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ABSTRACT

The precision of estimating soil salinity is considered a key task in solving soil salinity problems and irrigation
management of agriculture. This problem is increasingly important in the Mekong Delta, where it is severely affected
by this phenomenon in the context of climate variability. Therefore, this paper aims to construct a soil salinity map
with high accuracy using machine learning and Sentinel 2A, namely Xgboost (XGB) and Random Forest (RF). The
province of Tra Vinh in the Mekong Delta has been selected as the case study. 68 soil salinity samples were collected
in August 2024, and 25 conditioning factors extracted from the Sentinel 2A image were used as input data for the
machine-learning model. Three statistical indices, namely root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?), were used to evaluate the effectiveness of machine learning models.
The results showed that with an R? value of 0.86, the XGB model was superior to the RF model with an R2 value of
0.67.

Furthermore, Tra Vinh province, the coastal region, and along the Mekong River are more severely affected by
soil salinity with an electrical conductivity (EC) value of more than 10. This region, more affected by soil salinity, is
related to rising tides and sea levels in the context of climate variability. This study plays an important role and can
support farmers in regions affected by soil salinity in building investment measures to reduce the impacts of soil

salinity on the development of agriculture.
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1. Introduction farmlands and agricultural ecosystems
worldwide have been affected by soil salinity
(Xiao, Ji et al., 2023). Soil salinity results
from very complex processes related to
hydrological, climatic regimes, groundwater

exploitation, and human activities. Anthropoid

Soil salinity is considered the most serious
environmental problem, causing significant
effects on ecosystem health, soil property, and
cultivation growth (Vermeulen and Van
Niekerk 2017, Wang and Sun 2024).

According to FAO, about 20% of irrigated

*Corresponding author, Email: huyquoc2311@hus.edu.vn

216

activities such as plowing in a natural element
characterized by low rainfall, high
evaporation, and high groundwater level make
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croplands more affected by the soil salinity
problem (Vermeulen and Van Niekerk 2017,
Wang and Sun 2024). The Mekong Delta is
the delta situation most affected by soil
salinity in the world. According to data from
the Ministry of Agriculture and Rural
Development, soil salinity  affected
approximately 42.5% of natural areas and
430,000 people in the dry season of 2019-
2020 (Tran, Tsujimura et al. 2021). Among
them, the province of Tra Vinh was the most
affected by soil salinity. According to the
Department of Agriculture and Rural
Development of Tra Vinh province, saltwater
intrusion during the dry season of 2019-2020
caused about 1,000 billion VND of damage;
among them, rice suffered the heaviest
damage, with 919 billion VND. In addition,
dozens of hectares of crops and more than 271
hectares of fruit trees in the province were
also damaged, accounting for more than 30%
of the area. In the context of population
growth and urbanization, the request for
natural resources and food is growing; it
requires more land to develop agriculture.
Therefore, careful monitoring, quantitative
evaluation, and construction of the spatial
distribution map of soil salinity are considered
an important task to support decision makers
or local authorities in managing land
resources to develop agriculture to ensure
nutrition security in the country (Nguyen,
Liou, et al. 2020, Nguyen, Germer, et al.
2024).

Acquiring timely and accurate soil salinity
information plays an essential role in
preventing and controlling the soil salinity
situation to ensure food security in the region.
Soil salinity monitoring is considered the first
step to reveal soil salinity occurrence (Sarkar,
Rudra et al. 2023, Wang and Sun 2024). The
literature review shows several methods to
assess soil salinity from traditional to modern,
including physical analysis-based, physically-
based, remote sensing, and data-driven

models. Physical analysis-based methods
provide knowledge about the saltwater
movement by monitoring solute

concentrations in a specific period (Ren, Wei
et al. 2019). This method is often combined
with the physically-based model to understand
the saltwater movement process better.
Although the methods based on the physical
analysis are beneficial for understanding the
process of saltwater intrusion in a short time,
this method has been applied only in the case
of a simple saltwater intrusion process. In

reality, this process is very complex.
Therefore, several studies have used
physically-based models such as

MODFLOW, SEAWAT, and MIKE... which
are considered the alternative method to
examine saltwater intrusion into coastal multi-
aquifer systems in the context of climate
change and human activities (Mirlas 2012,
Keilholz, Disse et al. 2015, Dunlop,
Palanichamy et al. 2019). In recent years,
physically based models have been widely
used to model the dynamics of groundwater
and saltwater intrusion into coastal multi-
aquifer systems. These models are based on
detailed  descriptions and provide a
mechanistic understanding of the physical
processes not only at the small scale but also
at a large scale. However, constructing these
models requires detailed data and, therefore, is
not always possible.

