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AN APPLICATION OF WAVELET THEORY TO
ELECTROCARDIOGRAMS SINGULAR POINTS ANALYSIS

NGUYEN HUU TRUNG

ABSTRACT

In recent years, wavelet transform-based algorithms have been developed and successful in
the signal processing in many areas since the wavelet transform is a useful and powerful tool for
analysing signals in both transient and stationary intervals. In this paper, a report is made on an
application of the mentioned capability of wavelet transform for grasping subtle changes and
discontinuities in electrocardiogram (ECG) signals. From the signal processing point of view, it
shows that the diagnostic of ECG signals is carried out by excluding any recognised abnormality
as singular points or irregular structures. For analyzing purpose, wavelet footprints are
characterized by scale-space vectors in a discrte model by discontinuing signals in piecewise
polynominal. And a focus is made on applications of fetal ECG detection from maternal ECG.

1. INTRODUCTION

Electrocardiography (ECG) still plays a basic role in cardiology being a effective, simple,
non-invasive graphy with low cost procedures for carrying out diagnoses of cardiovascular
disorders (high epidemiologic incidence). Pathological alterations observable by electrocardio-
graphy can be divided into three main areas, namely cardiac rhythm disturbances (arrhythmia),
disfunction of myocardial blood perfusion (cardiac ischemia) and chronic alteration of the
mechanical structure of the heart (for example, left ventricular hypertrophy) [1].

ECG signal represents the variation of electrical potential during the cardiac cycle as
recorded between surface of electrodoes on the body of patient. Characteristic shape of this
signal is resulted from an action potential propagating within the heart and causing a
constraction of various portions of the cardiac muscle. This internal excitation starts at the sinus
node which acts as a pacemaker, and then spreads to the astria creating characteristic P wave in
the ECG. The cardiac excitation then reaches to the ventricles (ventricular depolarization) giving
rise to the characteristic QRS complex. Once the ventricles have been completely stimulated (ST
segment of the ECG), they repolarize corresponding to the T wave of the ECG. The detection
and timing of these waves is very impotant for diagnostic purposes [2].

From the signal processing point of view, the diagnostic of the ECG is made by excluding
any recognised abnormality as singular points or irregular structures as shown in Fig.1 [1].

Recently, reseachers in applied mathematics and signal processing have developed
powerful wavelet methods for multiscale representation and analysis of signals. Unlike the
traditional Fourier techniques, wavelet methods localize the information in time-frequency



plane; in particular those methods are capable of grasping subtle changes and discontinuities in
signals [3, 4].
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Figure 1. (a) Normal adult 12-lead ECG (Lead I, aVR shown only)
(b) Left ventricular hypertrophy (Lead I, aVR shown only);
(c) Hyperkalaemia (Lead I, aVR shown only);
(d) Right atrial hypertrophy (Lead I, aVR shown only).

In the second paragraph, a introduction is briefly made on wavelet transform and discon-
tinuities analysis which gives rise to reported applications and proposed algorithm in the third
one for period detection, discontinuous points in ECG signals in terms of wavelet footprints. The
last paragraph is for discussions and directions for further researchs to be carried out.

2. A BRIEF ON WAVELET TRANSFORM AND DISCONTINUTIES ANALYSIS

2.1. Continuous and Discrete Wavelet transform

A fundamental property of the wavlet transform is that the time and frequency resolutions
vary in the time-frequency plane [3]. Wavelet transform is a linear transform and it has non-
fixed mother waveforms. Wavelet transform permits one to choose suitable basic functions in its
transforming to seperate intended and unintended components in the analytic signal [4].

Definition of continuous wavelet transform [4]: A function e L'(R)N L™ (R) with

Jl//(t)dt =0 is called a wavelet. For every s€ L"(R),1 < p <o, defines Continuous wavelet
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transform as follows:

W,s(a,7) = _[o s(t)%w*(t ;Tjdt = <S,VIM>L2 Forall a,7€ R, xR €))

where, a and 7are respective the dilation and translation parameter, and ¥/, , = ﬁ l//("Tf)



Function ¥ is called mother wavelet and is chosen so that it is localized at # = 0, and some

frequencies f = fo > 0 (and/or f = - fo). Mother wavelet has a property that the set {l//aj} forms

an orthonormal basis in L* (R) . That is, the mother wavelet can generate any function in L* (R).
W (t) must satisfy the admissibility condition [5] to ensure not to have any direct current (DC)
component in daughter wavelet:

oo 20
J'_w|‘P(a))| 2 'dw < oo (2)
In order to analyze discrete signal, the scale and shift parameters are discretized as:

a=2"; t=n.2", where n, m are integers. 3)

The set of dilated and shifted versions of wavelets:
..o}, = veri-n) 4)

forms a basis of Discrete Wavelet Transform in L*(R). The discrete wavelet transform is a

unique and stable decomposition of any finite energy signal x(¢) in terms of {l//m’n (t)}m ez [6]:
xX0=>d, W, )
where, wavelet coefficients d, , in their terms are given by:
d,,={x0.y,,n) (6)

Theoretically, a complete representation of x(f) requires a discrete wavelet family
{V/m,n (t)} of an infinite number of functions. However, a low-pass-natured complementary

scaling function @(¢) play a key role in multiresolution analysis theory.

