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Abstract. Nowadays, people are connected to the Internet and use different Cloud solutions to 
store, process and deliver data. The Cloud consists of a collection of virtual servers that promise 
to provision on-demand computational and storage resources when needed. Workflow data is 
becoming an ubiquitous term in both science and technology and there is a strong need for new  
tools and techniques to process and analyze large-scale complex datasets that are growing 
exponentially. Scientific workflow is a sequence of connected tasks with large data transfer from 
parent task to children tasks. Workflow scheduling is the activity of assigning tasks to execution 
on servers and satisfying resource constraints and this is an NP-hard problem. In this paper, we 
propose a scheduling algorithm for workflow data that is derived from the Branch and Bound 
Algorithm. 

Keywords: workflow scheduling, Branch and Bound Algorithm, cloud computing. 

Classification numbers:  4.7.1; 4.7.4   

1. INTRODUCTION 

With the development of the network technology, Cloud Computing used to solve larger 
scale complex problems becomes a focus technology. Scheduling for big data workflow is a 
challenging problem in Cloud environment. Data scientists develop workflows by modeling their 
complex scientific applications as a set of data processing tasks with a set of data dependencies 
between the tasks and there are many scientific applications that use workflow data such as 
Montage [1], CyberShake [2], Epigenomics [3], LIGO [4, 5]. The goal of these applications is to 
minimize the total cost for executing the workflow.  

The workflow scheduling problem in a cloud environment is essentially mapping of tasks in 
the workflow to cloud servers that satisfy the order of the tasks in the workflow and the total costs 
of executing the workflow is minimum. The calculated volume and data requirements of the tasks 
are given. The computation cost of each task on the server and the data communication costs 
between the servers are given by the cloud service providers. There are many approaches to 
solving workflow scheduling problems. Evolution algorithms have a fast execution time, but the 
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solution is not optimal. The branch and bound algorithm has a longer execution time, but this 
algorithm gives an optimal solution. 

The rest of the paper is organized as follow. Section II reviews some of the related works 
about the workflow scheduling algorithms. Section III briefly describes the computation platform 
on which our algorithm operates. Section IV represent a new scheduling algorithm for data 
workflow in the cloud environment based on branch and bound algorithm. Section V describes 
the experiments we have conducted by using some scientific workflows. Section VI concludes 
our paper and sketches the future works. 

2. RELATED WORK 

Workflow is a sequence of connected tasks. Workflow scheduling is a big issue in the era of 
Cloud Computing. Basically it is the issue related to the mapping of each task to an appropriate 
server and allowing the task to satisfy some performance constraints. The mapping of tasks to the 
computation resources such as servers is an NP-complete problem [6]. So, past works have 
proposed many heuristics based approach to scheduling Cloud’s workflows. 

A. Mohan [7] proposed a scheduling algorithm in heterogeneous cloud computing 
environment which minimize the makespan of workflow. B. Lin [8] proposed a scheduling 
algorithm for big data application in Cloud environments. Guo-Ning and Ting-Lei [9] represented 
an optimized algorithm for task scheduling based on Hybrid Genetic Algorithms. The authors 
covered in their study the QoS requirements like completion time, bandwidth, cost, distance, 
reliability of different types of tasks. L. Guo [10] represented a model for task scheduling in 
Cloud to minimize the overall time of execution and transmission. L. Guo proposed the PSO 
algorithm which is based on small position value rule. R. Rajkumar [11] proposed an hierarchical 
scheduling algorithm which helps satisfy service level agreement with quick response from the 
service provider. S.J. Xue [12] proposed the hybrid PSO algorithm to minimize the cost execution 
of the workflow. Crossover and mutation of genetic algorithm are embedded into the PSO 
algorithm to improve the global search. J. Liu In et al. [13] represented the components of an 
intelligent job scheduling system in cloud computing. Pandey [14] represented a scheduling 
algorithm (PSO_H) to minimize the total cost of the execution at servers, instead of finding the 
schedule which has a minimum cost, PSO_H looked for the schedule that minimizes the 
execution cost of the server which has greatest cost. 

3. HETEROGENEOUS COMPUTATION PLATFORM 

3.1. Problem formulation 

Briefly, CLOWS problem is identified as: Given a set of servers S-the computation resource 
of the Cloud Center-and a set of workflow tasks T. How to determine a schedule of minimal  total 
cost for T on S. 