Remote sensing has been widely utilized in
soil  salinity spatial distribution  map
construction at local and regional levels.
Sentinel 2 satellite images with temporal
resolution, multiple frequency bands, and high
spatial resolution have been widely used in
many previous studies (Metternicht and Zinck
2003; Wu, Mhaimeed et al. 2014; Gorji, Sertel
et al. 2017). Due to its higher spatial and
temporal  resolution, the  multispectral
instrument (MSI) outperforms the operational
land imager (OLI) in soil salinity monitoring.
Furthermore, OLI tends to overestimate the
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area of salinized land and saline areas with
vegetation. However, many studies have
compared the accuracy of these two sensors in
monitoring soil salinity, and the results show
similar accuracy (Chaaou, Chikhaoui, et al.
2024, Sirpa-Poma, Satgé, et al. 2024).
However, the results also demonstrate that the
different salinity levels in the electrical
conductivity (EC) are considered using
regression models. Soil salinity monitoring
using remote sensing and GIS data can be
limited by atmosphere, clouds, vegetation, and
temporal  resolution. = However, these
limitations can be overcome using more
sensor data and field data. However, along
with the rapid development of remote sensing
data, research and development of new
methods are needed to process these data
accurately and efficiently.

In recent years, several researchers have
developed the data drive model for soil
salinity studies (Khanh, Ngoc et al. 2024,
Wang and Sun 2024). The data drive model is
based on the correlations between covariates
and dependent variables to predict the spatial
distributions of soil salinity. The models of
soil salinity prediction can be separated into
linear and non-linear regression models.
Linear regression models include partial least
squares regression (PLSR) (Zeng, Zhang et al.
2018) and inverse density weighted regression
(IDW) (Zhao, Cao et al. 2019), which have
been applied to predict soil salinity. However,
most linear models present poor precision in
areas with high spatial salinity variability.
Recently, machine learning has been
developed to build a soil salinity map in
different regions. Commonly used algorithms
include support vector machine (Jiang, Rusuli,
et al. 2019), random forest (Fathizad,
Ardakani, et al. 2020), Xgboost (Aksoy,
Sertel, et al. 2024), Catboost (Mantena,
Mahammood, et al. 2023), convolutional
neural network (CNN) (Garajeh, Malakyar, et
al. 2021). Salinity intrusion is very complex
and has been controlled by several factors.
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Therefore, linear models are complicated to
simulate in real situation, while nonlinear
models can better fit the contributions of
various factors of soil salinity. However,
selecting appropriate models in some models
is considered one of the difficult tasks. In
addition, researchers have received attention
to the challenges of predicting soil salinity in
regions with high spatial variability using the
machine learning model. A comprehensive
assessment of the distributions of several
factors causing soil salinity using machine
learning remains insufficient. Therefore, the
purpose of this paper is to soil salinity
estimation using machine learning and remote
sensing in the Mekong Delta, for example, in
Tra Vinh province. Specifically, this study a)
explores the appropriate conditioning factors
to predict soil salinity in the Tra Vinh
province; b) estimates soil salinity using
machine learning (XGB, RF) and remote
sensing (Sentinel 2A).

This study has the possibility of
contributing to the literature by proposing a
theoretical framework that fills the gaps in
previous studies to develop a soil salinity
map. This study aims to achieve precision and
efficiency in the construction of soil salinity
maps using machine learning. The results of
this research play a significant role in
improving the knowledge of soil salinity in
the Mekong Delta in general and Tra Vinh
Province in particular. It can support decision-
makers or farmers in proposing practical
measures to reduce the effects of soil salinity.

