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Abstract. Free vibration of two-directional functionally gied material (2-D FGM) beams is
studied by the finite element method (FEM). Theenat properties are assumed to be graded in
both the thickness and longitudinal directions yoaver-law distribution. Equations of motion
based on Timoshenko beam theory are derived fromilkten's principle. A higher-order beam
element using hierarchical functions to interpoldie displacements and rotation is formulated
and employed in the analysis. In order to imprdwe dfficiency of the element, the shear strain
is constrained to constant. Validation of the dadivelement is confirmed by comparing the
natural frequencies obtained in the present pap#r the data available in the literature.
Numerical investigations show that the proposedrbekement is efficient, and it is capable to
give accurate frequencies by a small number of etdsn The effects of the material
composition and aspect ratio on the vibration attersstics of the beams are examined in detail
and highlighted
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1. INTRODUCTION

Functionally graded materials (FGMs), initiatedlapan in 1984 during a space project [1],
are increasingly used as structural elements inemmothdustries such as aerospace structures,
turbine blades and rocket engine components. Masgarches on vibration behavior of FGM
beam structures have been reported in the literatbe papers that are most relevant to the
present work are briefly discussed below.

Chakraborty et al. [2] developed an exact firgtevrshear deformable beam element for
studying the static, free vibration and wave pr@tiag problems of FGM beams. Aydogdu and
Taskin [3] investigated the free vibration of simmupported FGM beam by considering
Young's modulus of the beam being graded in thektiéss direction by the power and
exponential laws. The authors considered diffelmdam theories and employed Navier type
solution method to obtain frequencies. Li [4] preed a new unified approach for analyzing the
static and dynamic behavior of FGM beams with thtany inertia and shear deformation effects.
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Sina et al. [5] developed a new beam theory failystg the free vibration of FGM beams. The
resulting system of ordinary differential equatiamfsthe free vibration analysis in the work is
solved by an analytical method. In [6], Alshorbagly al. employed the traditional Euler-
Bernoulli beam element to calculate the naturajdemcies of FGM beams with the material
properties to be graded in the thickness or lodgial direction by a power-law distribution.
Shahba et al. [7] derived the stiffness and magsdaea for free vibration and buckling analyses
of tapered axially FGM beams with elastic end suispoTlhe solution of the equilibrium
equations of a homogeneous Timoshenko was emplbyethe authors to interpolate the
displacement field. The analytical solutions foe thending and free vibration problems of
higher-order shear deformable FGM beams were pegpbg Thai and Vo [8]. The static and
free vibration problem of FGM beams is also congdeby Vo et al. in [9] by using a refined
shear deformation theory. A first-order shear defdion theory, in which the transverse shear
stiffness is derived from the in-plane stress ahe shear correction factor is calculated
analytically, was presented by Nguyen et al. [X}] dtudying the static and free vibration of
axially loaded FGM beams. Wattanasakulpong etldl] fised the modified rule of mixture to
describe and approximate material properties itudysof linear and nonlinear free vibration of
FGM beams with porosities. The differential tramsfation method is employed by the author
to obtain the natural frequencies of the beams diffarent elastic supports.

In the above cited papers, the beam material piiepeare considered to vary in one spatial
direction only. The development of FGMs with effeetmaterial properties varying in two or
three directions to withstand severe general |lgmdils of great importance in practice,
especially in development of structural elementssfoace structures [12, 13]. Studies on the
static and dynamic behavior of beams formed fromdivectional functionally graded materials
(2-D FGMs) have been recently reported by seversgarchers. In this line of workdimsek
[14,15] considered the material properties beingiedain both the thickness and length
directions by an exponent function in the forceldraiion and buckling analyses of 2-D FGM
Timoshenko beams. The author showed that the iobrand bucking behavior of the 2-D FGM
beams is significantly influenced by the materietribution. Based on an analytical method,
Wang et al. [16] investigated the free vibratiorF&M beams with the material properties vary
through the thickness by an exponential functioml atong the length by a power-law
distribution. The numerical investigations by th&hmrs show that the variation of material
properties has a strong influence on the natuegjuencies, and there is a critical frequency at
which the natural frequencies have an abrupt jurhenathey across the critical frequency.
Based on a finite element procedure, Nguyen ¢13].studied the forced vibration of 2-D FGM
Timoshenko beams excited by a moving load. The mah{groperties in [13] were assumed to
vary in both the thickness and longitudinal direes by a power-law function. Recently, Shafiei
et al. [17] studied the vibration behavior of 2- Fhano and microbeams formed from two
types of porous FGMs. The generalized differerdizgddrature method has been employed by
the authors to solve the governing equations ofanot

