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Abstract. This article studies the free vibration of composite ring-stiffened cylindrical shells by 
the continuous element method (CEM). The dynamic stiffness matrix (DSM) of the studied 
structure has been constructed based on the analytical solutions of the governing equations of 
motion for composite cylindrical shells and annular plates. By applying the assembly procedure 
of the continuous elements method, natural frequencies and harmonic responses of composite 
ring-stiffened cylindrical shells are determined. In addition, the proposed model allows to 
exactly extract ring-stiffener vibration modes. Numerical examples confirm advantages of the 
proposed model: high precision solution even in medium and high frequencies, saving in 
calculating time and volume of data storage. 

Keywords: continuous element method, laminated composite cylindrical shell, ring stiffener 
shell.  
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1. INTRODUCTION 

Ring-stiffened laminated cylindrical shells have been widely used in applications such as 
tankers, pipelines, aircrafts, and submarines. Ring stiffeners may be used to connect parts of a 
shell together to make a longer cylindrical shell or to reinforce a shell’s structure. Therefore, the 
requirement of technical information about dynamic behaviors of such complex structures is of 
great importance. Studies on ring-stiffened isotropic cylindrical shells have been mentioned by 
various researchers [1-3]. Najafi and Warburton [4] investigated the natural frequency and mode 
shape of a thin cylindrical shell with ring stiffeners by using the finite element method (FEM). 
Mustafa and Ali [5] gave the information about natural frequencies of a stiffened cylindrical 
shell by using the Rayleigh–Ritz procedure. Furthermore, the free vibration analysis of the 
rotating cylindrical shell which simply supported by circumferential stiffeners, rings with non-
uniform stiffeners eccentricity and non-uniform stiffeners spacing distribution was demonstrated 
by Jafari and Bagheri [6]. Qu et al. [7] presented a modified vibrational approach for the 
vibration of a ring-stiffened conical-cylindrical-sphere combined shell. Recently, the vibration of 
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laminated cylindrical shells with ring stiffeners also has been investigated. Kim and Lee [8] used 
a theoretical method to examine the effects of ring stiffeners on vibration characteristics and 
transient responses of the ring-stiffened composite cylindrical shells which subjected to the step 
pulse loading. The Love's thin shell theory was combined with the discrete stiffener theory to 
consider the effect of ring stiffeners. Here the ring stiffeners were made of laminated composite 
material and had a uniform rectangular cross-section. The Rayleigh-Ritz procedure was applied 
to obtain the frequency equations. Zhao et al. [9] analyzed the free vibration of simply supported 
rotating cross-ply laminated cylindrical shells with axial and circumferential stiffeners, using an 
energy approach. The effects of these stiffeners were evaluated by two methods: stiffeners were 
treated as discrete elements and the properties of the stiffeners were averaged over the shell 
surface by the smearing method. Especially, an interesting vibration analysis of ring-stiffened 
cross-ply laminated cylindrical shells was done by Wang and Lin [10]. Two different materials 
were used for cylindrical shells and rings with clamped-clamped boundary condition and the 
effects of ring depth, ring width and lamination scheme on natural frequencies of joined ring 
stiffened cylindrical shells were considered. Kouchakzadeh and Shakouri [11] considered the 
free vibration analysis of joined cross-ply laminated conical shells by using the Donnell thin 
shell theory. Nevertheless, all the references mentioned above focused on the Rayleigh–Ritz 
method, experiment tests, the finite element method (FEM) and the classical thin shell theory. It 
is necessary to note that analytical methods meet many difficulties in constructing the system of 
equations to solve for complex structures. In addition, although the FEM can provide good 
results in certain low frequencies, it will be less efficient for the high frequency range because of 
the discretization of the domain which can accumulate errors and affects the precision of 
solutions. 