2. Description of the study area

Tra Vinh is located in the southeast of the
Mekong Delta, with a natural area of
2,391 km’, representing 5.77% of the Mekong
Delta areca. Most Tra Vinh province has a low
relief, fluctuating from 0.6 to 1.0 m. The soil
in the study area is fertile and composed of
five main soil groups: sandy soil, saline soil,
alum soil, alluvial soil, and ridge soil. Among
them, the saline soil group has the largest
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area, 47,362 hectares, accounting for 19.81%;
the Lip land group has an area of 35,838
hectares; the Alluvial soil group has 34,180
hectares (14.30%); the Aluminous soil group
has 32,910 hectares, accounting for 13.77% of
the area; Sandy soil group with 8,250 hectares
equivalent to 3.45% of the natural area. Tra
Vinh province is located in the hot and humid
tropical subequatorial monsoon climate zone.
The climate is split into two distinct seasons:
the rainy season starts from May to October,
accounting for more than 80% of the total
annual precipitation, and the dry season from
November to April. The precipitation in Tra
Vinh is at a low average level and tends to

decrease (in 2020, only 68.1% compared to
2016), and the distribution is unstable. The
upstream flows and tidal regimes of the East
and West Seas strongly influence the
hydrological regime of the Mekong Delta.
The tides of the East Sea have a semi-diurnal
regime. The high tide lasts about 6 hours, and
the low tide lasts about 7 hours. The average
tidal amplitude is about 3 to 4 m. At the same
time, the tidal regime in the West Sea is very
complex and generally belongs to diurnal
tides. Although there are also 2 peaks and 2
troughs during the day, the tidal amplitude is
much smaller than that of the East Sea, only
about 0.8 to 1.2 m (Fig. 1).
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Figure 1. Location of Tra Vinh province in the Mekong Delta of Vietnam
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Tra Vinh province's agricultural crop
season is divided into three main crops:
Winter spring, summer autumn, and autumn
winter. The winter-spring crop usually lasts
from November to March, the main crop with
the highest yield of the year due to favorable
weather conditions and abundant water
resources. The summer-autumn crop lasts
from April to August, which occurs during the
dry season, so production in this crop often
difficulties, primarily due to
saltwater intrusion The
Autumn-Winter crop lasts from September to

encounters
in coastal areas.

December and is considered a secondary crop
due to lower yields. Saltwater intrusion is a
significant ~ challenge  for  agricultural
production in Tra Vinh, especially during the
dry season, seriously affecting crop yields,
especially in coastal areas.

3. Materials and Methodology
3.1. Material

3.3.1. Soil Salinity Sample Collecting and
Laboratory Analysis

In this study, 68 soil salinity samples with
a 0 to 30 cm depth were collected from the
field mission in August 2024 in the viticulture
regions. August was chosen for the salinity
sampling because August is the break time
between two crops in Tra Vinh, helping
minimize the impact of farming activities on
the salinity of soil samples. Each sample was
collected from four corners and one in the
center of a 3x3 m sampling area. 500 g of soil
was collected and sealed in a plastic bag at
each location. Furthermore, the portable GPS
on the field mission recorded the geography
information for each point. After the soil
salinity samples were transported to the
laboratory for analysis. Before analysis, soil
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samples were air dried, and impurities such as
gravel, tree branches, etc., were removed. The
soil samples were mixed with pure water
solution in the same ratio of 1:5, which was
15 g of soil mixed with 75 ml of distilled
water. EC values were measured in soil and
water solutions using a multiparameter
measuring device WTW inoLab ® Multi
3420 Set B (Wissenschaftlich-Technische
Werkstitten GmbH, Germany). At each point,
the EC value is the mean of a sample.

In the end, each sample has been assigned
the value of the conditioning variable to reach
the entire data set. These data were divided
into two parties, with a rate of 70/30. That is
to say that this study uses 70% (48 samples)
to train machine learning models and 30% (20
samples) to justify the effectiveness of the
models.

3.3.2. Conditioning variable

Selection is considered one of the essential
tasks when using machine learning to estimate
environmental problems such as soil salinity
because they are the factors that control
salinity levels in a region (Erkin, Zhu, et al.
2019, Wang, Xue, et al. 2020). In this study,
25 conditioning factors were utilized to build
the soil salinity model in Tra Vinh province,
Mekong Delta, including 12 Sentinel 2A
images (B1, B2, B3, B4, B5, B6, B7, B8,
B8A, B9, B11 and B12) and four topographic
factors (Elevation, Aspect, Curvature, and
Slope), one hydrological factor (Distance to
the river), one climatic factor (rainfall), one
vegetation factor (NDVI) and six salinity
index factors (SI, S1, S2, S3, S5, S6) (Fig. 2
and Table 1). All variables were transformed
with a resolution of 10 m using the Resample
tool in ArcGIS.
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Figure 2. Example of conditioning variable for soil salinity model: a) Elevation, b) Aspect, ¢) Curvature,
d) Distance to river, e) Rainfall, f) Slope, g) NDVI, h) S1 (Salinity Index), i) S2 (Salinity Index),
k) S3 (Salinity Index), 1) S5 (Salinity Index), m) S6 (Salinity Index)
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Table 1. The calculation equations of the conditioning variable
Abbreviation Conditioning variable Equation

