Benthic habitat mapping and assessment of seagrass species diversity in Da Lon Reef, Truong Sa Islands, Vietnam, using very high-resolution satellite imagery and in situ data
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/19026Keywords:
Benthic habitat mapping, Pleiades, seagrass, Dalon Reef, Truong Sa islandsAbstract
Benthic habitats are critical in shallow sea areas; they regulate the diversity and richness of organisms in each area. Mapping benthic habitats elucidates natural sea characteristics and aids in managing and using natural resources, as well as conserving marine biodiversity. This study established a benthic habitat map for the Da Lon Reef area, Truong Sa Islands, Vietnam, using Pléiades high-resolution remote sensing imaging materials and field survey results from 2020 and 2021. We identified seven classes of benthic habitats with a 91.64% overall accuracy, corresponding to a Kappa coefficient of 0.88. In the Da Lon Reef, seagrass biomes occupy a large area (more than 200 ha) and are distributed mainly inside lagoons at depths of 2–6 m. The field survey results identified five seagrass species and the biodiversity and biomass of seagrass populations in the lagoon of Da Lon Reef. The study results confirm the fundamental value of resources, biodiversity in general and seagrass in particular, in managing and protecting shallow sea ecosystems and biodiversity conservation in the Da Lon Reef area, an important part of the Truong Sa Islands, Vietnam.
Downloads
References
Al Hadi A., Wicaksono P., 2021. Accuracy assessment of relative and absolute water column correction methods for benthic habitat mapping in Parang Island. IOP Conference Series: Earth and Environmental Science, 686, 012034. https://doi.org/10.1088/1755-1315/686/1/012034.
Alberotanza L., et al., 2003. Satellite remote sensing for seagrass mapping in the Venice lagoon. Conference: 37th CIESM congress, Barcelona (Spain).
Anggoro A, Siregar V, Agus SB., 2015. Geomorphic zones mapping of coral reef ecosystem with obia method, case study in pari island. J Remote sens and Digital Image Processing, 12(1).
Barrell J., Grant J., Hanson A., Mahoney M., 2015. Evaluating the complementarity of acoustic and satellite remote sensing for seagrass
landscape mapping. International Journal of Remote Sensing, 36, 1-26. https://doi.org/10.1080/01431161.2015.1076208.
Butler J., Purkis L., Purkis S., Yousif R., Al-Shaikh I., 2021. A benthic habitat sensitivity analysis of Qatar's coastal zone. Marine Pollution Bulletin, 167, 112333. https://doi.org/10.1016/j.marpolbul.2021.112333.
Butler J., Purkis S., Yousif R., Al-Shaikh I., Warren C., 2020. A high-resolution remotely sensed benthic habitat map of the Qatari coastal zone. Marine Pollution Bulletin, 160. https://doi.org/10.1016/j.marpolbul.2020.111634.
Congalton R.G., Green K., 20199. Assessing the accuracy of remotely sensed data: Principles and practices, Third Edition. CRC Press, 348. https://doi.org/10.1201/9780429052729.
Dang H., Trung D., Kuznetsov A.N., Phuong V., 2022. Classification and mapping of marine-island landscape in Nam Yet Island, Truong Sa Islands, Vietnam. Vietnam Journal of Earth Sciences, 1-21. https://doi.org/10.15625/2615-9783/17178.
Dang Hoi N., Trung Dung N., Viet Dung V., Quan V.V.D., 2022. Establishing distribution maps and structural analysis of seagrass communities based on high-resolution remote sensing images and field surveys: a case study at Nam Yet Island, Truong Sa Archipelago, Vietnam. Landscape and Ecological Engineering, 18, 405-419. https://doi.org/10.1007/s11355-022-00502-0.
Dekker A., Brando V., Anstee J., Fyfe S., Malthus T., Karpouzli E., 2006. Remote sensing of seagrass ecosystems: use of spaceborne and airborne sensors. In: LARKUM, A.W.D., ORTH, R.J., DUARTE, C.M. (Eds.), Seagrasses: Biology, Ecology and Conservation. Springer Netherlands, Dordrecht, 347-359. https://doi.org/10.1007/978-1-4020-2983-7_15.
