Forest cover change mapping based on Deep Neuron Network, GIS, and High-resolution Imagery
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/22192Keywords:
Deep Learning, UAV, forest cover change, Nui Luot, land coverAbstract
With the rapid advancement of technology, monitoring forest cover changes has become increasingly quantifiable through various techniques and methods. In this study, we developed a procedure that utilizes the Deep Neuron Network (DNN) model and the Geographic Information Systems (GIS) based on high-resolution imagery captured at different time points to create forest cover change maps in Nui Luot, Chuong My, Hanoi. Two RGB (Red-Green-Blue) spectral images were captured by Unmanned Aerial Vehicle (UAV) at two different time points (pre-scene and post-scene) and used to extract information for the DNN model to produce land cover maps for these two time points. The land cover classification was divided into four classes: (1) Trees, (2) Vacant, (3) Built area and others, and (4) Water surface. Combined with GIS analysis, the forest cover change maps were developed to quantify detailed increases or losses in forest cover based on the "Trees" class. The model's accuracy was evaluated using parameters such as the area Under the ROC Curve (AUC), Accuracy (ACC), Precision, Recall, F1-Score, Kappa, and Root Mean Square Error (RMSE). The analysis results indicate that from January 31, 2023, to October 20, 2023, the forest cover in the study area decreased by 0.53%. The accuracy metrics for the pre-change scene were: average AUC = 0.922, ACC = 76.86%, average Precision = 0.743, average Recall = 0.73, average F1-Score = 0.723, Kappa = 0.692, and RMSE = 0.297. For the post-change scene, the accuracy metrics were: average AUC = 0.954, ACC = 81.89%, average Precision = 0.823, average Recall = 0.815, average F1-Score = 0.818, Kappa = 0.758, and RMSE = 0.262. A deforestation scenario was constructed to evaluate the effectiveness of the DNN models in assessing and monitoring forest dynamics.
Downloads
References
Aldahdooh A., Hamidouche W., Fezza S.A., Déforges O., 2022. Adversarial example detection for DNN models: a review and experimental comparison. Artificial Intelligence Review, 55, 4403–4462.
Annus Z., Muhammad M.G., Muhammad S., Christian W., Muhammad I.M., Faisal S., Norbert W., 2021. AI-ForestWatch: semantic segmentation-based end-to-end framework for forest estimation and change detection using multi-spectral remote sensing imagery. Journal of Applied Remote Sensing, 15(2), 024518, 21p.
Bourgoin C., Betbeder J., Couteron P., Blanc L., Dessard H., Oszwald J., Le Roux R., Cornu G., Reymondin L., Mazzei L., Sist P., Läderach P., Gond V., 2020. UAV-based canopy textures assess changes in forest structure from long-term degradation. Ecological Indicators, 115, 106386.
Buchelt A., Adrowitzer A., Kieseberg P., Gollob C., Nothdurft A., Eresheim S., Tschiatschek S., Stampfer K., Holzinger A., 2024. Exploring artificial intelligence for applications of drones in forest ecology and management. Forest Ecology and Management, 551, 121530.
Camarretta N., Harrison P.A., Bailey T., Potts B., Lucieer A., Davidson N., Hunt M., 2020. Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches. New Forests, 51, 573–596.
Caputo T., Bellucci Sessa E., Marotta E., Caputo A., Belviso P., Avvisati G., Peluso R., Carandente A., 2023. Estimation of the Uncertainties Introduced in Thermal Map Mosaic: A Case of Study with PIX4D Mapper Software, Remote Sensing, 15(18), 4385. https://doi.org/10.3390/rs15184385.
Chenyan T., Zijun C., Ailin L., Zijun C., Xintian Z., 2024. Accuracy assessment of Mavic 3 industrial UAV based on DJI Terra and Pix4Dmapper, Proc. SPIE, 1322321. https://doi.org/10.1117/12.3035344.
Cho G., 2013. Unmanned aerial vehicles: Emerging policy and regulatory issues. Journal of Law, Information and Science, 22, 201–236.