We denote the workflow as a Directed Acyclic Graph (DAG) represented by G = (V, E), 
where  
• V is set of vertex, each vertex represent a task, 

• T = {T1, T2,…,TM } is the set of tasks, M is the number of tasks, 
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• E represents the data dependencies between these tasks. The edge (Ti, Tj) ∈ E means the 
task Ti is the father of the task Tj, tdatak = (Tj, Tk)∈ E  is the data produced by Tj will be 
consumed by the task Tk. (see Figure 1), 

• The Cloud’s computation resource, set of servers S = {S1, S2,….,SN}. N is the number of 
servers. 

• The computation of task Ti denoted by Wi (flop-floating point operations). 
• P(Sj) : the computation power of the server Sj (unit MI/s : million instructions/second).  

• The bandwidth B(Si,Sj) between server Si and server Sj represents by the function B(): S×S 
→ R+ . We assume that B(Si,Si) =  ∞  and B(Si,Sj ) = B(Sj,Si). 

• Each scheduling plan can be represented by the function f(): T→S where f(Ti) is the server 
which handle the task Ti.  

• ��� characterizes where task Tk is processed. ��� � 1 iff task Tk is processed on server Sj. 

• ��,��  denotes the amount of data to be transferred from server Si to Sj for task unit  iff ��� �1.  ��,�� � 40.1, denotes 40.1 units of data are to be transferred from Si to Sj for task Tk 

• ������,� characterizes the cost of data transfer for a link per data unit. It is added to the 
overall cost iff ��,�� � 0	 and ��� � 1 

• ������� characterizes the cost of computation of a Server. ������� � 1 denotes the cost of 
using a Server Sj. It is added to the overall cost iff ��� � 1   

• tftimei,j denotes the time for transferring amount data from sever Si to Sj for task Tk iff ��,�� � 0 and ��� � 1 

������,� � ��,������,���            (1) 

• �������� denotes the time for executing a task Tk on server Sj. It is added to execution time 

of Server Sj iff ��� � 1 and calculated as equation (2). 

            ������� � �������              (2) 

• Execution time of task Tk denotes as ETk   !� � ∑ ∑ ��,�� # ������,� # ���$�%& '	∑ �������� # ���$�%&$�%&    (3) 

• We denote the cost of the workflow as CT : 
k
j

k
jj

k
j

TkSji
ji

k
ji xextimetexxttfdCT ××+××= ∑

∈∈

coscos
,,

,,   (4) 

• Formally, we need to minimize the cost of the workflow ; find CTmin =  Min{CT=
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The constraints can be described as follows: 

a) ��� ( 0;	∀+ � 1,2, . . , -	./�	0 � 1,2,… ,2 

b) ��,�� ( 0, ∀�, 0 � 1,2, . . , 2	./�	+ � 1,2,… ,- 

c) ��.�.�� ( 0,∀+ � 1,2, . . , - 

d) ������,� ( 0;	∀�, 0 � 1,2,… ,2 
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e) �������� ( 0;	∀+ � 1,2, . . , -	./�	0 � 1,2,… ,2 

f) ∑ ��� � 1$�%&  g� ∑ ∑ ���$�%&$�%& # ��,�� � ��.�.� 	h� ∑ ∑ ∑ ���$�%&$�%& # ��,��5�%& � ∑ ��.�.�5�%& 	

 

3.2. Problem complexity 

Theorem 1: CLOWS is NP-Hard in strong sense. 

Proof.  

Let’s consider the SCHED problem, which have described and proved by O. Sinnen that to be 
NP-Hard in strong sense [15]. 

Table 1. The comparison between SCHED and CLOWS problem. 

Assumptions, 
constraints and  
the objective 

SCHED problem CLOWS problem 

Computation 
power of 
servers 

Homogeneous: the computation power of 
servers are the same:  
P(Si) = P(Sj) (∀i,j) 

Heterogeneous: the 
computation power are not 
uniform. 

The execution 
progressing of 
tasks 

A task could be executed by an arbitrary 
server, but by  no more than  one server. 
Each server could not execute more than 
one task at a time. 

The same as SCHED 

Communication 
speed between 
servers 

Homogeneous: the bandwidth of 
connections are the same:  
B(Si, Sk) = B(Su, Sv) ∀ i,k,u,v   

Heterogeneous: the 
bandwidth of connections are 
not uniform 

Objective 
function  Minimize the makspan of workflow Minimize the total cost of 

workflow 
Data 
dependencies 
between tasks 

If task Ti was the father of the task Tk, 
then the data produced by Ti will be 
consumed by the task Tk 

The same as  SCHED 

Obviously, the main observation from Table 1 is that SCHED problem is a special case of 
CLOWS problem where computation power of servers and communication speed of connections 
are uniform.  

