

Vietnam Journal of Science and Technology 56 (2) (2018) 246-256

DOI: 10.15625/2525-2518/56/2/10672

A BRANCH AND BOUND ALGORITHM FOR WORKFLOW
SCHEDULING

Phan Thanh Toan1, * , Nguyen The Loc2

1Faculty of Technology Education, HNUE, 136 Xuan Thuy, Ha Noi, Viet Nam
2Faculty of Information Technology, HNUE, 136 Xuan Thuy, Ha Noi, Viet Nam

*Email: pttoan@hnue.edu.vn

Received: 13 September 2017; Accepted for publication: 11 January 2018

Abstract. Nowadays, people are connected to the Internet and use different Cloud solutions to
store, process and deliver data. The Cloud consists of a collection of virtual servers that promise
to provision on-demand computational and storage resources when needed. Workflow data is
becoming an ubiquitous term in both science and technology and there is a strong need for new
tools and techniques to process and analyze large-scale complex datasets that are growing
exponentially. Scientific workflow is a sequence of connected tasks with large data transfer from
parent task to children tasks. Workflow scheduling is the activity of assigning tasks to execution
on servers and satisfying resource constraints and this is an NP-hard problem. In this paper, we
propose a scheduling algorithm for workflow data that is derived from the Branch and Bound
Algorithm.

Keywords: workflow scheduling, Branch and Bound Algorithm, cloud computing.

Classification numbers: 4.7.1; 4.7.4

1. INTRODUCTION

With the development of the network technology, Cloud Computing used to solve larger
scale complex problems becomes a focus technology. Scheduling for big data workflow is a
challenging problem in Cloud environment. Data scientists develop workflows by modeling their
complex scientific applications as a set of data processing tasks with a set of data dependencies
between the tasks and there are many scientific applications that use workflow data such as
Montage [1], CyberShake [2], Epigenomics [3], LIGO [4, 5]. The goal of these applications is to
minimize the total cost for executing the workflow.

The workflow scheduling problem in a cloud environment is essentially mapping of tasks in
the workflow to cloud servers that satisfy the order of the tasks in the workflow and the total costs
of executing the workflow is minimum. The calculated volume and data requirements of the tasks
are given. The computation cost of each task on the server and the data communication costs
between the servers are given by the cloud service providers. There are many approaches to
solving workflow scheduling problems. Evolution algorithms have a fast execution time, but the

A branch and bound algorithm for workflow scheduling

247

solution is not optimal. The branch and bound algorithm has a longer execution time, but this
algorithm gives an optimal solution.

The rest of the paper is organized as follow. Section II reviews some of the related works
about the workflow scheduling algorithms. Section III briefly describes the computation platform
on which our algorithm operates. Section IV represent a new scheduling algorithm for data
workflow in the cloud environment based on branch and bound algorithm. Section V describes
the experiments we have conducted by using some scientific workflows. Section VI concludes
our paper and sketches the future works.

2. RELATED WORK

Workflow is a sequence of connected tasks. Workflow scheduling is a big issue in the era of
Cloud Computing. Basically it is the issue related to the mapping of each task to an appropriate
server and allowing the task to satisfy some performance constraints. The mapping of tasks to the
computation resources such as servers is an NP-complete problem [6]. So, past works have
proposed many heuristics based approach to scheduling Cloud’s workflows.

A. Mohan [7] proposed a scheduling algorithm in heterogeneous cloud computing
environment which minimize the makespan of workflow. B. Lin [8] proposed a scheduling
algorithm for big data application in Cloud environments. Guo-Ning and Ting-Lei [9] represented
an optimized algorithm for task scheduling based on Hybrid Genetic Algorithms. The authors
covered in their study the QoS requirements like completion time, bandwidth, cost, distance,
reliability of different types of tasks. L. Guo [10] represented a model for task scheduling in
Cloud to minimize the overall time of execution and transmission. L. Guo proposed the PSO
algorithm which is based on small position value rule. R. Rajkumar [11] proposed an hierarchical
scheduling algorithm which helps satisfy service level agreement with quick response from the
service provider. S.J. Xue [12] proposed the hybrid PSO algorithm to minimize the cost execution
of the workflow. Crossover and mutation of genetic algorithm are embedded into the PSO
algorithm to improve the global search. J. Liu In et al. [13] represented the components of an
intelligent job scheduling system in cloud computing. Pandey [14] represented a scheduling
algorithm (PSO_H) to minimize the total cost of the execution at servers, instead of finding the
schedule which has a minimum cost, PSO_H looked for the schedule that minimizes the
execution cost of the server which has greatest cost.

