Variability of heatwaves across Vietnam in recent decades

Pham Thi Ly, Pham Thanh Ha, Phan Van Tan, Vu Thuan Yen
Author affiliations

Authors

  • Pham Thi Ly Institute of Geography, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Pham Thanh Ha VNU-University of Science, Vietnam National University Hanoi, Hanoi, Vietnam
  • Phan Van Tan VNU-University of Science, Vietnam National University Hanoi, Hanoi, Vietnam
  • Vu Thuan Yen Vietnam Japan University, Vietnam National University Hanoi, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/19057

Keywords:

Heatwaves, Vietnam, trend, local threshold

Abstract

There have been several studies on heatwaves (HW) in Vietnam but they all focused on an individual heatwave characteristic. A comprehensive understanding of heat waves is crucial for effective research on their impacts and for making plans for climate change mitigation and adaptation strategies in the country. This study investigates the spatial variability and changing trends in heatwave characteristics across the climatic sub-regions of Vietnam. The analysis is based on the observed daily maximum temperature (Tx) recorded at 144 meteorological stations in the period of 1980-2018. HW is identified using a relative threshold, which is the local 90th percentile of Tx within 183 days during the summer (1st April - 30th September). Results showed that: (1) The threshold values used to determine HW events varied among sub-regions and stations due to their geographical locations; (2) Across the country, HWs were observed to be more frequent, intense, severe, and longer-lasting in the North Delta and North Central sub-regions compared to others; (3) Over recent decades, both the frequency and severity of HWs have significantly increased across Vietnam, particularly in the North-Delta and North Central sub-regions. However, the changing trends in HW duration and intensity remain unclear.

Downloads

Download data is not yet available.

References

Alexander L.V., Arblaster J.M., 2012. The impact of the El Nio-Southern Oscillation on maximum temperature extremes. Geophysical Research Letters, 39(20), 2–6. https://doi.org/10.1029/2012GL053409.

Andersen O.B., Seneviratne S.I., Hinderer J., Viterbo P., 2005. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophysical Research Letters, 32(18), 1–4. https://doi.org/10.1029/2005GL023574.

Anderson B.G., Bell M.L., 2009. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20(2), 205–213. https://doi.org/10.1097/EDE.0b013e318190ee08.

Anderson C.A., 1989. Temperature and Aggression: Ubiquitous Effects of Heat on Occurrence of Human Violence. Psychological Bulletin, 106(1), 74–96. https://doi.org/10.1037/0033-2909.106.1.74

Andrea de Bono, 2004. Impacts of summer 2003 heat wave in Europe. Environmental Alert Bulletin.

Barnett A.G., Tong S., Clements A.C.A., 2010. What measure of temperature is the best predictor of mortality? Environmental Research, 110(6), 604–611. https://doi.org/10.1016/j.envres.2010.05.006.

Chen K., Bi J., Chen J., Chen X., Huang L., Zhou L., 2015. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Science of the Total Environment, 506–507, 18–25. https://doi.org/10.1016/j.scitotenv.2014.10.092.

Coumou D., Rahmstorf S., 2012. A decade of weather extremes. Nature Climate Change, 2(7), 491–496. https://doi.org/10.1038/nclimate1452.

Croitoru A.E., Piticar A., Ciupertea A.F., Roşca C.F., 2016. Changes in heat waves indices in Romania over the period 1961-2015. Global and Planetary Change, 146, 109–121. https://doi.org/10.1016/j.gloplacha.2016.08.016.

D’Ippoliti D., Michelozzi P., Marino C., De’Donato F., Menne B., Katsouyanni K., Kirchmayer U., Analitis A., Medina-Ramón M., Paldy A., Atkinson R., Kovats S., Bisanti L., Schneider A., Lefranc A., Iñiguez C., Perucci C.A., 2010. The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environmental Health: A Global Access Science Source, 9(1), 1–9. https://doi.org/10.1186/1476-069X-9-37.

Dole R., Hoerling M., Perlwitz J., Eischeid J., Pegion P., Zhang T., Quan X.W., Xu T., Murray D., 2011. Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters, 38(6), 1–5. https://doi.org/10.1029/2010GL046582.

Fischer E.M., Schär C., 2010. Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3(6), 398–403. https://doi.org/10.1038/ngeo866.

Gocic M., Trajkovic S., 2014. Spatiotemporal characteristics of drought in Serbia. Journal of Hydrology, 510, 110–123. https://doi.org/10.1016/j.jhydrol.2013.12.030.

Hansen A., Bi P., Nitschke M., Ryan P., Pisaniello D., Tucker G., 2008. The effect of heat waves on mental health in a temperate Australian City. Environmental Health Perspectives, 116(10), 1369–1375. https://doi.org/10.1289/ehp.11339.