Dekker A., Mount R., Jordan A., 2007. Satellite and airborne imagery including aerial photography for benthic habitat mapping. Special Paper - Geological Association of Canada, 11-27.
El Shaffai A., 2011. Field Guide to Seagrasses of the Red Sea (First Edition). Gland, Switzerland: IUCN and Courbevoie, 55p.
English S., Wilkinson C., Baker V., 1997. Survey Manual for Tropical Marine Resources. 2nd edition. Australian Institute of Marine Science, 148p.
Fauzan M.A., 2016. The use of Sentinel-2 MSI data in small island's nearshore benthic habitat mapping. Prepared for HISAS 14, Innovation and Technology. https://doi.org/ 10.31230/osf.io/nrup7.
Fernandez V., Martimort P., Spoto F., Sy O., Laberinti P., 2013. Overview Of Sentinel-2. Proc SPIE. Doi: 10.1117/12.2028755.
Fourqurean J., Durako M., Hall M., Hefty L., 2001. Seagrass distribution in South Florida. In: The everglades, florida bay, and coral reefs of the florida keys, 522p. https://doi.org/10.1201/9781420039412-22.
Ginting D., Purwanto A., 2021. Semi-Automatic Classification Model on Benthic Habitat Using Spot-7 Imagery in Penerusan Bay, Bali. Jurnal Segara, 17, 185. https://doi.org/10.15578/segara.v17i3.9771.
Grech A., et al., 2012. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environmental Research Letters 7(2), 1-8. https://doi.org/10.1088/1748-9326/7/2/024006.
Hafeez S., Wong M.S., Abbas S., Kwok C.Y., Nichol J., Ho Lee K., Tang D., Pun L., 2019. Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies. In Monitoring of Marine Pollution; Fouzia, H.B., Ed.; IntechOpen: London, UK. Chapter, 2, 26.
Hafizt M., Iswari M., Prayudha B., 2017. Assessment of Landsat-8 Classification Method for Benthic Habitat Mapping in Padaido Islands, Papua. Oseanologi Dan Limnologi Di Indonesia, 2, 1-13.
Hancox D.J., Prescott J.R.V., Schofield C.H., 1995. A Geographical Description of the Spratly Islands and an Account of Hydrographic Surveys Amongst Those Islands: International Boundaries Research Unit, University of Durham, 88p. ISBN 1-897643-18-7.
Harris P., Baker E., 2012. Why Map Benthic Habitats?. Seafloor Geomorphology as Benthic Habitat, 3-22. https://doi.org/10.1016/B978-0-12-385140-6.00001-3.
Hartog C., 1970. The seagrasses of the world. Verhandlingen Koninglijk Nederlandse Akademie Wetenschapen Afdeling Natuurkunde, 59, 1-275.
Hassan H., Nadaoka K., Nakamura T., 2020. Semiautomated Mapping of Benthic Habitats and Seagrass Species Using a Convolutional Neural Network Framework in Shallow Water Environments. Remote Sensing, 12, 4002. https://doi.org/10.3390/rs12234002.
Hedley J., Russell B., Randolph K., Dierssen H., 2016. A physics-based method for the remote sensing of seagrasses. Remote Sensing of Environment, 174, 134-147. https://doi.org/10.1016/j.rse.2015.12.001.
Janowski Ł., Wróblewski R., Dworniczak J., Kolakowski M., Rogowska K., Wojcik M., Gajewski J., 2021. Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. A case study from the Slupsk Bank, Southern Baltic Sea. Science of The Total Environment, 801, 149712. https://doi.org/10.1016/j.scitotenv.2021.149712.
Kabiri K., Rezai H., Moradi M., 2020. A drone-based method for mapping the coral reefs in the shallow coastal waters - case study: Kish Island, Persian Gulf. Earth Science Informatics, 13. https://doi.org/10.1007/s12145-020-00507-z.
Kendall M., Costa B., McKagan S., Johnston L., Okano D., 2017. Benthic Habitat Maps of Saipan Lagoon. NOAA Technical Memorandum NOS NCCOS 229. Silver Spring, MD., 77p.