3. HETEROGENEOUS COMPUTATION PLATFORM

3.1. Problem formulation

Briefly, CLOWS problem is identified as: Given a set of servers S-the computation resource
of the Cloud Center-and a set of workflow tasks T. How to determine a schedule of minimal total
cost for T on S.

We denote the workflow as a Directed Acyclic Graph (DAG) represented by G = (V, E),
where
• V is set of vertex, each vertex represent a task,

• T = {T1, T2,…,TM } is the set of tasks, M is the number of tasks,

Phan Thanh Toan, Nguyen The Loc

248

• E represents the data dependencies between these tasks. The edge (Ti, Tj) ∈ E means the
task Ti is the father of the task Tj, tdatak = (Tj, Tk)∈ E is the data produced by Tj will be
consumed by the task Tk. (see Figure 1),

• The Cloud’s computation resource, set of servers S = {S1, S2,….,SN}. N is the number of
servers.

• The computation of task Ti denoted by Wi (flop-floating point operations).
• P(Sj) : the computation power of the server Sj (unit MI/s : million instructions/second).

• The bandwidth B(Si,Sj) between server Si and server Sj represents by the function B(): S×S
→ R+ . We assume that B(Si,Si) = ∞ and B(Si,Sj) = B(Sj,Si).

• Each scheduling plan can be represented by the function f(): T→S where f(Ti) is the server
which handle the task Ti.

• ��� characterizes where task Tk is processed. ��� � 1 iff task Tk is processed on server Sj.

• ��,�� denotes the amount of data to be transferred from server Si to Sj for task unit iff ��� �1. ��,�� � 40.1, denotes 40.1 units of data are to be transferred from Si to Sj for task Tk

• ������,� characterizes the cost of data transfer for a link per data unit. It is added to the
overall cost iff ��,�� � 0	 and ��� � 1

• ������� characterizes the cost of computation of a Server. ������� � 1 denotes the cost of
using a Server Sj. It is added to the overall cost iff ��� � 1

• tftimei,j denotes the time for transferring amount data from sever Si to Sj for task Tk iff ��,�� � 0 and ��� � 1

������,� � ��,������,��� (1)

• �������� denotes the time for executing a task Tk on server Sj. It is added to execution time

of Server Sj iff ��� � 1 and calculated as equation (2).

 ������� � ������� (2)

• Execution time of task Tk denotes as ETk !� � ∑ ∑ ��,�� # ������,� # ���$�%& '	∑ �������� # ���$�%&$�%& (3)

• We denote the cost of the workflow as CT :
k
j

k
jj

k
j

TkSji
ji

k
ji xextimetexxttfdCT ××+××= ∑

∈∈

coscos
,,

,, (4)

• Formally, we need to minimize the cost of the workflow ; find CTmin = Min{CT=
k
j

k
jj

k
j

TkSji
ji

k
ji xextimetexxttfd ××+××∑

∈∈

coscos
,,

,, }

The constraints can be described as follows:

a) ��� (0;	∀+ � 1,2, . . , -	./�	0 � 1,2,… ,2

b) ��,�� (0, ∀�, 0 � 1,2, . . , 2	./�	+ � 1,2,… ,-

c) ��.�.�� (0,∀+ � 1,2, . . , -

d) ������,� (0;	∀�, 0 � 1,2,… ,2

A branch and bound algorithm for workflow scheduling

249

e) �������� (0;	∀+ � 1,2, . . , -	./�	0 � 1,2,… ,2

f) ∑ ��� � 1$�%& g� ∑ ∑ ���$�%&$�%& # ��,�� � ��.�.� 	h� ∑ ∑ ∑ ���$�%&$�%& # ��,��5�%& � ∑ ��.�.�5�%& 	

3.2. Problem complexity

Theorem 1: CLOWS is NP-Hard in strong sense.