Hertel S., Le Tertre A., Jöckel K.H., Hoffmann B., 2009. Quantification of the heat wave effect on cause-specific mortality in Essen, Germany. European Journal of Epidemiology, 24(8), 407–414. https://doi.org/10.1007/s10654-009-9359-2.

Ho T.M.H., Phan V.T., Le N.Q., Nguyen Q.T., 2011. Extreme climatic events over Vietnam from observational data and RegCM3 projections. Climate Research, 49(2), 87–100. https://doi.org/10.3354/cr01021.

Huang W., Kan H., Kovats S., 2010. The impact of the 2003 heat wave on mortality in Shanghai, China. Science of the Total Environment, 408(11), 2418–2420. https://doi.org/10.1016/j.scitotenv.2010.02.009.

Hutter H.P., Moshammer H., Wallner P., Leitner B., Kundi M., 2007. Heatwaves in Vienna: Effects on mortality. Wiener Klinische Wochenschrift, 119(7-8), 223–227. https://doi.org/10.1007/s00508-006-0742-7.

IPCC, 2013. Report Summary for policymakers Climate Change; The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013). In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed T F Stocker D Qin G-K Plattner M Tignor S K Allen J Boschung A Nauels Y Xia V Bex and P M Midgley. (Cambridge: Cambridge University Press).

Kendall, 1970. Rank Correlation Methods (Maurice G. Kendall) (z-lib.org).pdf. Charles Griffin & company limited 42 Drury Lane, London, WC2B 5RX.

Kim D.W., Deo R.C., Chung J.H., Lee J.S., 2016. Projection of heat wave mortality related to climate change in Korea. Natural Hazards, 80(1), 623–637. https://doi.org/10.1007/s11069-015-1987-0.

Laaidi K., Zeghnoun A., Dousset B., Bretin P., Vandentorren S., Giraudet E., Beaudeau P., 2012. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental Health Perspectives, 120(2), 254–259. https://doi.org/10.1289/ehp.1103532.

Le Tertre A., Lefranc A., Eilstein D., Declercq C., Medina S., Blanchard M., Chardon B., Fabre P., Filleul L., Jusot J.F., Pascal L., Prouvost H., Cassadou S., Ledrans M., 2006. Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology, 17(1), 75–79. https://doi.org/10.1097/01.ede.0000187650.36636.1f.

Lesk C., Rowhani P., Ramankutty N., 2016. Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. https://doi.org/10.1038/nature16467.

Loughnan M.E., Apper N., Lynch K., McInnes J., 2013. A spatial vulnerability analysis of urban populations during extreme heat events in Australian capital cities. In National Climate Change Adaptation Research Facility (Issue January). papers3://publication/uuid/751D6E4F-8F08-4D5D-9757-7DB6EEAF507E.

Loughnan M.E., Nicholls N., Tapper N.J., 2010. When the heat is on: Threshold temperatures for AMI admissions to hospital in Melbourne Australia. Applied Geography, 30(1), 63–69. https://doi.org/10.1016/j.apgeog.2009.08.003.

Mann H.B., 1945. Non-Parametric Test Against Trend. Econometrica, 13(3), 245–259. http://www.economist.com/node/18330371?story%7B_%7Did=18330371.

Meehl G.A., Tebaldi C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994–997. https://doi.org/10.1126/science.1098704.

MONRE, 2020. Climate change Scenarios. Vietnam Natural Resources, Enviroment and Mapping Publishing House.

Nairn J., Fawcett R., Ray D., 2009. Defining and predicting excessive heat events, a national system. Understanding High Impact Weather, CAWCR Modelling Workshop, 83–86.

Ngo D.T., Bui T.K.H., 2023. Trends and Return Frequencies of Hot and Cold Extreme Events in Northern Vietnam from 1961-2018, 1–12.

Nguyen D.Q., Renwick J., Mcgregor J., 2013. Variations of surface temperature and rainfall in Vietnam from 1971 to 2010. International Journal of Climatology, 34(1), 249–264. https://doi.org/10.1002/joc.3684.

Nguyen Duc Ngu, Nguyen Trong Hieu, 2013. Climate and Climate Resouce in Vietnam. Hanoi Agricultural Publisingr House.

Niu S., Luo Y., Li D., Cao S., Xia J., Li J., Smith M.D., 2014. Plant growth and mortality under climatic extremes : An overview. Environmental and Experimental Botany, 98, 13–19. https://doi.org/10.1016/j.envexpbot.2013.10.004.

NOAA, 2015. India heat wave kills thousands. http://www.climate.gov/news-features/event-tracker/india-heat-wave-kills-thousands. NOAA.

Oudin Åström D., Schifano P., Asta F., Lallo A., Michelozzi P., Rocklöv J., Forsberg B., 2015. The effect of heat waves on mortality in susceptible groups: A cohort study of a mediterranean and a northern European City. Environmental Health: A Global Access Science Source, 14(1), 1–8. https://doi.org/10.1186/s12940-015-0012-0.

