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Abstract. Hydroxyapatite (HAp) co-doped by magnesium (Mg), strontium (Sr), sodium (Na) 
and fluorine (F) was deposited on the 316L stainless steel (316L SS) substrate by 
electrodeposition method. The influences of scanning potential ranges, scanning times, scanning 
rates to form MgSrFNaHAp coating were investigated. The analytical results of FTIR, SEM, 
Xray, EDX, thickness and adhension of the obtained coating at scanning potential ranges of 0 ÷ -
1.7 V/SCE; scaning times of 5, scanning rate of 5 mV/s showed that MgSrFNaHAp coatings 
were single phase crystals of HAp, exhibiting rod shape with the thickness of 8.9 µm and the 
adhesion strength reaching 8.38 MPa.  
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1. INTRODUCTION 

HAp is applied in medical implant field because of its structure and biological activity 
similar to the natural bone [1]. HAp coating also protects for the metal surfaces against corrosion 
in the biological environment and prevents the release of metal ions from the substrates into the 
environment. However, pure HAp can be dissolved in the physiological environment which may 
lead to the disintegration of the coating and affect the implant fixation [2]. Thus, to reduce the 
dissolution and to further improve the biocompatibility of HAp coating, the trace elements were 
incorporated in the HAp structure.     

Sodium in HAp has important roles to increase the bone metabolism and stimulate the bone 
cell growth [3, 4]. Magnesium is one of the most important elements in the formation of bone 
tissue, the stimulation of the osteoblast proliferation and bone strength structure [1, 5]. Strontium 
has been considered an essential trace element for the human body. Strontium plays a special 
role in promoting osteoblast growth and inhibiting bone resorption [6]. Fluorine exists in the 
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natural bone and tooth tissue as an essential element which can improve the crystallization and 
the mineralization of calcium phosphate for new bone formation [2].  

The electrochemical deposition (ED) of HAp or HAp doped on metal or alloy surfaces has 
become an important technology for various applications due to it has many advantages such as 
the low temperature, controlling the thickness coating, the high purity, high bonding strength 
and low cost of the equipment. Furthermore, it is easy to substitute other ions into 
hydroxyapatite coating by ED. 

Until now, there have been many studies about HAp coating and HAp coating doped by 
single ions using ED but HAp coating co-doped by some ions existed in natural born are hardly 
reported. In this study, HAp coatings co-doped by Mg2+, Sr2+, Na+ and F- ions were carried out 
by the cathodic scanning potential method with different synthesis conditions such as scanning 
potential ranges, reaction temperature, scanning rate and scanning times.  

2. EXPERIMENTAL 

2.1. Electrodepositon of MgSrFNaHAp coatings 

316L SS (0.27 %  of Al; 0.17 %  of Mn; 0.56 %  of Si; 17.98 %  of Cr; 9.34 %  of Ni;               
2.15 %  of Mo; 0.045 %  of P; 0.035 %  of S and 69.45 %  of Fe) was used as the substrates and 
a cathode for the experiments. It was polished with SiC papers, rinsed ultrasonically in distilled 
water for 15 minutes, then dried at room temperature and limited the working area to 1cm2 by 
the epoxy. 

MgSrFNaHAp coatings were synthesized on the 316L SS by cathode scanning potential 
method with a three-electrode cell fitted: 316L SS as the working electrode; platinum foil 
electrode acting as the counter electrode and a saturated calomel electrode (SCE) as the 
reference electrode.  

MgSrFNaHAp coatings were deposited in SMgSrFNa solution containing: 3×10-2 M 
Ca(NO3)2 + 1.8×10-2 M NH4H2PO4 + 6×10-2 M NaNO3 + 2×10-3 M NaF + 5×10-4 M Mg(NO3)2 + 
2.8×10-6 M Sr(NO3)2 at 50 oC with the different conditions as follows: the scanning potential 
ranges: 0 to  -1.5, -1.7, -1.9 and -2.1 V/SCE; scanning times: 3, 4, 5, 6, 7 and 10 times; scanning 
rates: 3, 4, 5, 6 and 7 mV/s.    