Cochard R., Ngo D.T., Waeber P.O., Kull C.A., 2016. Extent and causes of forest cover changes in Vietnam's provinces 1993–2013: a review and analysis of official data. Environmental Reviews, 25, 199–217.
Dainelli R., Toscano P., Di Gennaro S.F., Matese A., 2021. Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing A Systematic Review. Part I: A General Framework, Forests, 12(4), 397. https://doi.org/10.3390/f12040397.
de la Torre J., Puig D., Valls A., 2018. Weighted kappa loss function for multi-class classification of ordinal data in deep learning. Pattern Recognition Letters, 105, 144–154.
Diez Y., Kentsch S., Fukuda M., Caceres M.L., Moritake K., Cabezas M., 2021. Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review, Remote Sensing, 13(14), 2837. https://doi.org/10.3390/rs13142837.
Draszawka K., Szymański J., 2023. From Scores to Predictions in Multi-Label Classification: Neural Thresholding Strategies, Applied Sciences, 13(13), 7591. https://doi.org/10.3390/app13137591.
Du M., Liu N., Song Q., Hu X., 2018. Towards Explanation of DNN-based Prediction with Guided Feature Inversion, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, London, United Kingdom, 1358–1367.
Ecke S., Dempewolf J., Frey J., Schwaller A., Endres E., Klemmt H.-J., Tiede D., Seifert T., 2022. UAV-Based Forest Health Monitoring: A Systematic Review, Remote Sensing, 14(13), 3205. https://doi.org/10.3390/rs14133205.
Faker O., Dogdu E., 2019. Intrusion Detection Using Big Data and Deep Learning Techniques, Proceedings of the 2019 ACM Southeast Conference. Association for Computing Machinery, Kennesaw, GA, USA, 86–93.
Fraser B.T., Congalton R.G., 2018. Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments, Remote Sensing, 10(6), 908. https://doi.org/10.3390/rs10060908.
Giang Linh T., Dang Kinh B., Bui Thanh Q., 2023. Coastline and shoreline change assessment in sandy coasts based on machine learning models and high-resolution satellite images. Vietnam Journal of Earth Sciences, 45(2), 251–270. https://doi.org/10.15625/2615-9783/18407.
Grubesic T.H., Nelson J.R., Wei R., 2024. UAV Operating Environments, In: Grubesic, T.H., Nelson, J.R., Wei, R. (Eds.), UAVs for Spatial Modelling and Urban Informatics. Springer International Publishing, Cham, 17–32.
Guimarães N., Pádua L., Marques P., Silva N., Peres E., Sousa J.J., 2020. Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities, Remote Sensing, 12(6), 1046. https://doi.org/10.3390/rs12061046.
Hansen M.C., Loveland T.R., 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74.
Haq B., Jamshed M.A., Ali K., Kasi B., Arshad S., Kasi M.K., Ali I., Shabbir A., Abbasi Q.H., Ur-Rehman M., 2024. Tech-Driven Forest Conservation: Combating Deforestation With Internet of Things, Artificial Intelligence, and Remote Sensing. IEEE Internet of Things Journal, 11, 24551–24568.
Henry M., Réjou-Méchain M., Jara M.C., Wayson C., Piotto D., Westfall J., Fuentes J.M.M., Guier F.A., Lombis H.C., López E.C., Lara R.C., Rojas K.C., Del Águila Pasquel J., Montoya Á.D., Vega J.F., Galo A.J., López O.R., Marklund L.G., Milla F., de Jesús Návar Cahidez J., Malavassi E.O., Pérez J., Zea C.R., García L.R., Pons R.R., Sanquetta C., Scott C., Zapata-Cuartas M., Saint-André L., 2015. An overview of existing and promising technologies for national forest monitoring. Annals of Forest Science, 72, 779–788.
Hill S.L.L., Arnell A., Maney C., Butchart S.H.M., Hilton-Taylor C., Ciciarelli C., Davis C., Dinerstein E., Purvis A., Burgess N.D., 2019. Measuring Forest Biodiversity Status and Changes Globally. Frontiers in Forests and Global Change, 2, 11. https://doi.org/10.3389/ffgc.2019.00070.
