is the 

length-to-diameter ratio and  is the volume fraction of the colloidal particles. Reprinted from Ref. [20] 

with the permission of AIP Publishing. (D) Phase diagram of the nanoplates in 2D as a function of edge-

length ratio B/A and interaction asymmetry  from MC simulation. Reprinted from Ref. [60] with 

permission. Copyright 2012 Springer Nature. 

 Typical phase diagrams obtained by molecular simulation are shown in Figure 3. Horsch 

and coworkers using Brownian Dynamics simulation found that polymer-tethered nanorods in a 

solvent poor to the rods while good for the polymeric tethers, exhibit an interesting phase 

behavior [84]. The phase diagram in Figure 3A summarized their findings, showing the 

dependence of the assembled nanostructures upon inverse temperature and concentration. Shown 
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in Figure 3B is the phase diagram obtained by Iacovella et al. for the assembly of nanospheres 

functionalized with one polymeric tether in a selective solvent. They predicted that the polymer-

tethered nanospheres would assemble into lamellae, perforated lamellae and BCC spherical 

micelles when the spheres are solvophobic and the tethers are solvophilic [85]. In the third 

example (Figure 3C), using Monte Carlo simulation Qi et al. [20] predicted that colloidal 

particles with an octopod shape form numerous crystalline structures on a flat substrate. Indeed, 

all the rhombic crystal, square-lattice crystal and binary lattice square crystal were observed in 

experiment [65]. In the last example, the phase diagram in Figure 3D showed that the 

arrangement of the nanoplates are dependent upon the edge length ratio and interaction 

asymmetry, which correlates well with experimental results [60]. The interaction asymmetry is 

defined as  = (2 A-B/( A-A+ B-B) – 1), where A-A and B-B are the attraction strength between like 

edges and A-B is the attraction strength between unlike edges. The formation of the alternating 

arrangement of the nanoplates at the certain range of the edge-length ratio and with sufficient 

interaction asymmetry is attributed to the fact that this is the energetically favorable 

configuration that maximizes the contacts between unlike edges. The above discussed studies 

confirm that the building block geometry, the sticky patches and the density of the grafted 

tethers all play important roles in dictating the assembled morphologies. Importantly, computer 

simulation can offer predictions to the design of a wide range of nanostructures, which can be 

tested by experiment.  

We conclude our discussion with recent studies on shape-programmable particles and 

active matter. Inspired by biological macromolecules, which are able to adopt various 

conformations in response to their environment, efforts are devoted to fabricating building 

blocks that can transition between different shapes in a controllable manner [86-88]. Janus 

micro-cylinders made from poly-(lactic-co-glycolic acid) (PLGA) take on various anisotropic 

geometries upon heating or cooling [86]. This family of shape-shifting building blocks offers 

interesting options for bottom up design such as faster assembly processes with fewer defects 

and unconventional pathways, which are inaccessible from static building blocks [73, 89]. In this 

perspective, both thermodynamics and kinetics are key to the robust formation of the target 

structures [90]. Meanwhile, active matter such as self-propelled building blocks, which 

continuously convert input energy, e.g., via internal chemical reactions, into their motion [91]. 

With these autonomous building blocks come the possibilities of dynamic assembly where 

assembled structures are able to reconfigure to optimize their functions. Certainly, novel 

theoretical and computational techniques are required for such out-of- and or far-from-

equilibrium processes [92, 93].  

5. CONCLUSIONS 

Molecular simulation has been playing an increasingly important role in nanoscience, and it 

is now common for high-impact, groundbreaking studies to embrace simulation to elucidate 

experimental findings. For self-assembly studies in particular, computer simulation corroborates 

experimental observations by providing insights into the assembly process at microscopic levels, 

as well as the thermodynamic stability of assembled structures. With regards to materials design, 

computer simulation serves to accelerate the exploration of the vast landscape of the design 

parameters, which may be beyond theoretical and experimental capacities currently accessible. 

We envision that the computational results and predictions will certainly benefit future 

endeavors with useful databases for data mining techniques to further accelerate the discovery of 

new materials [47, 94, 95]. 
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