Proof.

Let’s consider the SCHED problem, which have described and proved by O. Sinnen that to be
NP-Hard in strong sense [15].

Table 1. The comparison between SCHED and CLOWS problem.

Assumptions,
constraints and
the objective

SCHED problem CLOWS problem

Computation
power of
servers

Homogeneous: the computation power of
servers are the same:
P(Si) = P(Sj) (∀i,j)

Heterogeneous: the
computation power are not
uniform.

The execution
progressing of
tasks

A task could be executed by an arbitrary
server, but by no more than one server.
Each server could not execute more than
one task at a time.

The same as SCHED

Communication
speed between
servers

Homogeneous: the bandwidth of
connections are the same:
B(Si, Sk) = B(Su, Sv) ∀ i,k,u,v

Heterogeneous: the
bandwidth of connections are
not uniform

Objective
function Minimize the makspan of workflow Minimize the total cost of

workflow
Data
dependencies
between tasks

If task Ti was the father of the task Tk,
then the data produced by Ti will be
consumed by the task Tk

The same as SCHED

Obviously, the main observation from Table 1 is that SCHED problem is a special case of
CLOWS problem where computation power of servers and communication speed of connections
are uniform.

Figure 1. An example of workflow with 5 tasks

T1

T4 T3 T2

T5

Phan Thanh Toan, Nguyen The Loc

250

Assume that there is an algorithm X which could be used to find out the optimal schedule
for the CLOWS problem. Since SCHED problem is sub instance of CLOWS problem, so
algorithm X could also be used to find out the optimal schedule for the SCHED problem, which
mean that SCHED ∞ CLOWS.

As J.D. Ullman showed in [6], if SCHED ∞ CLOWS then CLOWS is NP-Hard in strong sense.

4. PROPOSED ALGORITHM

4.1. Branch and Bound Algorithm

Branch and bound algorithms are a variety of adaptive partition strategies that have been
proposed to solve global optimization models. These are based upon partition, sampling, and
subsequent lower and upper bounding procedures: these operations are applied iteratively to the
collection of active subsets within the feasible set D. Their exhaustive search feature is
guaranteed in similar spirit to the analogous integer linear programming methodology. Branch
and Bound Algorithm consists of two main procedures:

Branching: splitting the problem into sub-problems.

Bounding: calculating lower and/or upper bounds for the objective function value of the sub-
problem.

The branching is performed in the following algorithm by separating the current subspace
into two parts using the integrality requirement. Using the bounds, unpromising sub-problems can
be eliminated.

Procedure Branch(k)
1. begin
2. for a k∈Ak do
3. if a k∈Sk then
4. begin
5. x k := a k;
6. if(k = n)then <update fopt>
7. else
8. if g(x 1, x 2,…,x k) ≤ fopt then
9. Branch(k+1)
10. end;
end;

Procedure BranchAndBound

1. begin
2. fopt:= + ∞;
3. Branch(1);
4. if fopt < + ∞ then
5. return fopt

end;

4.2. Proposed Algorithm

Solution representation

A branch and bound algorithm for workflow scheduling

251

In the proposed scheduling algorithm, the solution is represented as a vector of length equal
to the number of tasks. The value corresponding to each position i in the vector represents the
server to which task i was executed.

Example 1

Consider a workflow with a set of tasks T={T1, T2, T3, T4, T5}, a set of servers S = {S1, S2,
S3}. So the particle xi

k = [1 ; 2 ; 1 ; 3 ; 2] gives us the following scheduling plan:

T1 T2 T3 T4 T5

S1 S2 S1 S3 S2

In that scheduling plan, tasks T1 and T3 will be executed by the server S1, tasks T2 and T5 are
assigned to the server S2 and task T4 is handled by server S3.