In this paper, a higher-order Timoshenko beam etgns developed and employed in
studying free vibration of 2-D FGM Timoshenko bearfise material properties of the beams
are considered to vary in both the thickness amwjifodinal directions by a power-law
distribution. Based on Timoshenko beam theory, #gos of motion are derived from
Hamilton’s principle and they are solved by a #nélement procedure based on the developed
beam element. The beam element, using hierarchinations to interpolate the displacement
field, is formulated by constraining the shear istraonstant for improving its efficiency.
Validation of the derived element is confirmed lmymparing the result obtained in the present
work with the published data. A parametric studyc@ried out to highlight the effects of
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materialcomposition on the vibration characteristics of beams. The influence of the aspect
ratio on the natural frequencies is also examimetidiscussed.

2. MATHEMATICAL FORMULATION

Figure 1 shows a 2-D FGM beam with lengithwidth b and heighth in a Cartesian co-
ordinate systenx(z). The systemx2) is chosen such that tlxeaxis is on the mid-plane, and the
z-axis is perpendicular to the mid-plane, and ieclis upward.

h
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metal 1 metal 2
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Figure 1. Geometry and coordinates of a 2-D FGM beam.

The beam material is assumed to be formed fromcevamics (referred to as ceramic 1-C1
and ceramic 2-C2) and two metals (referred to aslnieM1 and metal 2-M2) whose volume
fraction varies in both the thickness and longmatidirections according to
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wheren, andn, are the material grading indexes, which dictage vhriation of the constituent

materials in the thickness and longitudinal dim@tsi, respectively. It can be seen from Eq. (1)
that the left and right lower corners of the beamtain only M1 and M2, respectively whereas
the corresponding upper two corners are, correspolyd pure C1 and C2. The variation of the

volume fraction of C1 and C2 in tlzeandx-directions according to Eq. (1) is depicted in.FAg
for various values of the grading indexgandn,.

The effective material propertieB , such as the elastic modulus E and the mass gensit
are evaluated according to

P = V01,Pcl +Vc2,Pc2 +Vm lel+Vm ZPm 2 (2)
where P, P.,,P,, and P, , denote the properties of the C1, C2, M1, and Mapeetively.
Substituting Eqg. (1) into Eq. (2) leads to

P(x.2) {(Pa —Pml)(ﬁ +%) +pml}{1—(%jj+{(az—7am Z)G%T +P 2}[8 (3)
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One can verify that ih, = 0, Eq. (3) deduces to the expression for the effeataterial
properties of transversely unidirectional FGM beamposed of C2 and M2 as Eq. (4).
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Figure 2. Variation of volume fraction of ceramics in théctness and longitudinal directions.

P@)=(R. - sz)(E +5)nz + P @)

In casen, = 0, Eq. (3) leads to an expression for the effecthaterial properties of an
axially FGM beam formed from C1 and C2, namely

P =(e - P)@ T (5)

Based on Timoshenko beam theory, the displacenientsand z-directionsy, (x,zt) and
u, (x,zt), respectively, at any point of the beane given by

u, (X, z,t)=u(x,t)—z8(x.t)
Uz (X, z,t) = w(x,t)

(6)

where z is the distance from the mid-plane to the consmdemoint; u(x,t) and w(xt) are,
respectively, the axial and transverse displacesngfiihe corresponding point on the mid-plane;
O(xt) is the cross-sectional rotation.

The axial strain £,) and the shear strairy/) resulted from Eq. (6) are of the forms
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Eu SU, =20, Y =W, 6, (7)
where a subscript comma is used to indicate thwatre of the variable with respect to the
spatial coordinate, that is(.)vx =0(.)/ox.