Bl Coastal earosol Band 1
B2 Blue Band 2
B3 Green Band 3
B4 Red Band 4
B5 Vegetation red edgel Band 5
B6 Vegetation red edge2 Band 6
B7 Vegetation red edge3 Band 7
B8 Nir Band 8

BSA Vegetation Red Edge Band 8A
B9 Water vapour Band 9

Bl1 SWIR1 Band 11

B12 SWIR2 Band 12

NDVI Normalised Difference Vegetation (Band 8 — Band 4)/(Band 8 + Band 4)
Index
SI (Band 2 + Band 4)0.5
S1 Band 2/ Band 4
S2 .. (Band 2 — Band 4)/( Band 2 + Band 4)
S3 Salinity Index (Band 3 x Band 4)/ Band 2
S5 (Band 2 x Band 4)/ Band 3
S6 (Band 4 x Band 8)/ Band 3
Elevation
Aspect
Slope
Curvature
Rainfall

Distance to river

In this study, three Sentinel-2 images were
collected between July and September 2024 to
ensure coverage of the entire study area.
These images were stitched together using the
Mosaicking tool in the ENVI 5.4 software.
Before use, the Sentinel-2 images are cropped
to the study area, and atmospheric correction
is performed. It should be noted that the
Sentinel image channels have different
resolutions, so these image channels are
adjusted to the exact spatial resolution of 10
m. Although the satellite images in the study
were selected with minimal cloud cover, they
still had to be filtered for clouds before use.
Even though four topographic factors were
extracted from DEM, which were built using a
topographic map with a scale of 1:50,000
(available from the Ministry of Natural
Resources and Environment). Rainfall was
constructed from 10 climate stations in Tra
Vinh province. NDVI was computed from
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Band 5, and Band 4 of the Sentinel 2A image,
and salinity indices were calculated from
Band 2, Band 3, Band 4, and band 8 of the
Sentinel 2A image.

Band 1 and Band 9 were generally used to
study atmospheric correction and water
transparency. Although this band has a less
direct influence on soil salinity, it can be used
to eliminate atmospheric influences when
analyzing other bands on soil salinity. Band 2
was used to analyze the reflectance of the bare
soil. Soils influenced by salinity often have
high reflectance in this region. So, it is
considered one of the essential bands in soil
salinity analysis. Band 3 was used to evaluate
the reflectance of vegetation. It is imperative
to distinguish bare soil from soil covered with
vegetation. Because in salinity-influenced
regions, vegetation has been influenced and is
very difficult to develop. Band 4 is considered
an essential factor to analyze the effects of
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salinity on vegetation. Because salinity-
influenced regions often have low reflectance
due to vegetation degradation. Band 5 is a
very sensitive factor to changes in vegetation
stress. It is very effective in assessing the
impacts of salinity on the photosynthesis
process and vegetation health. So, it presents
the relationships between salinity and
vegetation development. Bands 6 and 7 are
used to analyze vegetation structures. This is
very important in distinguishing the
influences of salinity on vegetation. Band 8 is
an important factor in analyzing soil moisture
and structure. Soil salinity often has different
reflectance due to soil structure and moisture.
Band 8A is essential to distinguish transition
regions between salinity and non-salinity
regions. Band 11 is used to analyze changes in
soil moisture and mineral. It is very effective
in distinguishing high-salinity regions. Band
12 is very effective in constructing a bare map
due to the spectral signature of the soil. In
general, in regions with high salinity,
vegetation is tough to develop (Yahiaoui,
Bradai et al. 2021; Gerardo and de Lima
2022; Yimer, Sodango, et al. 2022; Kaplan,
Gasparovi¢, et al. 2023).

Topographic factors are vital in soil
salinity monitoring, particularly in deltas such
as the Mekong Delta and the Red River Delta.
Elevation is considered an essential factor in
analyzing the local distribution of salinity. In
low-lying regions such as the Mekong Delta,
saltwater intrusion originates from the sea or
estuary and is stagnant. This leads to
increased salt accumulation in the soil.
Therefore, low-lying regions and proximity to
the river are strongly affected by salinity
(Cramer, Hobbs et al. 2004).