Lower bound function

Each solution of the problem is an M-dimensional vector x = (x1, x2,…,xM); xj ∈ S

Assuming that Cmax = max{P(Sj)}; j ∈S; Sj is the the greatest computing power

Consider the partial solution (x1, x2,…,xL), In that scheduling plan SL= (Sx1, Sx2,..,SxL), and the
cost of this partial solution is:

k
j

k
jj

k
j

TkSji
ji

k
ji xextimetexxttfd

L

××+××= ∑
∈∈

coscos
,,

,,δ (5)

The lower bound function of partial solution will be calculated as the following:

∑
−∈∈

×××+=
LTTkSj

k
j

k
j xWtex

C
kg

,max

cos
1

)(δ (6)

Proof: We have

 ��/6∑ ��,���,�∈�,�∈8 # ������,� # ��� ' ������� # �������� # ���9
� 	��/ : ; ��,���,�∈�,�∈8<

# ������,� # ��� ' ������� # �������� # ��� '	 ; ��,���,�∈�,�∈8=8<
������,� # ��� ' ������� # �������� # ���>

= ��/6? '	∑ ��,���,�∈�,�∈8=8< # ������,� # ��� ' ������� # �������� # ���9 �	
� 	? ' 	��/ :	 ; ��,���,�∈�,�∈8=8<

������,� # ��� ' ������� # �������� # ���>

� ? ' 	��/ :	 ; ��,���,�∈�,�∈8=8<
# ������,� # ��� ' ������� # @�ABC�D # ���>	

(? ' 	��/ :	 ; ������� # @�ABC�D # ����,�∈�,�∈8=8<
> ; E��.F��	 ; ��,���,�∈�,�∈8=8<

# ������,� 	(0	
(? '	 1GHIJ :	 ; ������� #@� # ����∈�,�∈8=8<

> 	� K�+�

Phan Thanh Toan, Nguyen The Loc

252

So, g(k) is the lower bound function of partial solution.
Based on the lower bound function and Branch and Bound method we proposed the following
algorithm:

Algorithm BBScheduling

Input: set of tasks T, set of servers S, size of workload W[1× M],
server’s execution cost TP[M× N], cost of communication between
servers PP[N×N], communication data D[M×M]

Output: best solution
function cost(x1, x2,..,xM)
begin

return
k
j

k
jj

k
j

TkSji
ji

k
ji xextimetexxttxd

L

××+××∑
∈∈

coscos
,,

,, ;

end;
Procedure SchedulingBranch(k)
begin
 for j:=1 to M do

if UCV(j,k) then
begin

a[i]:=j;
if i=M then Ghinhan;
else if g(k)< fopt then

SchedulingBranch(k+1);
end;

end;
procedure candidates(j,k)
begin

var i:integer;
for i=1 to k-1 do

if j=a i then
return false;

else return true;
end;
procedure record
begin

double c = cost(x 1, x 2,..,x M);
if c < fopt then

fopt = c;
end
Algorithm BBScheduling
begin
1. Calculate average computation cost of all tasks in all compute

resources
2. Calculate average cost of (communication/size of da ta) between

resources
3. double fopt = + ∞;
4. SchedulingBranch(1);
5. writeln(fopt);
end

The BBScheduling algorithm works as following:

A branch and bound algorithm for workflow scheduling

253

To generate an empty schedule with no server sequenced and indicate this by
(t1*,t2

*,t3
*,..,tM

). Here “” in the task sequence indicates that no server has yet been assigned to
execute task in that position.

To construct a schedule starting from the first position, we move from node (t1*,t2
*,t3

*,..,tM
*)

to one of the M possible nodes (Si,t2
*,t3

*,..,tM
*); (Sj,t2

*,t3
*,..,tM

*); .. ; (Sk,t2
*,t3

*,..,tM
*). Si, Sj, Sk ∈S

To assign the second task in the sequence, we branch from the each of these M nodes to
other possibilities. Example branching from (Si,t2

*,t3
*,..,tM

*) gives (Si, Sj,t3
*,..,tM

*),
(Si,Sk,t3

*,..,tM
*),…

Assigning the task to be processed in the third position immediately fixes the last task.