The Dynamic Stiffness Method (DSM) or the Continuous Element Method (CEM) [12-16] 
has been developed in order to overcome these difficulties of the FEM in dynamic problems. 
The CEM is based on the exact closed form solution of the governing differential equations of 
motion which lead to the dynamic stiffness matrix relating a state vector of loads to the 
corresponding state vector of displacements at the edges of the structure [12, 13]. By using the 
CE model, one or three continuous elements are enough to compute any range of frequencies 
with desired accuracy. In addition, continuous elements can also be assembled together in order 
to model more complex structures by using the similar principle of assembly in the FEM. The 
use of minimum of continuous elements allows a fast acquisition of harmonic response thus it 
reduces the computing time compared to the FEM. The disadvantage of the CEM is the lack of a 
large library of continuous elements covering all kinds of structures as in the FEM. Therefore, 
new dynamic stiffness formulations for building new isotropic and composite continuous 
elements are in strong development. Recent formulations have concerned all kinds of structural 
elements such as isotropic and composite shells [12-13], and stiffened isotropic cylindrical shells 
[14]. Recently, Casimir et al. [15], Thinh and Nguyen [16] considered the dynamic response of a 
cross-ply laminated composite shell with the dynamic stiffness method.  

Despite of abundant continuous elements constructed for composite plates and shells, the 
dynamic stiffness formulations for composite stiffened cylindrical shells have never been 
mentioned before. The purpose of this paper is presenting a continuous element for vibration 
analysis of thick cross-ply laminated composite ring-stiffened cylindrical shells. Numerous 
numerical tests and comparisons will be conducted in order to validate our model as well as to 
demonstrate main advantages of the CEM.  
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2. THEORETICAL FORMULATIONS 

2.1. The ring-stiffened cylindrical shells  

The ring-stiffened cylindrical shell under the consideration as shown in Figure 1 has a 
constant thickness h, radius R and lengths L1, L2. The reference surface is taken at the middle 
surface of the shell where an orthogonal coordinate system (s,θ,z) is determined as in Figure 1. 
The s coordinate is taken in the axial direction where θ and z are, respectively in the 
circumferential and the radial directions of the shell. The displacements of the shell in the s, θ 
and z directions are denoted by u, v and w respectively. Specially, the ring of ring-stiffened 
shells is accepted to be isotropic or composite material, with width cr and thickness br.  

 

Figure 1. A laminated stiffened cylindrical shell with a circumferential outer ring-stiffener. 

2.2. Theory of laminated composite cylindrical, conical shells and rings 

2.2.1. Lamina constitutive relations 

Consider a laminate composite shell of total thickness h composed of N orthotropic layers, 
the principal material coordinates ( )iii xxx 321 ,,  of the i th layer oriented at an angle θ to the 

laminate coordinate x1. The plane stress-reduced stiffness is calculated as: 
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here: Ei, Gij, υ12, υ21 are elastic constants of the kth
 layer. 

And the laminate stiffness coefficients (Aij, Bij, Dij) are defined by [17]: 
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where zk-1 and zk are the boundaries of the kth layer.  

2.2.2. Kinematics of composite shells of the revolution 
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Consider a typical shell of the revolution was represented by a conical shell, as shown in 
Figure 2. R1 and R2 are radius at small and large edges of the cone respectively, α is a semi 
vertex angle of the cone, L is the length along its generator. The cone’s radius at any point along 
its length is calculated by:  

R(s) = R1+s sinα                    (3) 

it is noteworthy to remark that if α ≠ 0 the above equations will represent composite conical 
shells, while α→0 these formulations can be used for composite cylindrical shells and the case 
α→π/2 corresponds to ring stiffeners. 

Figure 2. Geometry and coordinate system of a conical shell. 

2.2.3. Equations of motion 

The equations of motion using the first-order shear deformation shell theory (FSDT) for 
cross-ply composite circular conical shells are expressed by [17]: 
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where u0, v0, w0: displacements of a point Mo at the median radius of the shell, φS, φθ : rotations 
of the section   
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with ρ(k) is the material mass density of the kth layer.     