The wavelet function has zero average and each term d,,, measures a local variation of x(¢)
at resolution of 2" and the partial sum:

5a=3 Sd, .0 ™)

m=J+1 n=—oco
represents an approximation of x(z) at resolution 2’ *".

Approximation funtion x;,,(f) can be expressed in terms of shifted versions of a function
called the scaling function as mentioned above:

X (1) = Zyj,n¢J,n (1) )

where, ¢J’n(t)=2,—52¢(t/ 27 —n). Hence, any function in L*(R) can be completely

represented by using J-finite resolution of wavelet and scaling function as:
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X0 =290, O+ D, Dd, .0 ©)
Scaling coefficients y, , = <x(t),¢ I (t)> tend to measure the local regularity of x(f) at

scale 2’. Therefore, the first term of (9) represents a coarse version of x(#) as opposed to the
detail version provided by the second term of (9).

The wavelet function and the scaling function have a relationship but their link does not
reduce to the expansion shown in (9) which describes a multiresolution structure of wavelet
transform [7].

2.2. Periodicity detection

Theorem for periodicity detection by Haar wavelet: Given a T-periodic signal
x(t)e L*(R), then W, x(a,t), continuous wavelet transform of x(t) is T-periodic in time and
2T-periodic in scale with W (t) is the Haar Wavelet.

Haar wavelet and scaling functions are given respectively by:
v = 1[0,%) - 1[%,1), o) =1, 10)
wherel|, ,) denotes the characteristic function equaling to 1 on [a, b) and zero everywhere else.

Haar wavelet has one vanishing moment and finite support. That is: I @ (H)dt=0.

—oo

A wavelet coefficient is obtained by correlating signal with daughter wavelet at a specific
time and scale. Since Haar wavelet is piecewise constant wavelet degree two resulting to above
theorem. An example is illustrated in Fig. 2a with continuous wavelet transform carrying out for
a simple periodic signal (sine). In the case where the period of signal is slowly varying, the
effect is shown in Fig. 2b. It is useful in sinus arhythmia diagnosing.
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Figure 2. Lattice structure of Wavelet transform of periodic signal (a), slowly varying in period (b)




2.3. Discontinuities analysis

Singular points and irregular structures often carry important information in ECG signal for
diagnosing purpose [9]. In this paper, we restrict our attention to Haar wavelets because it is well
suited for discontinuties analysis.

Consider a signal made of a single Dirac at fo x(¢) =ad(t—t,), J level wavelet decom-

position of this signal as:

J

)C(t) = i)’m?’],n ([)+ z idm,n'//m,n ([) (11)

n=—oo M=—oc0 n=—o0

Move from discontinuous- to discrete-time presentation for signal x[n] with n=0 ... N —1
and use Haar wavelets, one has:

D= 0, 1+ 3 S ] 1)

J N/2'—1
1=0 j=1

=0

Haar wavelet has one vanishing moment and finite support, therefore only a limited number
of wavelets overlaping the location #; is influenced by this Dirac. The set of points that #, is
included in the support of wavelet is called cone of influence [3]. The cone of influence is
illustrated in Fig. 3.
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Figure 3. The cone of influence of a Dirac using CWT with Haar wavelet

The only non-zero wavelet coefficients of (12) are coefficients in this cone of influence.
Thus (12) becomes:

N/2/ -1 J )
dnl= " v, ]+ Y d,, v [n] with &, =[k 727 | (13)
j=1

=0

this leads to the definition of footprints.



Definition of Wavelet footprint [8]: Given a signal with only one Dirac at position k, a
scale-space vector obtained by gathering together all the wavelet coefficients in the cone of

influence of k, then imposing its norm equal to 1 is called a footprint f, [n].

In term of wavelet basic, this footprint can be written as:

J
fx [”] = ch,k/ Vi, [”] with ¢; = dj,kj /\/Z;:ld%’,k, . (14
j=l

A signal with step discontinuity at k can be expressed in terms of the scaling functions and
footprint as follows:

N/2/ -1
x[n] = Z y1¢1,1[n]+ of; [n] with o = <x, Ji [n]> = z;zlcj,k,dj,kj (15)
1=0

3. APPLICATIONS

3.1. Period detection and sinus arrhythmia

Sinus arrhythmia shown in Fig. 4 is characterised by variations in heart rate from beat to
beat which are greater than that would be expected from normal respiratory variation. It is
irregular due to fluctuations of autonomic tone resulting in phasic changes of discharge rate.
During inspiration, the parasympathetic tone falls and the heart rate quickens, on expiration the
heart rate falls.
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Figure 4. Sinus Arrhythmia

Modulus maxima of wavelet transform of the periodic signal form a lattice in time-
frequency plane. Measuring the distance between vertices will disclose periodicities in the
signal. Due to the variation in period of the signal, the lattice patterns of modulus maxima will
not be squares.