This process is represented by a branching tree. Each node of a tree corresponds to a partial
schedule with several server assigned to the first positions. To avoid full enumeration of all task
permutations, we calculate in each step the lower bound function by equation (6) of the value of
the objective function for each partial schedule.

5. EXPERIMENTAL RESULTS

5.1. Problem Instance

We use both random and real world instances in our experiments using the following data sets:
The cost of unit data transfer between servers and the processing cost of servers are

collected from a Cloud provider such as Amazon [16] and its Web site (exp.
http://aws.amazon.com/ec2/pricing)

The sets of working data are collected from Montage project [1] and Epigenomics [3], an
Epigenomics’s workflow is depicted in Figure 2. The instances are divided into 5 groups based
on the number of servers N, the number of tasks M and ratio α:
Group 1: M = 10, N = 3, α=0.3; Group 2: M = 10, N = 5, α =0.2 ;
Group 3: M = 10, N = 5, α =0.53 ; Group 4: M = 20, N = 3, α =0.15;
Group 5: M = 10, N = 5, α =0.3
 We denote the ratio of the number of edges and the number of vertexes of graph G by:

() 2/1−×
=

MM

E
α

1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6

7

8

1 fastqSplit

2 filterContam

s

3 sol2sanger

4 fastq2bfq

5 map

6 mapMerge

7 maqIndex

8 pileup

Phan Thanh Toan, Nguyen The Loc

254

5.2. Experiments

In this paper we perform exhausted search and compare with the result of BBS cheduling algorithm,
the results have been illustrated in the Table 2.

Table 2. Experiments results.

Data M N α
BBScheduling Exhausted Search Algorithm

Cost Execution time Cost Excution time
T1 10 3 0.3 7470.7 2 (s) 7470.7 3 (s)

T2 10 5 0.2 4866.2 5 (s) 4866.2 28 (m)

T3 10 5 0.53 5583.9 7 (s) 5583.9 30 (m)

T4 20 3 0.15 8679 6 (m) 8679 121 (h)

T5 20 5 0.3 8685.4 6 (m) 8685.4 132 (h)

Figure 3. Experiments results of the Instance 1, 2, 3.

Figure 4. Experiments results of the Instance 4,5.

0

500

1000

1500

2000

T1 T2 T3

2 5 73

1680
1800

BBScheduling Exhausted Search Algorithm

0

2000

4000

6000

8000

T4 T5

BBScheduling Exhausted Search Algorithm

Figure 2. Workflow of Epigenomics [17].

A branch and bound algorithm for workflow scheduling

255

The results show that both algorithms find the optimal solution, the execution time of
BBScheduling algorithm is smaller than the execution time of exhausted algorithm. Especially
when the number tasks of workflow increases, the execution time of exhausted algorithm is very
large. Example when the number of tasks are 20 and number of Servers are 3, the excution time
of exhausted algorithm is 121 hours.

5.3. Results and Discussion

Workflow scheduling is an NP-hard problem, the execution time increase exponentially by
the data input, computational complexity of this case is O(MN), with M is the number of tasks and
N is the number of servers. Proposed algorithm that solves the problem with medium and small
input data, the execution time of the algorithm is considerably smaller than execution time of the
exhausted search algorithm. The results summarized in Table 2 and Figure 3, 4 depict the
performance of algorithms where the vertical axis represents the execution time of the algorithms.

6. CONCLUSION

The ultimate goal of any scheduling algorithm is the optimum solution which minimize the
execution time. In this paper we proposed a scheduling algorithm based on Branch and Bound
method. Our contributions can be summarized as follows:

• Announcing and formulating a new problem about Workflow Scheduling on Cloud
Center which called CLOWS (Cloud Workflow Scheduling). We also prove that
CLOWS belongs to NP-Hard class

• Proposing a new scheduling algorithm named BBScheduling based on the Branch and
Bound method.