Figure 1. An example of workflow with 5 tasks 

T1 

T4 T3 T2 

T5 
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Assume that there is an algorithm X which could be used to find out the optimal schedule 
for the CLOWS problem. Since SCHED problem is sub instance of CLOWS problem, so  
algorithm X could also be used to find out the optimal schedule for the SCHED problem, which 
mean that SCHED ∞ CLOWS.  

As J.D. Ullman showed in [6], if SCHED ∞ CLOWS then CLOWS is NP-Hard in strong sense. 

4. PROPOSED ALGORITHM 

4.1. Branch and Bound Algorithm 

Branch and bound algorithms are a variety of adaptive partition strategies that have been 
proposed to solve global optimization models. These are based upon partition, sampling, and 
subsequent lower and upper bounding procedures: these operations are applied iteratively to the 
collection of active subsets within the feasible set D. Their exhaustive search feature is 
guaranteed in similar spirit to the analogous integer linear programming methodology. Branch 
and Bound Algorithm consists of two main procedures: 

Branching: splitting the problem into sub-problems. 

Bounding: calculating lower and/or upper bounds for the objective function value of the sub-
problem. 

The branching is performed in the following algorithm by separating the current subspace 
into two parts using the integrality requirement. Using the bounds, unpromising sub-problems can 
be eliminated. 

Procedure Branch(k) 
1. begin 
2.  for  a k∈Ak  do 
3.   if   a k∈Sk then 
4.   begin 
5.     x k :=  a k;  
6.     if(k = n)then <update fopt> 
7.   else    
8.   if g(x 1, x 2,…,x k) ≤ fopt then 
9.  Branch(k+1) 
10.   end; 
end; 

Procedure BranchAndBound 

1.  begin 
2.  fopt:= + ∞;  
3.  Branch(1); 
4.  if fopt < + ∞ then 
5.   return fopt  

end; 

4.2. Proposed Algorithm  

Solution representation 
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In the proposed scheduling algorithm, the solution is represented as a vector of length equal 
to the number of tasks. The value corresponding to each position i in the vector represents the 
server to which task i was executed. 

Example 1 

Consider a workflow with a set of tasks T={T1, T2, T3, T4, T5}, a set of servers S = {S1, S2, 
S3}. So the particle xi

k = [1 ; 2 ; 1 ; 3 ; 2] gives us the following scheduling plan: 

T1 T2 T3 T4 T5 

S1 S2 S1 S3 S2 

In that scheduling plan, tasks T1 and T3 will be executed by the server S1, tasks T2 and T5 are 
assigned to the server S2 and task T4 is handled by server S3. 

Lower bound function 

Each solution of the problem is an M-dimensional vector x = (x1, x2,…,xM); xj ∈ S 

Assuming that Cmax = max{P(Sj)}; j ∈S; Sj is the the greatest computing power 

Consider the partial solution (x1, x2,…,xL), In that scheduling plan SL= (Sx1, Sx2,..,SxL), and the 
cost of this partial solution is: 

k
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k
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k
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The lower bound function of partial solution will be calculated as the following: 
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Proof: We have 
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So, g(k) is the lower bound function of partial solution. 
Based on the lower bound function and Branch and Bound method we proposed the following 
algorithm: 

Algorithm BBScheduling 

Input:  set of tasks T, set of servers S, size of workload  W[1× M], 
server’s execution cost TP[M× N], cost of communication between 
servers PP[ N×N], communication data  D[ M×M]    

Output: best solution 
function cost(x1, x2,..,xM) 
begin 

return 
k
j

k
jj

k
j

TkSji
ji

k
ji xextimetexxttxd

L

××+××∑
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coscos
,,

,,  ;   

end; 
Procedure SchedulingBranch(k) 
begin 
 for j:=1 to M do 

if UCV(j,k) then 
begin 

a[i]:=j; 
if i=M then Ghinhan; 
else if g(k)< fopt then 

SchedulingBranch(k+1); 
end; 

end; 
procedure candidates(j,k) 
begin 

var i:integer; 
for i=1 to k-1 do 

if j=a i  then 
return false; 

else return true; 
end; 
procedure record 
begin 

double c = cost(x 1, x 2,..,x M); 
if c < fopt then 

fopt = c; 
end 
Algorithm BBScheduling 
begin 
1.  Calculate average computation cost of all tasks in all compute 

resources  
2.  Calculate average cost of (communication/size of da ta) between 

resources 
3.  double fopt = + ∞; 
4.  SchedulingBranch(1); 
5.  writeln(fopt); 
end 

The BBScheduling algorithm works as following: 
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To generate an empty schedule with no server sequenced and indicate this by 
(t1*,t2

*,t3
*,..,tM

*). Here “*” in the task sequence indicates that no server has yet been assigned to 
execute task in that position. 