3.2. Fetal ECG detection

Accurate detection of fetal ECG signal during pregnancy has the potential to provide
important informations in diagnosing fetal cardiac diseases, especially fetal arrhythmias. It is not
possible to recognize the fetal ECG signal from that of a pregnant woman using standard ECG
leads. However, when using a wrist leads placed over the maternal abdomen on both sides of the



uterine fundus, the amplitude of maternal QRS complex will be reduced by 90% as compared to
that of the standard case, meanwhile the fetal QRS will be easier to detect [10].

Since 1960, many different methods have been developed for detecting the fetal ECG. Most
of those focus on multi-channel mixtures of signals [11]. A direct method substract a thoracic
maternal ECG from the abdominal composite ECG, and other more recent employs Independent
Component Analysis, which extracts fetal ECG by assuming independently statistical sources

[12].
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Figure 5. The fetal QRS complex in maternal ECG signal considered as discontinuity

As shown in Fig. 5, the fetal QRS complex can be clearly seen in the maternal ECG signal.
The period of fetal QRS complex is faster than that of maternal. It appears once or twice and
orientation of the fetal heart is opposite to that of the maternal heart. The Fetal QRS complex
can be seen as a discontinuous locations in the maternal ECG signal. Hence, an algorithm to
estimate the location of these dicontinuities is proposed as follows:

1. Estimate the period of signal by using theorem for periodicity detection by Haar wavelet.

2. Compute discrete Harr wavelet transform coefficients within a period signal:

Set cl.0 =xli];i=1,...,.N-1;

A i
Compute scaling function coefficients: ¢/ = % :
2
A _ il
Compute wavelet function coefficients: d; = %
2

3. Set universal threshold 7 = 0+/2In N (due to noise with variance o ).
4. Compute D = dej with k; = \_k /2’ J, then if D > T, a discontinuity is found at k.
J
5. Eliminate all discontinuties of the ECG signal with the standard lead (no fetal influence), a

discontinuity coressponding to the fetal QRS complex is obtained.

6. Reconstruct signal corresponding to the obtained footprints (the fetal QRS complex).



4. CONCLUSION

Wavelet footprints form an overcomplete basis and efficient at analysing and representing
the singular structures of a signal. In this paper, a proposed method of detecting the singular
points like fetal QRS complex in maternal ECG signal with wavelet footprints has been reported.
The method is found to be simple and efficient in diagnosing and treating fetal arrhythmias.
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Figure 6. The fetal influence (weaker and faster) on ECG signal from pregnant woman (a)
Wavelet footprints to recognize (by coefficients) the fetal influence (b)
Fetal wavelet footprint and maternal wavelet footprint (c)
in a period comparing to CWT of ECG with the fetal influence using db4 wavelet (d)
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TOM TAT

AP DUNG BIEN DOl SONG CON PHAN TICH TIN HIEU PIEN TIM DUA
TREN CAC PIEM KI DI

Trong nhitng nam gan ddy, céc thuat todn dya vao bién dbi wavelet da dugc phat trién va
ap dung thanh cdng vao viéc xu Ii tin hi¢u & nhiéu linh vuc khdc nhau vi bién déi wavelet c6 kha
ning phan tich cdc thudc tinh ding va qud do & tin hiéu, nhét 12 kha ning phén biét céc thay d6i
dot bién & cdc tin hiéu. Trong bai bdo nay, theo diém xu 1f tin hiéu, viéc chudn dodn thuc hién
bang cdch ghi nhan céc bat thudng & tin hiéu dién tim (ECG) nhu cédc diém ki di hay céc ciu tric
bét thuong.

Bai bdo gom 04 phan ngoal phan gi6i thiéu. ‘Trong phan thir hai, bién doi wavelet, giai tich
céc diém ki di (gay) va céac vét trén co so bién ddi wavelet Haar duoc gidi thi€u mot cich ngan
gon lam co s& de ap dung vao mo hinh cdc dot bién nham d& xuét thudt toan phén tich tin hi¢u
ECG ciing nhu céc két qua trong ing dung téch tin hiéu dién tim cua thai nhi tir tin hiéu dién tim
ctia ngudi me trong phan thtr ba. Cudi ciing 1a cdc nhan xét va dinh huéng nghién ctru tiép.

Dia chi: Truong Pai hoc Bach khoa Ha Noi. Nhan bai ngay 21 thdang 10 nam 2008
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