Hussain H., Tamizharasan P.S., Rahul C.S., 2022. Design possibilities and challenges of DNN models: a review on the perspective of end devices. Artificial Intelligence Review, 55, 5109–5167.
Isaienkov K., Yushchuk M., Khramtsov V., Seliverstov O., 2021. Deep Learning for Regular Change Detection in Ukrainian Forest Ecosystem With Sentinel-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 364–376.
Janga B., Asamani G.P., Sun Z., Cristea N., 2023. A Review of Practical AI for Remote Sensing in Earth Sciences, Remote Sensing, 15(16), 4112. https://doi.org/10.3390/rs15164112.
Jiang B., Yang J., Song H., 2020. Protecting Privacy From Aerial photography: State of the Art, Opportunities, and Challenges, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 799–804.
Khan S.H., He X., Porikli F., Bennamoun M., 2017. Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 55, 5407–5423.
Khelifi L., Mignotte M., 2020. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access, 8, 126385–126400.
Kim D.-H., Sexton J.O., Noojipady P., Huang C., Anand A., Channan S., Feng M., Townshend J.R., 2014. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sensing of Environment, 155, 178–193.
Lambertini A., Mandanici E., Tini M.A., Vittuari L., 2022. Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture, Remote Sensing, 14(19), 4954. https://doi.org/10.3390/rs14194954.
Lang S., Bravo-Marquez F., Beckham C., Hall M., Frank E., 2019. WekaDeeplearning4j: A deep learning package for Weka based on Deeplearning4j. Knowledge-Based Systems, 178, 48–50.
Lechner A.M., Foody G.M., Boyd D.S., 2020. Applications in Remote Sensing to Forest Ecology and Management. One Earth, 2, 405–412.
LeCun Y., Bengio Y., Hinton G., 2015. Deep learning. Nature, 521, 436–444.
Li L., Chen J., Mu X., Li W., Yan G., Xie D., Zhang W., 2020. Quantifying Understory and Overstory Vegetation Cover Using UAV-Based RGB Imagery in Forest Plantation, Remote Sensing, 12(2), 298. https://doi.org/10.3390/rs12020298.
Liu T., Sun Y., Wang C., Zhang Y., Qiu Z., Gong W., Lei S., Tong X., Duan X., 2021. Unmanned aerial vehicle and artificial intelligence revolutionizing efficient and precision sustainable forest management. Journal of Cleaner Production, 311, 127546.
Liu W., Wang Z., Liu X., Zeng N., Liu Y., Alsaadi F.E., 2017. A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26.
Marín A.I., Abdul Malak D., Bastrup-Birk A., Chirici G., Barbati A., Kleeschulte S., 2021. Mapping forest condition in Europe: Methodological developments in support to forest biodiversity assessments. Ecological Indicators, 128, 107839.
Marom N.D., Rokach L., Shmilovici A., 2010. Using the confusion matrix for improving ensemble classifiers, 2010 IEEE 26th Convention of Electrical and Electronics Engineers in Israel, 000555–000559.
Maxwell A., Li R., Yang B., Weng H., Ou A., Hong H., Zhou Z., Gong P., Zhang C., 2017. Deep learning architectures for multi-label classification of intelligent health risk prediction. BMC Bioinformatics, 18, 523.
Mohan M., Richardson G., Gopan G., Aghai M.M., Bajaj S., Galgamuwa G.A.P., Vastaranta M., Arachchige P.S.P., Amorós L., Corte A.P., de-Miguel S., Leite R.V., Kganyago M., Broadbent E.N., Doaemo W., Shorab M.A., Cardil A., 2021. UAV-Supported Forest Regeneration:
Current Trends, Challenges and Implications, Remote Sensing, 13(13), 2596. https://doi.org/10.3390/rs13132596.
Onishi M., Ise T., 2021. Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific Reports, 11, 903.
Ortega M.X., Bermudez J.D., Happ P.N., Gomes A., Feitosa R.Q., 2019. Evaluation of deep learning techniques for deforestation detection in the Amazon forest. Isprs Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W7, 121–128.