2.2.4. Force resultants–displacement relationships 

The force and moment resultants are written in terms of displacements for the cross-ply 
conical shell as follows [11]: 










∂
∂++

∂
∂+







 +
∂
∂++

∂
∂=

θ
ϕαϕϕα

θ
α θsincossin 12

110
0

0
120

11 S
S

S R

B

s
Bw

v
u

R

A

s

u
AN










∂
∂

++
∂

∂
+






 +
∂
∂

++
∂
∂

=
θ
ϕαϕϕα

θ
α θ

θ sincossin 22
120

0
0

220
12 S

S

R

B

s
Bw

v
u

R

A

s

u
AN








 −
∂

∂
+

∂
∂

+






 −
∂
∂

+
∂
∂

= θ
θ

θ ϕαϕ
θ
ϕα

θ RsR
Bv

R

u

Rs

v
AN S

S

sin1sin1
660

00
66










∂
∂++

∂
∂+







 +
∂
∂++

∂
∂=

θ
ϕαϕϕα

θ
α θsin

cos
sin 12

11
00

0
120

11 S
S

S R

D

s
D

R

wv
u

R

B

s

u
BM










∂
∂++

∂
∂+







 +
∂
∂++

∂
∂=

θ
ϕαϕϕα

θ
α θ

θ sincossin 22
120

0
0

220
12 S

S

R

D

s
Dw

v
u

R

B

s

u
BM








 −
∂

∂+
∂
∂+







 −
∂

∂+
∂
∂= θ

θ
θ ϕαϕ

θ
ϕυα

θ RsR
D

RR

u

s

v
BM S

S

sin1sin
660

00
66

 








 +
∂
∂+−= θθ ϕ

θ
υα 0

044

1cos w

RR
kAQ

 







 +
∂

∂= SS s

w
kAQ ϕ0

55

           (6) 

where k is the shear correction factor (k = 5/6). 

2.3. Dynamic stiffness formulations for thick composite conical, cylindrical shells and 
annular plates of uniform thickness 

2.3.1. State vector of solution 

For developing the resolution by the Dynamic Stiffness Method, it is important to choose a 
state vector of solution. With the examined shells of revolution, the following state vector can be 
used: 

yT = {u0, v0, w0, φS, φθ, Ns, Nsθ, Qx, Ms, Msθ}
T            (7) 

Next, the Fourier series expansion is employed for state variables in the case of symmetric 
modes as:  
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where m is the number of circumferential wave.   

By substituting (8) in equations (4) and (6), a system of ordinary differential equations in 
the s-coordinate for the mth circumferential mode can be expressed as follows:      
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2.3.2. Dynamic transfer matrixes of cylindrical shell and ring  

In this stage, the dynamic transfer matrix T(ω)m will be evaluated. However, due to the 
numerical computing errors when dealing with bound values of the cone angle (0 and π/2), it is 
important to calculate separately two matrixes Am

c(α=0), and Am
r(α=π/2) corresponding to 

cylindrical shell and rings. Then the two different dynamic transfer matrixes (Tm
c and Tm

r) will 
be computed from these Am

c and Am
r matrix. The method to construct the dynamic transfer 

matrix and then dynamic stiffness matrix from these Am
c and Am

r matrix is known and detailed in 
[13]. 

The dynamic transfer matrix T(ω)m
c for the cylindrical shell (α = 0) can be evaluated as 

[14]: 
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And the exponential matrix being given by [13] 
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r for the ring (α=π/2) is computed by the following 

expression: 
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Here R1 and R2 are inner and outer radiuses of the rings. 

2.3.3. Dynamic stiffness matrixes K(ω)m for cylindrical shell and ring 

Despite of the different formulations to estimate the dynamic transfer matrix, the dynamic 
stiffness matrix K(ω)m will be obtained by the same procedure. Therefore, it is more convenient 
to use one matrix denoted Tm which may represent as Tm

c or Tm
r matrix depending on the studied 

cases. The following steps must be respected in order to build the matrix K(ω)m: division of Tm 
and then construction of K(ω)m. 