Based on the Hooke’s law, the constitutive refafmr the 2-D FGM beam is as follows
o, =E(X2¢,, T1,=¢G(X2)Y, (8)
where o, and 7, are the axial stress and shear stress, respectiibty) and G(x,z) are,

respectively, the elastic modulus and shear modulbich are functions of both the coordinates
X, Z,  is the shear correction factor, equals to 5/6 lierlbteams with rectangular cross-section
considered herein.

The strain energy of the beal)(resulted from (7) and (8) is as follows
U :%I/{(%% + rxzyxz)dAdx:%HAnui —2A 0,0, + AL+ A w, —0)2] dx  (9)
and the kinetic energy resulted from Eq. (6) isolsws:
T =%:[7[p(x, z)(ul2 + uaz)dAdx=%:[[Inu2 +1,,W3 =21 16 +1 zﬁﬂ dx (10)

In Egs. (9) and (104 is the cross-sectional aredy;, A ,, A,, and A,; are, respectively, the

extensional, extensional-bending coupling, bendiigidities and shear rigidity, which are
defined as follows

(AuAnAz)(x2) = [E(x2)(122)dA, Ay(x2)=[G(x 7)dA 1)
andl,,,1,,,1,, are the mass moments defined as
(L1101 5)) (x,z):jp(x,z)(l,z ,zz)dA (12)

Substituting Eq. (3) into Eq. (11), one can obthmrigidities as

Aulna) =AY X)L )=z )2
. . (13)
_ pcmi_ [ pcmi_ pcam 2\ X _ pcM1_ [ pcmi_ pcam2\[ X |
AZZ(X,Z) =Py (Azz Az ) L) AAX, Z)_Asa (Ass A ) L)
where A7V, AMY, ASM and AZM! are the rigidities of the transversely unidireatibFGM

beam composed of C1 and MB;? AM? ASM? and AZY? are the rigidities of the

transverse FGM beam composed of C2 and M2. As eaeén from Eq. (13) that the rigidities
of the present 2-D FG beam degenerate to thateofitidirectional FGM beam if, =0 or the

two ceramics and two metals are identical. Beca{i€, A”® “are functions ofz only, the

following explicit expressions for the rigiditie$ e transversely unidirectional FGM beam can
be obtained easily
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CIM1 _ bh(Ec1+anM1) CIM1 _ bhznz(Em_EMl)

! n+1 ¥ 20, + D, + 2) 14)
CIM1 _ bh3(n22 tn+ 2)(E01 - EM 1) +b_h3 CIM1 _ bh(Gm + nzGM 1)
2 A, +1)(n, +2),+3) 12 v ® n+1

CZM 2

Similar expressions fo are obtained by replacing Young’s modulus of C1 ktid

by that of C2 and M2, respec‘uvelphe mass moments can be also written as
_ | CIM1 _/jCIM1_ C2M X\ _jCM1_ CM:L cm x )™
(% 2)= 1M =M =19 o) l {x2)=19""=( | K

N (15)
a(x2) =12 -0 g1 X

where |7 *and I7*"*are the mass moments of the C1-M1 and C2-M2 beasectively.

The explicit expressions fdr"*and 17" have similar forms as in Eq. (14).

Applying Hamilton’s principle to Eq. (9) and Ed.Q), one obtains the equations of motion
for the 2-D FGM beam as

L= 10— (Ap, —A )
[, W— w[ASS(W 9)} =0 (16)
= 1,0 = (A, - A ) +y A w,-8)=0
and the natural boundary conditions are of the $orm
AU, —AL, =N; Ap —AL, =M; A w, -6)=Q atx=0andx=L. (17

with N, M, Q are, respectively, the prescribed axial forcesmamts and shear forces at the
beam ends.

Since the axial displacement transverse displacementand rotationd are independent
variables in Timoshenko beam theory, the interpmhatunctions for these variables can be
chosen separately. Traditionally, linear functiams used for all the variables, but the element
based on the linear functions suffers from the shlaking, and some techniques such as the
reduced integration must be applied to overconme ghoblem [18]. The shear-locking can also
be avoided by using appropriate interpolation fiomg for the kinematic variables. Standard
polynomial-based shape functions can be employeabpmoximate the displacement field of
Timoshenko beam. However, the finite element foatiah derived from the standard shape
functions has a drawback. Since the coefficientshef polynomials are determined from the
element boundary conditions, related to nodal waloé the variables, totally new shape
functions have to be re-determined whenever thmeaai¢ refinement is made [19]. The finite
element formulated from the hierarchical functiomswhich the higher-order shape functions
contain the lower-order ones, is able to overcameedrawback. For one-dimensional beam the
hierarchical shape functions are of the forms [20]
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S A R A (S B

with & = 2|—X—1 being the natural coordinate.