Osco L.P., Marcato Junior J., Marques Ramos A.P., de Castro Jorge L.A., Fatholahi S.N., de Andrade Silva J., Matsubara E.T., Pistori H., Gonçalves W.N., Li J., 2021. A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102, 102456.
Pham-Duc B., Tran Anh Q., Tong Si S., 2023. Monitoring monthly variation of Tonle Sap Lake water volume using Sentinel-1 imagery and satellite altimetry data. Vietnam Journal of Earth Sciences, 45(4), 479–496. https://doi.org/10.15625/2615-9783/18897.
Rithani M., Kumar R.P., Doss S., 2023. A review on big data based on deep neural network approaches. Artificial Intelligence Review, 56, 14765–14801.
Rodriguez-Galiano V.F., Chica-Rivas M., 2014. Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. International Journal of Digital Earth, 7, 492–509.
Samek W., Binder A., Montavon G., Lapuschkin S., Müller K.R., 2017. Evaluating the Visualization of What a Deep Neural Network Has Learned. IEEE Transactions on Neural Networks and Learning Systems, 28, 2660–2673.
Schiefer F., Kattenborn T., Frick A., Frey J., Schall P., Koch B., Schmidtlein S., 2020. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205–215.
Shakhatreh H., Sawalmeh A.H., Al-Fuqaha A., Dou Z., Almaita E., Khalil I., Othman N.S., Khreishah A., Guizani M., 2019. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access, 7, 48572–48634.
Shrestha A., Mahmood A., 2019. Review of Deep Learning Algorithms and Architectures. IEEE Access, 7, 53040–53065.
Stöcker C., Bennett R., Nex F., Gerke M., Zevenbergen J., 2017. Review of the Current State of UAV Regulations, Remote Sensing, 9(5), 459. https://doi.org/10.3390/rs9050459.
Telli K., Kraa O., Himeur Y., Ouamane A., Boumehraz M., Atalla S., Mansoor W., 2023. A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs), Systems, 11(8), 400. https://doi.org/10.3390/systems11080400.
Tran Xuan T., Doan Thi Nam P., Le Thanh N., Viet-Ha N., Bui D.T., 2023. A novel HHO-RSCDT ensemble learning approach for forest fire danger mapping using GIS. Vietnam Journal of Earth Sciences, 45(3), 338–356. https://doi.org/10.15625/2615-9783/18500.
UN, 2024. Report on the technical assessment of the proposed forest reference level of Vanuatu submitted in 2023, Framework Convention on Climate Change 2024, 13p.
Watanabe M., Koyama C.N., Hayashi M., Nagatani I., Tadono T., Shimada M., 2021. Refined algorithm for forest early warning system with ALOS-2/PALSAR-2 ScanSAR data in tropical forest regions. Remote Sensing of Environment, 265, 112643.
Wei B., James K., 2013. Efficient Multi-label Classification with Many Labels. PMLR, 405–413.
Weisse M., Goldman E., Carter S., 2024. Forest Pulse: The Latest on the World's Forests, Global forest review. World resources institute, April, 2024. https://research.wri.org/gfr/latest-analysis-deforestation-trends.
Wu X.-Z., Zhou Z.-H., 2017. A Unified View of Multi-Label Performance Measures, In: Doina, P., Yee Whye, T. (Eds.), Proceedings of the 34th International Conference on Machine Learning. PMLR, Proceedings of Machine Learning Research, 3780–3788.
Xie Y., Wang Y., Sun Z., Liang R., Ding Z., Wang B., Huang S., Sun Y., 2024. Instance segmentation and stand-scale forest mapping based on UAV images derived RGB and CHM. Computers and Electronics in Agriculture, 220, 108878.
Xu C., Liao X., Tan J., Ye H., Lu H., 2020. Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude. IEEE Access, 8, 74175–74194.
Yang Q., Zhang H., Peng W., Lan Y., Luo S., Shao J., Chen D., Wang G., 2019. Assessing climate impact on forest cover in areas undergoing substantial land cover change using Landsat imagery. Science of The Total Environment, 659, 732–745.