First, the dynamic transfer matrix Tm can be divided into four blocks as:  
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2.3.4. Harmonic response and the detection of natural frequencies  

As known, the Williams-Wittrick algorithm is usually considered to analyze the dynamic 
behavior of the structure at this stage. However, this approach required a large number of 
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mathematical operations resulting in a very low speed of computation. Therefore, our study 
exploited another efficient method widely used in experiment for measuring and testing 
vibrations of structures. This alternative consists of plotting the harmonic responses and then 
recognizing natural frequencies from those curves [13-16]. 

2.3.5. Dynamic stiffness matrix for thick composite ring-stiffened cylindrical shells 

The proposed model demonstrates a major advantage compare with other approaches when 
dealing with structures having complex geometric configurations and material properties. The 
powerful and efficient assembling procedure of different single dynamic stiffness matrix allows 
a fast and accurate construction of the dynamic stiffness matrix for complicated structures. In 
this section, this special property of continuous element model will be exploited to analyze the 
vibrations of thick composite ring-stiffened cylindrical shells.  

For studying those complex structures, analytical methods meet enormous difficulties to 
build and resolve huge differential equations of the system. In addition, the approximate Finite 
Element Method doesn’t seem to be a precise and efficient way to deal with this problem due to 
the complicated and expensive operations to model and mesh structures with complex geometry 
and material properties, especially in medium and high frequency range.  

Consider the composite cylindrical shells with one outer ring stiffener (see Fig. 1) in which 
the shell and ring may have different properties of thickness, dimensions and materials. For CE 
model, this complicated shell is divided into three continuous elements: one cylindrical shell 
element with length L1, one ring element and another cylindrical shell element having the length 
L2. These elements are represented by three dynamic stiffness matrix K1

c(ω), Kr(ω) and K2
c(ω), 

respectively.  

Following Kouchakzadeh and Shakouri [11] the continuity conditions at the connecting 
interface of cylindrical shell element 1, ring stiffener and cylindrical shell element 2 can be 
expressed as follows: 
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Figure 3. The assembling procedure to obtain the matrix Km(ω) for a ring-stiffened cylinder.  
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The association of these cylinders and ring-stiffener to form the whole structure 
corresponds to the assembly of the three above single dynamic stiffness matrix in order to obtain 
the dynamic stiffness matrix K(ω) of the system. First, it is necessary to evaluate separately the 
dynamic stiffness matrix K1

c(ω), Kr(ω) and K2
c(ω). Then the construction of the dynamic 

stiffness matrix K(ω) for the ring-stiffened cylindrical shells based on the continuity conditions 
at the connecting is illustrated in Figure 3. Once K(ω) is obtained, natural frequencies of ring-
stiffened cylindrical shells will be extracted from harmonic responses [13-16]. 

3. NUMERICAL RESULTS AND DISCUSSIONS 

First, the free vibration analysis of a ring-stiffened cylindrical shell have an external ring 
stiffener has been studied to confirm the precision of the proposed model. Obtained natural 
frequencies computed by CEM will be in comparison with analytical solutions of Wang and Lin 
[10]. Next, CE resolutions are compared with those of FEM and then harmonic responses will be 
presented and exploited to illustrate important advantages of CEM.  

3.1. Modal analysis 

To validate the precision of the presented formulations, numerical examples on free 
vibration analysis of clamped-clamped ring-stiffened cylindrical shells are conducted. 
Comparisons of natural frequencies are made with previously published results from Wang and 
Lin [10] using analytical method. The properties of the cylindrical shells and rings used for the 
analysis are listed in Table 1.  

The cylindrical shells are made of composite material T300/976 Graphite/Epoxy with: E1 = 
150 GPa, E2 = E3 = 9 GPa, G23 = 2.5GPa, G12 = G13 = 7.1GPa and υ12 = 0.3. It is interesting to 
remark that here the ring is made by another material. Here, the 6061-T6 aluminum is used for 
the ring with following characteristics: Er = 70 GPa; Gr = 2.6 GPa, ρr = 2710 kg/m3, and υr = 
0.23. The calculated frequency is expressed in terms of a cycle frequency (rad/s).  