2.2. Coating characterization 

The functional groups of MgSrFNaHAp coatings were analyzed by Fourier transform 
infrared (FTIR - Nicolet 6700) spectroscopy with the range of 4000 - 400 cm−1, using the KBr 
pellet technique. The morphology of the coatings was characterized using scanning electron 
microscopy (SEM - Hitachi S4800). The composition of elements in MgSrFNaHAp coatings 
was identified by energy-dispersive X-ray spectroscopy (EDS - JSM 6490/JED 1300 Jeol). The 
phase structure of the MgSrFNaHAp coatings on the 316L SS was analyzed by X-ray diffraction 
(SIEMENS D5005 Bruker-Germany). The mass of MgSrFNaHAp deposited on the surface of 
316L SS was determined by the mass change of 316L SS samples before and after the synthesis. 
The thickness of the coatings was measured following the standard of ISO 4288-1998 by Alpha-
Step IQ system (KLA-Tencor-USA). The charge was determined by taking the integral from the 
start to the end point of the cathodic polarization curve. The adhesion strength of MgSrFNaHAp 
coatings on 316L SS substrate was examined using an automatic adhesion tester (PosiTest AT-
A, DeFelsko) according to ASTM D-4541 standard [8]. 
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3. RESULTS AND DISCUSSION 

3.1. Effect of the scanning potential range 

The cathodic polarization curve of 316L SS electrode in SMgSrFNa solutions is shown in 
Fig. 1. With the potential range of 0 ÷ -0.7 V/SCE, the value of the current density is 
approximately zero because there is no reaction occuring on 316L SS substrate. With the 
potential of -0.6 ÷  -1.2 V/SCE, the current density increases slightly due to the reduction of O2 
to produce OH- [7]. When potential is more negative than -1.2 V/SCE, the current density 
increases fast because several electrochemical reactions are suggested, such as: the reduction of 

3NO− , 2 4H PO− , H2O to produce OH-, 3
4PO −  and H2 [7, 9, 10]. The increase in concentration of 

OH- results in the increase pH around the surface of cathode and leading the acid-base reaction 

of 2 4H PO−  and OH- forms 3
4PO − [7, 9]. Then the precipitation reaction of 3

4PO −  with Ca2+, Na+, 

Mg2+, Sr2+ and F- produces MgSrFNaHAp on the cathode substrate according to the chemical 
reaction:  

10(Ca2+, Na+, Mg2+, Sr2+) + 6PO4
3− + 2OH−  → (Ca, Na,Mg,Sr)10(PO4)6(OH)2            (1) 

(Ca, Na,Mg,Sr)10(PO4)6(OH)2 + x F-  → Ca10(PO4)6(OH)2- xFx+  x OH-                         (2) 
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Figure 1. The cathodic polarization curve of 
316L SS electrode.  

Figure 2. FTIR spectra of MgSrFNaHAp coatings 
synthesized at the different scanning potential 

ranges.  

Based on the cathodic polarization curve, MgSrFNaHAp coatings were synthesized with 
different scanning potential ranges: 0 ÷ -1.5; 0 ÷ -1.7; 0 ÷ -1.9; 0 ÷ -2.1V/SCE. Fig. 2 shows the 
FTIR spectra of obtained coatings at the wavenumber range from 4000 cm-1 to 400 cm-1. There 

are some characteristic peaks of HAp: peaks of 34PO −  group at 1036; 603; 566 and 447 cm-1; the 

vibration of OH-  at 3441 and 1641 cm-1. Furthermore, the peak of 3NO−  is also observed at 1384 

cm-1 because 3NO−  ions are present at the solution. The peak of 23CO −  is detected at 864 cm−1. It 

could be explained that the CO2 from in the air could be dissolved in the electrolyte and reacts 

with OH- to form the 2
3CO −  ions.  

Table 1 shows the charge, mass and the thickness of MgSrFNaHAp coating formed on 
316L SS with different potential ranges. The charge increases from 1.18 to 8.34 C when the 
scanning potential range extends from 0 ÷ -1.5 to 0 ÷ -2.1 V/SCE. Therefore, according to 

Faradays law, OH- and 3
4PO −  ions are formed more so the mass of obtained coatings increases. 
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However, the mass and thickness of MgSrFNaHAp coatings increases and reaches the maximum 
value at potential range of 0 ÷ -1.7 V/SCE (3.15 mg/cm2 and 8.9 µm). With the more negative 
potential range, these values decrease. The results are explained by the charge increases with the 

negative scanning potential range, so the amount of OH- and 3
4PO −  ions on the electrode surface 

increases leading to the diffusion of them into the solution to form MgSrFNaHAp powder. 
Moreover, with the more negative potential range, the adhension strength between the coatings 
and 316L SS substrate decreases and the obtained coatings are porous because of hydrogen 
bubbles formation on the electrode surface. Thus, the potential range of 0 ÷ -1.7 V/SCE is 
chosen for the next experiments. 