For a Timoshenko beam element, a quadratic vaniadf the rotation should be chosen to
represent a linearly varying bending moments althreggelement. In addition, with the shear
strain given by (7), the shape functions for tlamsverse displacemewtshould be chosen one
order higher than that &f In this regard, the displacements and rotationbzainterpolated as

u=N,u, +N,u,,
6= ngl + N292+ Nﬁsi (19)
w=Nw, + Now, + N+ N w,

whereu,, u,, 8,, 6,, 6,,w,,..w, are the unknown values of the variables.

A beam element can be formulated from nine degséésedom in (19). However, a more
efficient element with less number of degrees etdiom can be derived by constraining the
shear strainy,, to constant [21]. To this end, the shear strajrcén be rewritten by using Egs.

(18) and (19) as

el puo e fuowsani-Josos )] o

In order to ensurg’,, = constant, we need

—Ew4 +6,=0, and ilrwg——1671+—1672 (21)
I I 2 2
Eq. (21) gives
I I
W, =§(61—6’2), and w4=66’3 (22)
Using Egs. (18) and (22), one can write (19) mfthrms
1 1
=§(1—£)u1+5(1+£)u2;
1 1
0=>(1-8)6,+(1+£)8,+(1-€)6,; (23)
1 1 I I
w=2(1-&)w + S (1+E)w, +§(1‘52)(‘91‘92)+—65(1'52)‘93
The shear strain (20) is now of the form
1 1 2
Ve =|_(W2_W1)_E(61+62)_§‘93 (24)

The beam element is now derived from the displacgnfield in Eq. (23) and the shear
strain in Eqg. (24). The element vector for a genelementd) has following components
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={uw g Hsuzwze}T (25)

In the above equation and hereafter, the supptsgtiis used to denote the transpose of a
vector or a matrix.

The axial displacement the transverse displacemewtand the cross-sectional rotatiéh
can be now written as

u=N,d, w=N,d, 6=N,d (26)
where
N,={N,0 0 ON, 0 Q"
N,={0 0N, N, 0 ON,}", (27)

| | I "
NW:{O Nl §N3 —6N4 0 N2 _—8N3} ,

with N;, N,, N, N are defined in Eq. (18).
From the displacement field in Eq. (23), one @write the strain energy (9) in the form

Zdid k =k, +Ky +Kg +K, (28)

i=1
with neis total number of the elementsjs the element stiffness matrik;,, ku, Ko andks are,
respectively, the stiffness matrix stemming frore #xial stretching, axial stretching-bending
coupling, bending and shear deformation, and tlaey lthe following forms

J’N ( CIM1 _ c12M 12(:(j jNude;
J’N ( CIM1 _ C12M 12( XJ jN dxc
| o
j. ( o= C212M 12(|_Xjnx } N, de;
0

kszw,[(NT —NT)( e Csmlz(l_xjnxj(Nw,x‘Ne)dx

with AZ2MI2= AZM - AS2 2 Similarly, the kinetic energy (10) can also betteni in the form

(29)

T:—Zdde; m=m, +m,+m,+m,, (30)
i=1
with m denotes the element mass matrix, and

| ny | ny
=[N] |1°11M1—|10112M12(5j N,dx, m,, = [N], |1°11M1—|fll2'“12(5j N,,dx;
0 | 0 |
| X ny | X N
o) o m o515
0 0

(31)
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are, respectively, the element mass matrices esstibm the axial and transverse translations,

axial translation-rotation coupling, cross-sectiangation. As in (29), we have used the notation
IClZMlZ_ICilMl_IC?\/I 2
ij i ij

Based on the derived element stiffness and magsces the equations of motion for the
free vibration analysis can be written in the form

MD+KD=0 (32)
where D, M andK are the global nodal displacement vector, mass stiffdess matrices,

obtained by assembling the corresponding elemertbvand matrices over the total elements,
respectively. Assuming a harmonic response fofrévibration, Eq. (32) leads to

(K —aM)D=0 (33)

with @ is the circular frequency, an® is the vibration amplitude. Eg. (33) leads to an
eigenvalue problem, which can be solved by thedstahmethod [18].