Table 1. Geometrical and material properties of the ring-stiffened cylindrical shells. 

Characteristics Geometrical and Material properties 

Number of rings N 1 

Shell radius R (m) 0.3 

Shell thickness h (m) 0.03 

Shell length L (m) 5 

Ring depth br (m) 0.01, 0.02, 0.03 

Ring width cr (m) 0.03, 0.06, 0.09 

Stiffening type External 

Shell material T300/976 Graphite/Epoxy 

Ring material 6061-T6 aluminum 

Tables from 2 to 4 show the comparison of our solutions in natural frequencies with those 
obtained by Wang and Lin [10] using an analytical method. Effects of width and thickness of the 
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stiffened ring and composite layer configurations on the modal frequencies of the structure are 
also examined.  

Table 2. The thickness b effect of outer ring (cr = 0.03m) on the comparison of the modal frequencies 
(rad/s) of the ring-stiffened [90/0/90]s laminated cylindrical shell (L1 = L2 = 2.5 m, R = 0.3 m, h = 0.03 m). 

B Mode Frequency (rad/s) 

Wang and Lin [10] 

A 

Present 

B 

Errors (%) 

=|(A-B)*100/A| 

 ω10 3745.3 3704.6 1.08 
0.01 ω11 723.1 718.2 0.67 

 ω21 1544.7 1533.1 0.75 
 ω12 2147.3 2126.9 0.95 
 ω22 2263.4 2231.2 1.42 

0.02 ω10 3731.6 3677.6 1.45 
 ω11 720.2 712.5 1.07 
 ω21 1549.2 1532.5 1.08 
 ω12 2161.9 2135.1 1.24 
 ω22 2268.7 2231.2 1.65 

0.03 ω10 3717.4 3663.1 1.46 
 ω11 717.2 709.4 1.09 
 ω21 1553.7 1532.4 1.37 
 ω12 2182.7 2135.1 2.18 
 ω22 2273.7 2231.2 1.87 

Table 3. The width cr effect of outer ring (b = 0.03 m) on the modal frequencies (rad/s) of the                          
ring-stiffened [90/0/90]s laminated cylindrical shell (L1 = L2 = 2.5 m, R = 0.3 m, h = 0.03 m). 

C Mode Frequency (rad/s) 

Wang and Lin [10] 

A 

Present 

B 

Errors (%) 

=|(A-B)*100/A| 
 ω10 3745.3 3704.6 1.08 

0.03 ω11 723.1 718.2 0.67 
 ω21 1544.7 1533.1 0.75 
 ω12 2147.3 2126.9 0.95 
 ω22 2263.4 2231.2 1.42 

0.06 ω10 3676.5 3603.4 1.99 
 ω11 708.6 697.5 1.57 
 ω21 1565.3 1533.1 2.06 
 ω12 2194.2 2164.6 1.35 
 ω22 2283.1 2232.5 2.22 

0.09 ω10 3636.3 3546.3 2.48 
 ω11 700.3 685.5 2.11 
 ω21 1575.2 1533.1 2.67 
 ω12 2196.7 2170.9 1.17 
 ω22 2288.8 2233.1 2.43 
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Table 4. The layers effect on the comparison of the modal frequencies (rad/s) of the laminated cylindrical 
shell (L1 = L2 = 2.5 m, a = 0.3 m, h = 0.03 m) with an outer stiffening ring (b = 0.03 m, cr = 0.06 m). 