Table 1. The variation of charge, mass, thickness and adhesion strength of obtained coating at 
different scanning potential ranges.  

Potential range 
(V/SCE) 

Charge (C) 
MgSrFNaHAp mass 

(mg/cm2) 
Thickness 

(µm) 
Adhesion strength 

(MPa) 

0 ÷ -1.5 1.18 1.21 3.7 8.79 

0 ÷ -1.7 3.89 3.15 8.9 8.38 

0 ÷ -1.9 5.20 2.07 6.5 7.64 

0 ÷ -2.1 8.34 1.57 4.6 6.52 

3.2. Effect of scanning times 

The XRD diffraction data of MgSrFNaHAp coatings deposited at different scanning times 
are shown in Fig. 3. The results show that the scanning times have an effected on the 
hydroxyapatite phase. With the scanning times from 1 to 3, the obtained phase is mostly 
dicalcium phosphate dehydrate (CaHPO4.2H2O, DCPD) with the typical peak at 2θ of 12o. 
DCPD is formed due to the reaction between Ca2+ and HPO4

2- [7]. With scanning times from 5 to 
10 scans, MgSrFNaHAp coatings exhibit the hydroxyapatite phase. It can be explained that 
because the scanning times rise, the charge increases leading to more formation of OH-. The 

amount of OH- ions is enough to transform completely 2 4H PO−  to 3
4PO −  [7, 9], 2

4HPO −  ions are 

not sufficient to carry out the reaction forming DCPD, so the obtained coatings were single-
phase of HAp. Thus, according to all results above, 5 scanning times is chosen for 
MgSrFNaHAp coatings electrodeposition. 

Table 2 shows the charge, mass, thickness and adhesions of MgSrFNaHAp coating 
obtained at the scanning times from 1 to 10. With one scanning time, the charge is 0.78C, the 
adhesion strength reaches the highest value (12.81 MPa). This value is approximately with the 
adhesion of the glue and substrates (15 MPa). This is explained that because mass and thickness 
of deposited coatings are small (0.62 mg/cm2 and 1.8 µm), so it is not enough to cover all 
surface of the substrate, leading to the obtained adhesion strength by the contributed of substrate 
and glue. The charge of deposited process increases according to scanning times. However, the 
mass and thickness of coatings only increase with scanning times increasing from 3 to 5 scans. 
Then, these values decrease if the increasing of the scanning times is number larger. The 
adhesion strength has opposite change rule with charge. The adhesion decreases from 12.81 to 
6.72 MPa when scanning times increases from 1 to 10 scans. It is explained that the charge 
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increases leading to the much formation of OH- and PO4
3- ions on the electrode surface and 

diffusing into the solution so MgSrFNaHAp powder is formed in the solution without adhesion 
on the substrate. 

Based on the above results, 5 scanning times is chosen for the deposition of MgSrFNaHAp 
coatings. 
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Figure 3. XRD patterns of MgSrFNaHAp/316L SS synthesized at the different scanning times.  

Table 2. The variation of charge, mass, thickness and adhesion strength of MgSrFNaHAp coatings to 
316L SS at the different scanning times.  

Scanning times 
(times) 

Charge (C) 
MgSrFNaHAp mass 

(mg/cm2) 
Thickness 

(µm)  
Adhesion 

strength (MPa) 

1 0.78 0.62 1.8 12.81 

3 2.45 1.87 6.3 9.86 

5 3.89 3.17 8.9 8.38 

7 4.48 2.9 8.4 7.61 

10 5.55 2.37 7.1 6.72 

3.3. Effect of scanning rate  

Figure 4 presents the XRD patterns of MgSrFNaHAp coatings synthesized in different 
scanning rates. XRD patterns show the hydroxyapatite phase with the typical peaks at 2θ of 32o 
(211) and 26o (002). However, with the scanning rate of 6 and 7 mV/s, there are also peaks of 
DCPD at 2θ of 12o. It can be explained that the charge decreases with high scanning rate leading 
to the insufficient formation of OH- to transform completely HPO4

2- into PO4
3- so DCPD formed. 