Kennedy E., Roelfsema C., Lyons M., Kovacs E., Borrego Acevedo R., Roe M., Phinn S.R., Larsen K., Murray N.J., Yuwono D., Wolff J., Tudman P., 2021. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Scientific Data, 8, 196. https://doi.org/10.1038/s41597-021-00958-z.
Khairunnisa K., Setyobudiandi I., Boer M., 2021. Seagrass distribution in the east coast of Bintan. IOP Conference Series: Earth and Environmental Science, 782, 042001. https://doi.org/10.1088/1755-1315/782/4/042001.
Khaled M., Ahmed M., Kafrawy S., 2020. Benthic habitat mapping using remote sensing data at Hurghada region, Red Sea coast, Egypt. Assiut University Journal of Multidisciplinary Scientific Research, 20-34.
Kirkman H., 1996. Baseline and Monitoring Methods for Seagrass Meadows. Journal of Environmental Management, 47, 191-201. https://doi.org/10.1006/jema.1996.0045.
Lamit N., Tanaka Y., Mohamed H., 2017. Seagrass diversity in Brunei Darussalam: first records of three species. Scientia Bruneiana, 16, 48-52. https://doi.org/10.46537/scibru.v16i2.65.
Luong C., Manh Nguyen L., Hung V., Tien D., Tran Dinh L., 2020. The status of seagrass communities in some islands of the Spratly Islands. Journal of Marine Science and Technology, 20(3), 285-295. https://doi.org/10.15625/1859-3097/20/3/15076.
Mascarenhas V., Keck T., 2018. Marine Optics and Ocean Color Remote Sensing, In YOUMARES 8-Oceans Across Boundaries: Learning from Each Other; Springer: Cham, Switzerland, 41p.
Vlasova G.A., Demenok M.N., Hoan P.S., Dung N.T.T., Tuan N.V., Thinh N.D., Trung P.B., Binh T.V., 2020. Distribution features of meteorological parameters in Truong Sa archipelago area. Vietnam Journal of Marine Science and Technology, 20(4), 405-416. https://doi.org/10.15625/1859-3097/15323.
McGrath R., 2010. Kappa Coefficient. in: The Corsini Encyclopedia of Psychology. https://doi.org/10.1002/9780470479216.corpsy0484.
Mellors J., Marsh H., Carruthers T., Waycott M., 2002. Testing the sediment-trapping paradigm of seagrass: Do seagrasses influence nutrient status and sediment structure in tropical intertidal environments? Bulletin of Marine Science, 71(3).
Nababan B., Mastu L.O., Idris N., Panjaitan J., 2021. Shallow-Water Benthic Habitat Mapping Using Drone with Object Based Image Analyses. Remote Sensing, 13, 4452. https://doi.org/10.3390/rs13214452.
Navulur K., 2006. Multispectral Image Analysis Using the Object-Oriented Paradigm. 1st Edition. Boca Raton, 204p. https://doi.org/10.1201/9781420043075.
Phillips R.C., Menez E.G., 1988. Seagrasses, Smithsonian Contributions to the Marine Sciences, 34, 1-104. https://doi.org/10.5479/si.01960768.34.
Porskamp P., Rattray A., Young M., 2018. Multiscale and Hierarchical Classification for Benthic Habitat Mapping. Geosciences, 8, 119. https://doi.org/10.3390/geosciences8040119.
Roy D., Wulder M., Loveland T., Woodcock C., Allen R., Anderson M., Helder D., Irons J.R., Johnson D.M., Kennedy R., Scambos T.A., Schaaf C.B., Schott J.R., Sheng Y., Vermote E.F., Belward A.S., Bindschadler R., Cohen W.B., Gao F., Hipple J.D., Hostert P., Huntington J., Justice C.O., Kilic A., Kovalskyy V., Lee Z.P., Lymburner L., Masek J.G., McCorkel J., Shuai Y., Trezza R., Vogelmann J., Wynne R.H., Zhu Z., 2014. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sensing of Environment, 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
Ruiz Fernandez J.M., Boudouresque C., Enríquez S., 2009. Seagrass ecosystems and Mediterranean seagrasses. Botanica Marina, 52, 369-381. https://doi.org/10.1515/BOT.2009.058.