3.NUMERICAL RESULTSAND DISCUSSION

This section presents the numerical results ferfitbe vibration of the 2-D FGM beams.
Otherwise stated, a beam with an aspect tatio= 20, formed from stainless steel (SUS304),

Titanium (Ti-6Al-4V), Silicon nitride (Si3N4) and Zirconia (ZrOZ)With the material
properties listed in Table 1 is employed in thelgsia. The SUS304, Ti-6Al-4VSi,N, and
ZrO2 are used as M1, M2, C1 and C2, respectively. rbteroto facility of discussion,

2
frequency parameters defined gschl‘?,/le IEy, withewi (i=1,2,3...)Is tha™ natural

frequency are introduced.

Table 1. Properties of constituent materials for the tweaediional FGM beam [22].

Material Role E (GPa) o (kg/n) U
Steel (SUS304) M1 207.79 8166 0.3262
Titanium (Ti-6Al-4V) M2 105.75 4420 0.2888
Silicon nitride (Si3N4) Ci 322.27 2370 0.24
Zirconia (Zr0,) c2 116.38 3657 0.333

Firstly, the validation and convergence of tlegivced formulation are examined. To this
end, Table 2 shows the comparison of the fundarhdréguency parameter of a simply
supported (SS) 2-D FGM beam with various valuethefgrading indexes obtained herein with
that of Ref. [13]. Very good agreement betweenréseilt of the present paper with that of Ref.
[13] is seen from Table 2. Noting that the numdneault in Table 2 has been obtained for the
beam with the constituent materials of Ref. [13].

Table 3 shows the convergence of the derived elerrerevaluating the frequency
parametey, . As seen from the table, the convergence of thegmt beam element is fast, and

the frequency parameter can be obtained by usigsggighteen elements, regardless of the
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grading indexes, andn,. Noting that this convergence rate is almost thmes as the one

formulated in Ref. [13], where the Kosmatka's shdpactions have been employed to
interpolate the displacement field.

Table 2. Comparison of the fundamental frequency parametg) 6f SS beam.

1 1 5 4
=0 == == == =1 =— = =2
Source n, =3 | & 5 n, 5 n, n, 3 n, n,
n,=0 Ref. [13] | 3.3018 3.7429 3.9148 4.1968 4.3139 4.514%956 4.8005
Present 3.3018 3.7428 3.9147 4.1966 4.3138 4.5118954| 4.8003
1 | Ref.[13] | 3.1542] 3.505 3.6305 3.8252 3.9022 4.024/0792 4.2009
n,=—
3 | Present 3.1542 3505 3.6305 3.8251 3.9021 4.027®794. 4.2007
1 | Ref.[13] | 3.1068 3.4285 3.5397 3.7087 3.7745 3.8883236, 4.0245
n,=—
2 | Present 3.1069 3.4285 3.5397 3.7086 3.7744 3.88049238| 4.0244
5 | Ref. [13] | 3.0504| 3.3296 3.4206 3.5548 3.6059 3.68897194| 3.7947
nz = —
6 | Present 3.0506 3.3296 3.4206 3.5548 3.6058 3.6868193| 3.7946
1 Ref. [13] | 3.0359 3.2984 3.3819 3.5035 3.5495 3.623%508 3.7177
n, =
Present 3.0361 3.2984 3.3819 3.5035 3.5494 3.6218508| 3.7176
Table 3. Convergence of the element in evaluating frequerescgmeter (4 ) of SS beam.
Grading Number of elementag)
indexes 5 10 14 16 18 20
n,=n, :% 3.5079 3.5071 3.5070 3.5070 3.5070 3.50f0
n =n, :% 3.5447 3.5438 3.5437 3.5437 3.5436 3.5436
n=n,=1 3.5240 3.5228 3.5226 3.5226 3.5226 3.5226
n,=n,=2 3.4065 3.4051 3.4049 3.4049 3.4048 3.4048