Table 3 shows the charge, mass, thickness and adhesions of obtained coatings with 
scanning rate increasing from 3 to 7mV/s. With scanning rate increasing from 3 to 5 mV/s, the 
charge decreases from 5.86 to 3.80 C, but the mass of obtained coatings and the adhesion of 
coating rise. The scanning rate continues to increase to 6 and 7 mV/s, so the charge decreases 
from 3.41 and 2.58 C, the mass and thickness consequenlly decrease, but the adhesion increases. 
The results can be explained that with the slow scanning rate, the large charge, the amount of 
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OH- and 3
4PO −  ions formed on the surface is more, leading to the creation of MgSrFNaHAp 

powder in the solution; In addiction, because of the hydrogen bubbles formation, the coating is 
porous and has low adhesion. Thus, scanning rate of 5 mV/s is chosen for the deposition of 
MgSrFNaHAp coatings. 
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Figure 4. XRD patterns of MgSrFNaHAp/316L SS synthesized at the different scanning rate. 

Table 3. The variation of charge, mass, thickness and adhesion strength of HAp coatings to 316L SS at 
different scanning rate.  

Scanning rate 
(mV/s) 

Charge (C) 
MgSrFNaHAp mass 

(mg/cm2) 
Thickness 

(µm)  
Adhesion 

strength (MPa) 

3 5.86 1.26 5.5 5.23 

4 4.57 2.13 7.1 6.67 

5 3.80 3.17 8.8 8.38 

6 3.41 1.94 6.2 8.85 

7 2.58 1.25 4.0 9.15 

3.4. Characterization of MgSrFNaHAp coating 

The MgArFNaHAp coatings synthesized in SMgSrFNa solution at 50 oC, with the scanning 
times of 5, scanning rate of 5mV/s, and the scanning potential ranges of 0 ÷ - 0.7 V/SCE are 
characterized by EDX and SEM.  

* The components of MgSrFNaHAp coatings  

The components of obtained MgSrFNaHAp coatings are analyzed by the EDX spectra. 
There is the presence of 7 main elements in the MgSrFNaHAp including: Ca, O, P, Mg, Na, F 
and Sr. The content of these elements in coatings is shown in Table 4. These results have been 
used to calculate the atomic ratios of M/Ca, (Ca + M)/P (Table 5). The ratios suggest that the 
components of the elements in the coatings are in within the limits of them in natural bone [11]. 
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Thurs, the obtained coatings have the similar composition to the mineral phase in natural bone 
and could be applied to produce the implant materials.  

Table 4. The component of content of MgSrFNaHAp coating synthesized on 316L SS. 

Element Weigh (%) Atomic (%) 

O 49.34 68.20 

P 15.76 11.20 

Ca 32.65 18.00 

Na 0.58 0.99 

Mg 0.14 0.13 

Sr 0.03 0.01 

F 1.50 1.47 

Total 100 100 

Table 5. The atomic ratios of M/P in MgSrFNaHAp coatings and in natural bone. 

Atomic ratios F/Ca Mg/Ca Sr/Ca Na/Ca (Ca+Mg+Sr+0.5Na)/P 

MgSrFNaHAp coatings 0.131 0.012 8.93.10-4 0.088 1.664 

Natural bone [11]  0.149 0.018 9.76.10-4 0.102 1.67 

* SEM images 

SEM images of obtained coating are shown in Fig. 5. At the same conditions, 
MgSrFNaHAp coatings with the presence of Mg, Sr, F are highly dense, uniform and have a rod 
shape, while HAp coatings have a plate shape. 

  

Figure 5. The SEM images of HAp and MgSrFNaHAp coatings obtained at the same conditions. 

4. CONCLUSION 

Mg, Sr, F, Na are incorporated into HAp coating on 316L SS by electrodeposition. The best 
condition to deposited coatings is at scanning potential ranges of 0 ÷ -1.7 V/SCE, scanning times 
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of 5, scanning rates of 5 mV/s, in SNgSrFNa solutions. The present of these trace elements with 
the limited components in natural bone, the MgSrFNaHAp coatings become denser, so could 
protect better for the substrates than HAp coating. With these good characteristics, 
MgSrFNaHAp coatings can be applied to produce good implant materials. 
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