Panda D.K., AghaKouchak A., Ambast S.K., 2017. Increasing heat waves and warm spells in India, observed from a multiaspect framework. Journal of Geophysical Research, 122(7), 3837–3858. https://doi.org/10.1002/2016JD026292.

Perkins S.E., Alexander L.V., 2013. On the measurement of heat waves. Journal of Climate, 26(13), 4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1.

Perkins S.E., Alexander L.V., Nairn J.R., 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39(20), 1–5. https://doi.org/10.1029/2012GL053361.

Peterson T.C., Heim R.R., Hirsch R., Kaiser D.P., Brooks H., Diffenbaugh N.S., Dole R.M., Giovannettone J.P., Guirguis K., Karl T.R., Katz R.W., Kunkel K., Lettenmaier D., McCabe G.J., Paciorek C.J., Ryberg K.R., Schubert S., Silva V.B.S., Stewart B.C., Wuebbles D., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. American Meteorological Society, 94(6), 821–834. https://doi.org/10.1175/BAMS-D-12-00066.1.

Piticar A., 2018. Changes in heat waves in Chile. Global and Planetary Change, 169(October 2017), 234–246. https://doi.org/10.1016/j.gloplacha.2018.08.007.

Russo S., Sillmann J., Fischer E.M., 2015. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12). https://doi.org/10.1088/1748-9326/10/12/124003.

Schifano P., Cappai G., De Sario M., Michelozzi P., Marino C., Bargagli A.M., Perucci C.A., 2009. Susceptibility to heat wave-related mortality: a follow-up study of a cohort of elderly in Rome. Environmental Health : A Global Access Science Source, 8, 50. https://doi.org/10.1186/1476-069x-8-50.

Sen P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Jounal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.

Sun X., Sun Q., Zhou X., Li X., Yang M., Yu A., Geng F., 2014. Heat wave impact on mortality in Pudong New Area, China in 2013. Science of the Total Environment, 493 (July 2010), 789–794. https://doi.org/10.1016/j.scitotenv.2014.06.042.

Teskey R., Wertin T., Bauweraerts I., Ameye M., McGuire M.A., Steppe K., 2014. Responses of tree species to heat waves and extreme heat events. Plant Cell and Environment, 38, 1699–1712. https://doi.org/10.1111/pce.12417.

Thirumalai K., DInezio P.N., Okumura Y., Deser C., 2017. Extreme temperatures in Southeast Asia caused by El Ninõ and worsened by global warming. Nature Communications, 8, 1–8. https://doi.org/10.1038/ncomms15531.

Tong S., Ren C., Becker N., 2010. Excess deaths during the 2004 heatwave in Brisbane, Australia. International Journal of Biometeorology, 54(4), 393–400. https://doi.org/10.1007/s00484-009-0290-8.

Tong S., Wang X.Y., Barnett A.G., 2010. Assessment of heat-related health impacts in Brisbane, Australia: Comparison of different heatwave definitions. PLoS ONE, 5(8). https://doi.org/10.1371/journal.pone.0012155.

Tong S., Wang X.Y., Yu W., Chen D., Wang X., 2014. The impact of heatwaves on mortality in Australia: A multicity study. BMJ Open, 4(2), 1–6. https://doi.org/10.1136/bmjopen-2013-003579.

Trancoso R., Syktus J., Toombs N., Ahrens D., Wong K.K.H., Pozza R.D., 2020. Heatwaves intensification in Australia: A consistent trajectory across past, present and future. Science of the Total Environment, 742. https://doi.org/10.1016/j.scitotenv.2020.140521.

Vaneckova P., Neville G., Tippett V., Aitken P., Fitzgerald G., Tong S., 2011. Do biometeorological indices improve modeling outcomes of heat-related mortality? Journal of Applied Meteorology and Climatology, 50(6), 1165–1176. https://doi.org/10.1175/2011JAMC2632.1.

Yang J., Liu H.Z., Ou C.Q., Lin G.Z., Ding Y., Zhou Q., Shen J.C., Chen P.Y., 2013. Impact of heat wave in 2005 on mortality in Guangzhou, China. Biomedical and Environmental Sciences, 26(8), 647–654. https://doi.org/10.3967/0895-3988.2013.08.003.

Zanobetti A., Schwartz J., 2008. Temperature and mortality in nine US cities. Epidemiology, 19(4), 563–570. https://doi.org/10.1097/EDE.0b013e31816d652d.

Downloads

Published

03-10-2023

How to Cite

Pham Thi, L., Pham Thanh, H., Phan Van, T., & Vu Thuan, Y. (2023). Variability of heatwaves across Vietnam in recent decades. Vietnam Journal of Earth Sciences, 45(4), 517–530. https://doi.org/10.15625/2615-9783/19057

Issue

Section

Articles