Lamination Schemes Mode Frequency (rad/s) 

Wang and Lin [10] 

A 

Present 

B 

Errors (%) 

=(A-B)*100/A 

 ω10 4695.2 4885.8 4.06 
[0/90/0]s ω11 787.1 776.6 1.33 

 ω21 1667.7 1648.1 1.18 
 ω12 1530.2 1512.4 1.16 
 ω22 1673.0 1629.9 2.58 

[90/0/90]s ω10 3676.5 3603.4 1.99 
 ω11 708.6 697.5 1.57 
 ω21 1565.3 1533.1 2.06 
 ω12 2194.2 2164.6 1.35 
 ω22 2283.1 2232.5 2.22 

Table 2 demonstrates the modal frequencies of the [90/0/90]s laminated shell with an outer 
stiffening ring (cr = 0.03 m) of three different thicknesses (b = 0.01 m, 0.02 m, 0.03 m) 
computed by CEM and by the study of Wang and Lin [10]. Furthermore, the comparisons of 
modal frequencies of the [90/0/90]s laminated shell with an outer stiffening ring br = 0.03 m of 
three different widths (cr = 0.03 m, 0.06 m, 0.09 m) are considered in Table 3. At last, the 
comparisons of two different composite lamination schemes [0/90/0]s and [90/0/90]s on the 
modal frequencies of the composite joined ring-stiffened cylindrical shells with an outer 
stiffening ring b = 0.03 m, cr = 0.06 m are indicated in Table 4.  

It can be clearly seen in these tables that our solutions are in good agreements with results 
issued from [10] with various shells, ring-stiffeners and material parameters. Obtained errors 
between our model and those of Wang and Lin varying from 0.67 % to 4.06 % allow confirming 
that the proposed formulation is robust, exact and can be employed to study the dynamic 
behaviors of composite ring-stiffened cylindrical shells. 

3.2. Vibration of composite ring-stiffened cylindrical shells 

Now, the vibration of composite ring-stiffened cylindrical shells in which both shell and 
outer ring are made of the composite material will be examined.  

Table 5. Geometrical and material properties of the composite joined ring-stiffened cylindrical shells. 

Characteristics Geometrical and Material properties. 

Number of rings N 1 

Shell radius R (m) 0.1 

Shell thickness h (m) 0.002 

Shell length L (m) 0.2 

Ring depth br (m) 0.002 

Ring width cr (m) 0.01 

Stiffening type External 

Shell and ring material Graphite/Epoxy 
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Table 6. Comparison of natural frequencies (Hz) of composite ring- stiffened cylindrical shells with free- 
free and clamped- clamped boundary conditions.  

BCs Mode 
Frequency (Hz) 

CEM FEM Errors (%) 

 1.2 224 212 5.35 

 2.2 355 345 2.81 

 1.3 609 605 0.63 

 2.3 850 855 0.61 

 3.3 2589 2588 0.03 

F-F 1.4 1158 1157 0.06 

 2.4 1373 1380 0.50 

 3.4 2526 2544 0.71 

 1.5 1858 1860 0.10 

 2.5 1984 1988 0.20 

 3,5 2855 2876 0.73 

 1.2 1845 1884 2.11 

 2.2 3607 3767 4.43 

 1.3 1690 1707 1.00 

 2.3 2701 2872 3.73 

 3.3 3985 3923 1.55 

C-C 1.4 2010 1961 2.43 

 2.4 2381 2402 0.88 

 3.4 3663 3767 2.83 

 1.5 2497 2356 5.64 

 2.5 2550 2420 5.09 

 3.5 3857 3767 2.33 

Table 5 summarizes information about the configurations of the studied structure and the 
composite material used for the investigation (Graphite/Epoxy) which have following 
characteristics: E1 = 135GPa, E2 = E3 = 8.8GPa, G12 = G13 = G23 = 4.47GPa, υ12 = 0.33 and the 
layer scheme is [90/0]2. The same model has been constructed in FEM by using the Ansys 
software with the SHELL181 element for comparison. Results obtained by our formulation are 
compared with those of FEM in Table 6 for free-free (F-F) and clamped- clamped (C-C) 
boundary conditions. It can be observed that our results are in good agreements with finite 
element solutions. The maximum error is 5.35 % which confirms the reliability of the presented 
model.  