Furthermore, the tide has strongly affected
these regions, which drives increased salinity
(Nguyen, Liou, et al. 2020). This aspect is
critical in evaporation and salt accumulation
(Loc, Lixian, et al. 2021). Therefore, the
southern and southwestern slopes are heavily

influenced by solar radiation, which leads to
high evaporation, which can focus more on
soil salinity (Pessarakli and Szabolcs 2019).
The curvature presents the convex shape of
the surfaces, which affects the drainage
capacity of the water and the distribution of
salts. However, slope impacts the velocity and
volume of flow in a region with a low slope
that drives salt stagnation in soils (Triki
Fourati, Bouaziz, et al. 2017). In Tra Vinh
province, the coastal area has low elevation,
and the difference between regions is
insignificant, but topographic factors are
essential in affecting soil salinity. The
direction directly affects soil humidity, with
areas facing south and southwest often having
higher evaporation rates, leading to higher salt
concentrations.

In contrast, areas facing north and
northeast tend to maintain humidity better,
diminishing soil salt concentrations. Although
the slope in the area is small, it still affects the
surface runoff and drainage rates. Low-slope
areas often accumulate water, especially in
coastal lowlands, increasing salinity levels.
Furthermore, in Tra Vinh, the combination of
topographic factors, tidal effects, and dense
river systems has created favorable conditions
for  saltwater intrusion,  significantly
increasing soil salinity.

In the Mekong Delta, soil salinity is
generally the consequence of the sea and the
river. Therefore, regions near the river or sea
tend to have more salinity (Yang, Huang et al.
2015). Although precipitation also plays an
essential role in providing fresh water and
increasing the river's flow, it reduces the soil's
salinity level. When rainfall is abundant,
especially in the rainy season, it increases the
level of the river, which carries salt water
away from the shore, thus reducing the level
of saltwater intrusion. In contrast, during the
dry season, when the river level reduces
sharply, this facilitates the penetration of salt
water deep into the land (Isidoro and Grattan
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2011, Eswar, Karuppusamy et al. 2021). In
this study, the average annual rainfall is used
to calculate soil salinity using a machine
learning model.

NDVI is considered one of the key factors
in soil salinity evaluation because soil salinity
directly influences the development of
agriculture. Previous studies have widely used
this index (Mehla, Kumar et al. 2024). The
salinity frequently negatively affects plant
growth, particularly reducing leaf area, as
reflected in the NDVI index. Furthermore,
NDVI has been demonstrated to be an
effective tool for assessing plant health on a
large scale and over a long period (Nguyen,
Tran, et al. 2021). This study collected
samples in August 2024, when rice plants
were flowering. This is the rice growing
season. At the same time, Sentinel-2 images
were also collected during this period,
ensuring that the NDVI values accurately
reflect the growth situation of rice plants.
Therefore, NDVI can be used as a reliable
indicator to monitor and evaluate the impact

of salinity on crops in the study area.

Six salinity indices (SI, S1, S2, S3, S5, S6)
play an essential role in evaluating or
predicting the salinity of any region globally.
It provides the process of salt accumulation on
surfaces. Combining these indicators in the

analysis, accurately assessing salinity
intrusion and understanding the overall
salinity intrusion process to develop

agriculture sustainably (Wang, Peng et al.
2021).

3.2. Methodology

This study applied two machine learning
models, namely XGB and RF, to monitor soil
salinity in the Tra Vinh province. The soil
salinity monitoring was divided into four main
steps: (i) collect soil salinity samples and
conditioning factors; (ii) establish machine
learning  models;  (iii)) evaluate  the
effectiveness of the proposed models; (iv)
analyze soil salinity map. Figure 3 shows the
soil salinity prediction methodology in the
province of Tra Vinh.