Short F., Coles R., 2002. Global Seagrass Research Methods. Aquaculture, 212(1). https://doi.org/10.1016/S0044-8486(02)00307-1.
Short F., Short C., Novak A., 2016. In: Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C. (Eds.), Seagrasses. In The Wetland Book II: Distribution, description and conservation. Springer Science: Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-007-6173-5_262-1.
Short F.T., McKenzie L.J., Coles R.G., Vidler K.P., 2002. Manual for Scientific Monitoring of Seagrass Habitat SeagrassNet. QDPI, QFS, Cairns, 56.
Sinaga S., Yulianto A., Putri K., Bayudin, Wicaksono P., 2016. The Use of Worldview-2 Imagery for Benthic Habitat Mapping at Bangsring, Banyuwangi Regency. 2nd International Conference of Indonesian Society for Remote SensingAffiliation: Remote Sensing, Faculty of Geography, University of Gadjah Mada, PUSPICS. https://doi.org/ 10.13140/RG.2.2.10006.68168.
Smith T., Mittermayr A., Legare B., Fox S., Borrelli M., 2019. Benthic Habitat Mapping in Wellfleet Harbor and Vicinity. 19-CL08. Center for Coastal Studies, 74p. https://doi.org/10.13140/RG.2.2.28258.35526.
Taha L., Elsayed R., 2021. Assessment of Approaches for the Extraction of Building Footprints from Pléiades Images. Geomatics and Environmental Engineering, 15(4), 101-116. https://doi.org/10.7494/geom.2021.15.4.101.
Tamondong A., Blanco A., Fortes M., Nadaoka K., 2013. Mapping of seagrass and other benthic habitats in Bolinao, Pangasinan using Worldview-2 satellite image. IGARSS 2013-2013. IEEE International Geoscience and Remote Sensing Symposium, p.1579. https://doi.org/10.1109/IGARSS.2013.6723091.
Tran Van D., 2008. Mapping benthic habitats in Con Son Bay, Vietnam from IKONOS satellite image. The 9th Pan Ocean Remote Sensing Conference, 2-6 December 2008, Guangzhou, ChinaAt: Guangzhou, China.
Velez-Reyes M., Goodman J., Castrodad-Carrau A., Jiménez-Rodriguez L., Hunt S., Armstrong R., 2006. Benthic habitat mapping using hyperspectral remote sensing, Proceedings of SPIE: Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, 6360.
Wahidin N., Siregar V., Nababan B., Jaya I., Wouthuyzen S., 2015. Object-based Image Analysis for Coral Reef Benthic Habitat Mapping with Several Classification Algorithms. Procedia Environmental Sciences, 24, 222-227. https://doi.org/10.1016/j.proenv.2015.03.029.
Wicaksono P., 2014. The use of image rotations on multispectral- based benthic habitats mapping. The 12th Biennial Conference of PORSEC 2014. Denpasar, Bali: PORSEC.
Wicaksono P., Adhimah F., 2017. Accuracy assessments of pan-sharpened image for benthic habitats mapping. Geoplanning: Journal of Geomatics and Planning, 4, 27. https://doi.org/10.14710/geoplanning.4.1.27-40.
Wicaksono P., Aryaguna P., Lazuardi W., 2019. Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms. Remote Sensing, 11, 1279. https://doi.org/10.3390/rs11111279.
Wicaksono P., Fauzan M.A., Asta S., 2019. Assessment of Sentinel-2A multispectral image for benthic habitat mapping. IET Image Processing, 14. https://doi.org/10.1049/iet-ipr.2018.6044.
Wicaksono P., Kumara W., Fauzan M.A., Noviaris R., Lazuardi W., 2020. Sentinel-2A and Landsat 8 OLI to model benthic habitat biodiversity index. Geocarto International, 1-13. https://doi.org/10.1080/10106049.2020.1790673.
Yoder M., Tandingan De Ley I., King I.W., Mundo-Ocampo M., Mann J., Blaxter M., Potras L., De Ley P., 2006. DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology, 8(3), 367-376. http://dx.doi.org/10.1163/156854106778493448.