3.3. The harmonic responses of composite ring-stiffened cylindrical shells 

The harmonic response method was used to determine the natural frequencies of structures 
in previous studies (Casimir et al. [13, 14, 15], Cuong and Thinh [16]). In this section, the 
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harmonic responses of composite ring-stiffened cylindrical shells are in investigation in order to 
emphasize important advantages of the proposed model with common used approximate 
methods like the FEM. The dimensions and material properties of shells and ring are the same as 
those described in Table 5 and two kinds of boundary conditions: free- free (F-F) and clamped-
free (C-F) are chosen for plotting the harmonic responses. The ring dimensions are: b = cr = 0.03 
m. A concentrated harmonic force  F = 1eiωt N is applied at one free end of the structure as 
illustrated in Fig. 4 and the value of the displacement w will be extracted at the same point. The 
obtained displacements of this point will be used for constructing the harmonic response of the 
composite ring-stiffened cylindrical shell. 

The CE harmonic response curve will be compared with those obtained with the finite 
element method using a raw meshing (35x25x3) and a fine meshing (65x50x3). Fig. 5 and Fig. 6 
show harmonic responses of composite joined ring-stiffened cylindrical shell was calculated by 
CEM and by FEM for both free-free and clamped-free boundary conditions. 

 

 
Figure 4. Geometry of composite joined ring-stiffened cylindrical shells used on harmonic responses                

with clamped- free boundary condition. 

 

Figure 5. Comparison of harmonic responses of a free-free composite ring stiffened cylindrical shells 
obtained by CEM and by FEM. 
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Figure 6. Comparison of harmonic responses of a clamped-free composite ring stiffened cylindrical                  
shells obtained by CEM and by FEM. 

It is easy to note seen that the solutions of CE model coincides to those of FEM in low 
frequencies since the three harmonic response curves are identical until 353 Hz for F-F boundary 
conditions and until 309 Hz for the C-F case. As known, FE model gives unreliable solutions in 
medium and high frequencies thus FE curves differ from CE one. The accuracy of FEM 
decreases for higher natural frequencies which is not the case for CE resolutions. It is very 
important to remark that FE solutions converge to CE results when using a finer meshing. This 
proves that the CEM using analytical solutions of the system of differential equations of the 
structure offers excellent results in medium and high frequency range which can overcome the 
difficulties of FEM in dynamic problems. Otherwise, it is easy to note that that the harmonic 
response drawn by FEM takes much more time than CEM because a finer meshing requires a 
bigger stiffness matrix and more time to resolve the finite element equations.  

Through these graphics, it is concluded that the presented formulation offers an interesting 
way to deal with dynamic analysis of complex shell. The main advantages of CE models in 
terms of precision and the saving of data volume and of computing time even in medium and 
high frequencies are confirmed. 

4. CONCLUSIONS AND DEVELOPMENTS 

A new Dynamic Stiffness Matrix has been successfully established for thick cross-ply 
laminated composite ring-stiffened cylindrical shells. The interesting assembling procedure of 
continuous elements has been efficiently applicable to construct the dynamic stiffness matrix of 
the composite ring-stiffened cylinders with different properties of materials. The effect of ring 
depths, ring widths and lamination schemes on natural frequencies is envisaged by using 
Dynamic Stiffness Method and solutions obtained are validated with respect to other approaches. 
Excellent agreements issued from the comparison of natural frequencies computed by 
Continuous Element model and other methods confirm the exactness and the performance of our 
formulation. Moreover, the harmonic responses of composite ring- stiffened cylindrical shells 
are also examined in order to demonstrate many advantages of Continuous Element Method 
compared with Finite Element models. It can be seen that the advantages of the dynamic 
stiffness formulation are: accuracy, reduction of storage data volume, facility to model complex 
shell structures, time consumption decreased and those strong points are preserved even in 
medium and high frequency ranges.  
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The developed Continuous Element can easily be extended for analyzing thick cross-ply 
laminated composite joined ring- stiffened conical-cylindrical shells, complex shells on elastic 
foundation, and combined rings-stiffened cylindrical-conical shells in contact with fluid.  
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