¥

Sentinel-2A
and GIS Data

12 bands of
S2A & Indices Samples S S

Validat

‘ SOIL SALINITY MAP

TRAINING DATASET

Figure 3. Methods used for soil salinity prediction in Tra Vinh province using XGB and RF

3.2.1. Xgboost (XGB)

XGB is the gradient-boosting family
algorithm proposed by (Friedman 2001). This
model is based on sequential ensemble
learning and weak learners. This boosting
algorithm converts several weak learners into
a single strong learning model (Zarei,
Hasanlou et al. 2021). It starts by building a
first model on the data and then builds a
second one, focusing on accurately predicting
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the observations that the first model predicted
poorly. Combining these two models is
supposed to be better than the ones taken
individually. This boosting process is repeated
several times, each successive model trying to
correct the flaws of the previous models. The
XGB algorithm is capable of processing a
large volume of data sets. This makes it
particularly useful for Big Data applications
such as soil salinity prediction (Nguyen, Tran
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et al. 2021, Aksoy, Sertel et al. 2024). The
performance of XGB depends on adjusting
parameters like learning rate, n_estimators,
max depth, and gamma. In this study, the
parameters of the XGB model were adjusted
using the trial-and-error method. Finally, the
parameter values were learning rate = 0.05,
n_estimators = 500, max_depth = 10, and

gamma = 1.
3.2.2. Random forest (RF)
RF is a machine-learning algorithm

designed and proposed by (Breiman 2001).
This algorithm is mainly based on the
assembly of decision trees. That is to say, it
combines the results to obtain the best results.
The RF can consist of some trees, and the
number of trees is a parameter that the
crossover has validated. Each tree is trained
on a subset of the data set and gives a result.
The final results are the average value of all
trees (Lee, Kim, et al. 2017). The RF function
is based on three main steps: (i) randomly
selecting a sample from the entire data set.
(il)) Generate a tree in the forest for each
sample. (iii) calculating the average value
from the value of each tree (Habibi, Delavar,
et al. 2023). In the training process, RF can
reduce bias and increase variance to avoid the
overfitting problem. Additionally, the RF
model can solve missing data using the voice
value. The accuracy of RF depends on three
primary parameters: the number of nodes, the
number of trees, and the number of sampled
features (Islam, Talukdar et al. 2021). In this
study, we used the trial-and-errors method to
adjust the RF. In the end parameters, the RF
model was the number of nodes = 10, the
number of trees = 500, and the number of
features sampled features = none.

3.2.3. The assessment model proposed

In this study, various statistical indices,
namely RMSE, MAE, and R2, were used to
evaluate the performance of the proposed
model. Previous studies have widely used

these indices (Ge, Ding et al. 2022, Kaplan,
Gasparovi¢ et al. 2023).

RMSE and MAE present the differences
between the observation and prediction
values. While R? is a crucial statistical
measure used to evaluate the effectiveness of
a linear regression model in describing the
relationship between variables, R” is a crucial
statistical measure. Quantifies the proportion
of the variance of the dependent variable that
is predictable from the independent variables.

4. Results
4.1. Selection of independent variables

The selection of appropriate conditioning
factors is crucial for the machine learning
model to learn the relationships between the
location of saline areas and their causes,
enabling better future estimation of soil
salinity. The importance of conditioning
factors was assessed using the RF model,
which assigns a value to each factor based on
the relationships between sample locations
and conditioning factors. The higher the value
of a factor, the more important that factor is.
Among the 25 independent factors in this
study, B8A, B7, and S6 were the most
pertinent (Fig. 4). B8A 1is essential for
analyzing soil moisture. Although the Mekong
Delta, in general, and Tra Vinh province, in
particular, are at a low altitude, salt water
penetrates the soil. B8A can evaluate this
process. B7 is essential in measuring the
health of vegetation.

In Tra Vinh, soil salinity directly
influences rice cultivation, so B7 was ranked
second most important of all the factors. S6
was third, thanks to its ability to build a soil
salinity model in a  water-saturated
environment. This is necessary in the
province, where soil salinity is affected by
saltwater originating from rivers and the sea,
often mixed with stagnant water. B11, B9, B6,
BS5, elevation, S2, B8, and distance to the river
took positions 4 to 11 respectively. B11 is
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very sensitive to changes in humidity and
mineral salts; in Tra Vinh, soil salinity is
becoming more and more severe due to high
evaporation and humidity. This causes salts to
accumulate on land surfaces, especially in
areas where there are stagnant waters. B9
improves the accuracy of soil salinity
estimation by eliminating errors related to
atmospheric humidity, which is particularly
important in humid regions. B6 and B5
analyze the effects of the environment on
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vegetation, such as soil salinity. Vegetation in
Tra Vinh province, such as rice farms, is
frequently impacted by soil salinity. B8
measures soil moisture. The soil salinity in the
area affected regions with less humidity and
proximity to the sea. The study area is in a
region with low altitude and proximity to the
sea and rivers and is, therefore, more affected
by soil salinity. This is why elevation and
distance to the river were selected as essential
factors.