The experiment’s results show that execution time of BBScheduling is smaller than the
execution time of the exhausted search algorithm, especially when it works in a small scale
Cloud, i.e. the number of servers and tasks are not very large. In the future, we are planning to
improve this algorithm for solving bigger instances by using evolution algorithms.

REFERENCES

1. Berriman G. B, Ewa D., John G., Joseph J., Daniel K.S., Carl K., Anastasia L., Thomas
P.A., Gurmeet S., Mei-Hu S. - Montage: A Grid Enabled Engine for Delivering Custom
Science Grade Mosaics On Demand, Proceedings of the SPIE 5493 (2004) 221-232 .

2. Maechling P., Ewa D., Li Z., Robert G., Gaurang M., Nitin G., John M., Carl K., Scott C.,
David O., Hunter F., Vipin G., Karan V., Thomas J., Edward F. - SCEC CyberShake
Workflows, Automating Probabilistic Seismic Hazard Analysis Calculations, Springer,
2007, pp.143-163.

3. Hui S., Peter W. L. - Interplay between the Cancer Genome and Epigenome,
Cell Elsevier Inc., ISSN: 0092-8674, 153 (1) (2013) 38-55.

4. The Laser Interferometer Gravitational-Wave Observatory and the first direct observation
of gravitational waves, The Royal Swedish Academy òf Sciences (2017)

5. Abbott B. P. - LIGO: the Laser Interferometer Gravitational-Wave Observatory,
Proceedings of the Conference ICALEPCS, San Jose, USA, 2001, pp. 145-152.

Phan Thanh Toan, Nguyen The Loc

256

6. Ullman J. D. - NP-complete scheduling problems, Journal of Computer and System
Sciences 10 (3) (1975) 384-393.

7. Mohan A., Ebrahimi M., Lu S. and Kotov A. - Scheduling big data workflows in the cloud
under budget constraints, Proceedings of the IEEE International Conference on Big Data,
Washington, 2016, pp. 2775-2784.

8. Lin B., Guo W., Xiong N., Chen G., Vasilakos A. V. and Zhang H. - A Pretreatment
Workflow Scheduling Approach for Big Data Applications in Multicloud Environments,
IEEE Transactions on Network and Service Management 13 (2016) pp.581-594.

9. Guo-Ning G. and Ting-Lei H. - Genetic Simulated Annealing Algorithm for Task Sched-
uling based on Cloud Computing Environment, Proceedings of International Conference
on Intelligent Computing and Integrated Systems, 2010, pp. 60-63.

10. Guo L., Zhao S., Shen S., Jiang C. - Task Scheduling Optimization in Cloud Computing
Based on Heuristic Algorithm, Journal of Networks, ACADEMY PUBLISHER 7 (3)
(2012) 547-552.

11. Rajkumar R., Mala T. - Achieving Service Level Agreement in Cloud Environment using
Job Prioritization in Hierarchical Scheduling, Proceeding of the International Conference
on Information System Design and Intelligent Application, Springer Verlag Berlin
Heidelberg 132 (2012) 547-554.

12. Xue S. J., Wu W. - Scheduling Workflow in Cloud Computing Based on Hybrid Particle
Swarm Algorithm, Indonesian Journal of Electrical Engineering 10 (2012) pp.1560-1566.

13. Liu J., Luo X., Li B., Zhang X., Zhang F. - An Intelligent Job Scheduling System for Web
Service in Cloud Computing, Indonesian Journal of Electrical Engineering 11 (2013)
2956-2961.

14. Kennedy J., Eberhart R. C. - Particle swarm optimization, Proceeding of IEEE
International Conference on Neural Networks, 1995, pp.1942–1948.

15. Sinnen O. - Task scheduling for parallel systems, John Wiley & Sons Inc., ISBN: 978-0-
471-73576-2, 2007.

16. Vliet J. V., Paganelli F., - Programming Amazon EC2, O'Reilly Media,
ISBN 1449393683, 2011.

17. https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.