To construct a schedule starting from the first position, we move from node (t1*,t2
*,t3

*,..,tM
*) 

to one of the M possible nodes (Si,t2
*,t3

*,..,tM
*); (Sj,t2

*,t3
*,..,tM

*); .. ; (Sk,t2
*,t3

*,..,tM
*). Si, Sj, Sk ∈S 

To assign the second task in the sequence, we branch from the each of these M nodes to 
other possibilities. Example branching from (Si,t2

*,t3
*,..,tM

*) gives (Si, Sj,t3
*,..,tM

*), 
(Si,Sk,t3

*,..,tM
*),… 

Assigning the task to be processed in the third position immediately fixes the last task. 

This process is represented by a branching tree. Each node of a tree corresponds to a partial 
schedule with several server assigned to the first positions. To avoid full enumeration of all task 
permutations, we calculate in each step the lower bound function by equation (6) of the value of 
the objective function for each partial schedule. 

5. EXPERIMENTAL RESULTS 

5.1. Problem Instance  

We use both random and real world instances in our experiments using the following data sets:  
The cost of unit data transfer between servers and the processing cost of servers are 

collected from a Cloud provider such as Amazon [16] and its Web site (exp. 
http://aws.amazon.com/ec2/pricing) 

The sets of working data are collected from Montage project [1] and Epigenomics [3], an 
Epigenomics’s workflow is depicted in Figure 2. The instances are divided into 5 groups based 
on the number of servers N, the number of tasks M and ratio α: 
Group 1: M = 10, N = 3, α=0.3; Group 2: M = 10, N = 5, α =0.2 ;  
Group 3: M = 10, N = 5, α =0.53 ; Group 4: M = 20, N = 3, α =0.15;  
Group 5: M = 10, N = 5, α =0.3 
 We denote the ratio of the number of edges and the number of vertexes of graph G by: 

( ) 2/1−×
=

MM

E
α
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5.2. Experiments  

In this paper we perform exhausted search and compare with the result of BBS cheduling algorithm, 
the results have been illustrated in the Table 2.  

Table 2. Experiments results. 

Data M N α 
BBScheduling Exhausted Search Algorithm 

Cost Execution time Cost Excution time 
T1 10 3 0.3 7470.7 2 (s) 7470.7 3 (s) 

T2 10 5 0.2 4866.2 5 (s) 4866.2 28 (m) 

T3 10 5 0.53 5583.9 7 (s) 5583.9 30 (m) 

T4 20 3 0.15 8679 6 (m) 8679 121 (h) 

T5 20 5 0.3 8685.4 6 (m) 8685.4 132 (h) 

 
Figure 3. Experiments results of the Instance 1, 2, 3. 

 
Figure 4. Experiments results of the Instance 4,5. 
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Figure 2. Workflow of Epigenomics [17]. 
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The results show that both algorithms find the optimal solution, the execution time of 
BBScheduling algorithm is smaller than the execution time of exhausted algorithm. Especially 
when the number tasks of workflow increases, the execution time of exhausted algorithm is very 
large. Example when the number of tasks are 20 and number of Servers are 3, the excution time 
of exhausted algorithm is 121 hours. 

5.3. Results and Discussion 

Workflow scheduling is an NP-hard problem, the execution time increase exponentially by 
the data input, computational complexity of this case is O(MN), with M is the number of tasks and 
N is the number of servers. Proposed algorithm that solves the problem with medium and small 
input data, the execution time of the algorithm is considerably smaller than execution time of the 
exhausted search algorithm. The results summarized in Table 2 and Figure 3, 4 depict the 
performance of algorithms where the vertical axis represents the execution time of the algorithms.   

6. CONCLUSION 

The ultimate goal of any scheduling algorithm is the optimum solution which minimize the 
execution time. In this paper we proposed a scheduling algorithm based on Branch and Bound 
method. Our contributions can be summarized as follows: 

• Announcing and formulating a new problem about Workflow Scheduling on Cloud 
Center which called CLOWS (Cloud Workflow Scheduling). We also prove that 
CLOWS belongs to NP-Hard class 

• Proposing a new scheduling algorithm named BBScheduling based on the Branch and 
Bound method. 

The experiment’s results show that execution time of BBScheduling is smaller than the 
execution time of the exhausted search algorithm, especially when it works in a small scale 
Cloud, i.e. the number of servers and tasks are not very large. In the future, we are planning to 
improve this algorithm for solving bigger instances by using evolution algorithms. 
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