Table 4 lists the fundamental frequency parametahe SS beam for various material
grading indexesn, and n,. As can be seen from the table, the frequencynpeter increases

with increasing the index, , irrespective of the index,. Furthermore, the increase of the
frequency parameter in Table 4 is more signifidantn, <1. For example, withn,= 0.2 the
frequency parameter increases 36.36 % when inogedise index, from O to 1, while this
value is just 11.06 % when raising, from 1 to 2. However, the increase of the frequency
parameter by increasing the index is less pronounced for the beam with a higher index

389



Tran Thi Thom, Nguyen Dinh Kien

For instance, witm,= 2, £ increases only 13.55 % by the increasendiom 0 to 1, and the
corresponding value is 3.8 % when increasigérom 1 to 2. The increase g¢f, by the increase
of the indexn, can be explained by the fact that the percentage®Al-4V and ZrO, is lower
for the beam with a highex, while that of SUS304 an8i,N, is larger. As a result, the beam
rigidities increase, and this leads to the increddbe fundamental frequency.

The effect of the grading index on the fundamental frequency parameter as seem fro
Table 4, however is opposite to that of the indeXor a given value of thg, Table 4 shows a
decrease of the parametgy by the increase af,. A careful examination of the table shows
that the decrease of the frequency parameter ig significant for the beam associated with a
higher indexn,. The numerical result of Table 4 reveals thatdependence of the fundamental
frequency parameter of the 2-D FGM beam upon thdigg indexes is much dependent on the
value of these indexes.

Table 4. The fundamental frequency parametgs  of SS beam with various values of, n, .

n=0 | n=02| n=05|n=10| n=12| n =15] n, =2.0
n,=0 | 3.1726 | 3.6151 | 4.1086| 47008  4.8854  5.121 5.4305
n,=0.2 | 3.0894 | 3.4346 | 3.8008| 42127  4.3348  4.48§ 4.6788
n,=0.5 | 3.0146 | 3.2775 | 3.5436| 3.8273  3.9084  4.007 4.1297
n,=1.0 | 29483 | 3.1429 | 3.3310| 35226 35759  3.64Q 3.7182
n,=1.2 | 29316 | 3.1098 | 3.2799|  3.4512  3.4985  3.55% 3.6245
n,=15 | 29121 | 3.0718 | 3.2219| 33712 34121  3.461 3.4613
n,=2.0 | 28890 | 3.0275 | 3.1551| 32804  3.3146  3.35§ 3.4048

The effects of the material grading indexes onrthtural frequencies of the beam with
various boundary conditions can be seen from R¢s. where the variation of the first four
natural frequency parameters with the material ¥xedeare depicted for the SS, CC and CF
beams, respectively. Similar to the fundamentajuency, the figures also show that the higher
natural frequencies increase by increasing theximgend decrease by increasing the indgx
regardless of the boundary conditions. The incredsthe higher natural frequencies when
increasingny is also more significant fon, < 1 for all the boundary conditions considered
herein. On the other hand, the decrease of theaidtaquencies by increasing the indexs
more significant for the beam associated with higlaues of the index,, regardless of the
boundary conditions.

In order to examine the effects of the shear dedtion on the natural frequencies, Table 5
lists the fundamental frequency parameter of thdo&am for various aspect ratios, namely
=5, 10 and 30. The effect of the aspect ratiohenfindamental frequency is clearly seen from
the table, where the frequency parameter is sedr tioncreased by the increase of the aspect
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ratio. Since the effect of the shear deformatiomese significant for the beam having a lower
aspect ratio, Table 5 reseals that the shear dafmmwhich has been taken into account in the
present work leads to a decrease of the frequea@meter. A careful examination of Table 5
shows that the effect of the aspect ratio is mageifscant for the beam with a higher indey

but the opposite side is hold for the index The numerical result in Table 5 also shows the
ability of the present beam element in modeling gshear deformation effect of the 2-D FGM

beams.

Figure 3. Variation in the first four natural frequency pareters of SS beam.
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Figure 4. Variation in the first four natural frequency pareters of CC beam.

Figure 5. Variation in the first four natural frequency par@ters of C-F beam.
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Table 5. Fundamental frequency parameter) ©f SS beam with various aspect ratidis.

n

X

L/h n

0 0.2 0.5 1.0 1.2 15 2.0

0.2 2.9132 | 3.2445 | 3.5837 | 3.9596 | 4.0705 | 4.2086 | 4.3832
0.5 2.8433 | 3.0961 | 3.3421 | 3.5999 | 3.6732 | 3.7626 | 3.8732

5 1.0 2.7812 | 2.9686 | 3.1419 | 3.3145 | 3.3622 | 3.4195 | 3.4893
15 2.7473 | 2.9011 | 3.0387 | 3.1721 | 3.2084 | 3.2517 | 3.3042
2 2.7256 | 2.8589 | 2.9755 | 3.0866 | 3.1164 | 3.1521 | 3.1952

0.2 3.0510 | 3.3933 | 3.7535 | 4.1573 | 4.2769 | 4.4258 | 4.6139
0.5 2.9773 | 3.2381 | 3.4997 | 3.7776 | 3.857 3.9539 | 4.0735

10 1.0 2.9119 | 3.1050 | 3.2898 | 3.4772 | 3.5292 | 3.5919 | 3.6681
15 2.8762 | 3.0347 3.182 3.3277 | 3.3676 | 3.4155 | 3.4734
2 2.8535 | 2.9908 | 3.1160 | 3.2381 | 3.2713 | 3.3110 | 3.3589

0.2 3.0967 | 3.4425 | 3.8099 | 4.2232 | 4.3459 | 4.3459 | 4.6912
0.5 3.0217 | 3.2850 | 3.5520 | 3.8368 | 3.9182 | 4.0177 | 4.1405

30 1.0 2.9553 | 3.1502 | 3.3388 | 3.5312 | 3.6081 | 3.6493 | 3.7278
15 2.9190 | 3.0789 | 3.2295 | 3.3794 | 3.4206 | 3.4701 | 3.5298
2 2.8958 | 3.0344 | 3.1626 | 3.2884 | 3.3228 | 3.3639 | 3.4136

Figure 6 shows the mode shapes\oil and 8 of the SS beam with an aspect ratib =

20. Sincen,= 0 the beam deduces to the unidirectional FGM heauth thus Fig. 6(a) represents
the mode shapes of the transversely unidirectibeai composed of Zirconia and Titanium. It
can be seen from Fig. 6 that the vibration modethef2-D FGM beam, illustrated in Figure.
6(b), are very different from that of the unidiiecial FGM beam. The longitudinal variation of
the material properties of the 2-D FGM beam, thas & significant influence on the vibration
modes. While the mode shapes of the transverséadepent of the unidirectional FGM beam
are symmetric with respect to the mid-span, thahef2-D FGM beam are not. The difference in
the mode shape ofand @ of the 2-D FGM beam with that of the unidirectiobagam can also
be observed from the figure, and the asymmetrithefsecond mode fof with respect to the
mid-span is clearly seen from Fig. 6(b).
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Figure 6. Mode shapes of SS beam: (@)=2, n, =0, (b) n, = n, =2.

4. CONCLUSION

The free vibration of 2-D FGM beams has been stlith the present paper using a finite
element procedure. The material properties wenenasd to be graded in both the thickness and
longitudinal directions by a power-law distributidaquations of motion based on Timoshenko
beam theory are derived from Hamilton’s principk. higher-order beam element, using
hierarchical functions to interpolate the displaeeinfield, has been derived and employed to
compute the vibration characteristics of the beaht® shear strain has been constrained to
constant for improving the efficiency for the elartheThe numerical results obtained in the
present work reveal that the proposed beam eleisdast convergent, and it is enable to give
accurate natural frequencies by using a small numbelements. It has also been shown that
the derived element has good ability in modelingyshear deformation of the 2-D FGM beams.
A parametric has been carried for the beams witlowa boundary conditions to illustrate the
effects of the material distribution on vibratiomacacteristics of the beams. The influence of the
aspect ratio on the frequency of the beams haseakso examined and highlighted.
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