‘S~\/ A,

Figure 4. Variable Important Using a Random Forest

The factors S1, B3, rainfall, slope, S3, B2,
and aspect did not influence soil salinity in
Tra Vinh province. Therefore, they were
eliminated from the machine learning model.
Soil salinity was most influenced by BSA, B7,
S6, elevation, and distance to the river; it was
not influenced by aspect, slope, or rainfall
(Fig. 4).

In the context of climate change and sea
level rise, soil salinity is affected by many
different factors (or variables). These factors
are bound together by a linear relationship
and linked through a nonlinear relationship.
Each factor has a different level of
interaction with soil salinity. However, how
do we determine these values? XGB has
solved this problem by quantifying and
evaluating the level of impact of each factor
in the model by determining the total number
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of decision tree splits to reduce the noise of
the forecast results of each factor. From
there, XGB helps build the model by
focusing only on the factors with the most
significant impact, eliminating factors that
have little or no effect on the research
subject, such as soil salinity. This is very
important to ensure that the model operates
effectively, meeting the requirements of
analysis and forecasting when the impact
factors have continuous and complex
changes. At the same time, this process also
helps to enhance the model's performance. In
addition, during the model setup process,
XGB allows us to improve the model by
correcting and calibrating the model
parameters after each training loop. Thanks
to that, the built model has higher accuracy
and reliability.
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4.3. Model Comparison and Performance
Evaluation

This study uses R? to evaluate the
machine learning model's performance in
monitoring soil salinity. Among the two
proposed models, with an R* value of 0.86,
the XGB model has higher predicted
precision than the RF model, with an R2
value of 0.67. Additionally, to ensure the
reliability of the two proposed models, this
study utilized RMSE and MAE to evaluate

the model performance. For the training data
set process, with RMSE and MAE values of
0.25 and 0.22, respectively, the XGB model
performed more than the RF model with
RMSE and MAE values of 0.38 and 0.35.
For the validation of the data set process,
with the RMSE and MAE values of 0.32 and
0.3, respectively, the XGB model continues
to have more precision than the RF model
with the RMSE and MAE value of 0.42 and
0.41, respectively (Fig. 5 and Table 2).
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Figure 5. R? value for the XGB and RF models

Table 2. Model Performance for Soil Salinity
Mapping

Training dataset Validating dataset
RMSE | MAE | R* |RMSE | MAE | R?
XGB | 025 | 022 {092 | 0.32 03 ]0.86
RF 038 | 035 [ 072 | 042 | 041 | 0.67

4.4. Soil Salinity Map

Figure 6 shows the soil salinity map in Tra
Vinh province using two proposed models.
The results showed that the areas with the
most considerable saline intrusion have the
highest EC values of about 9.5 mS/cm,
concentrated in the southeast region and along
the Tien and Hau rivers. Meanwhile, the areas
with less salinity intrusion are concentrated
further inland. The spatial distribution of
regions affected by salinity intrusion reflects
the role of topography, distance, and river
density.

According to the Department of
Agriculture and Rural Development of Tra
Vinh province, during the dry seasons of 2019
and 2020, drought and soil salinity caused
more than VND 1 trillion, of which rice
suffered the most damage at VND 919 billion.
In addition, more than 271 hectares of fruit
trees were also affected by salinity.

In the book "Diagnosis and Improvement
of Saline and Alkali Soils” by Regional
Salinity Laboratory (US) of J. K. Brown and
his colleagues in 1954, the level of soil
salinity intrusion based on soil electrical

conductivity values was divided into
five different levels including nonsaline
(EC ~ 0-2 mS/m), slightly saline (EC

~ 2-4 mS/m), saline (EC ~ 4-8 mS/m),
strongly saline (EC ~ 8-16 mS/m) and
extremely saline (EC > 16 mS/m) (Richards
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1954). Based on the soil salinity maps, we mainland area from nonsaline or slightly
could see that the coastal areas in the saline to saline level through the river and
southeast region of Tra Vinh province are canal systems spread throughout the province,
experiencing severe salinity intrusion and tend  even if there are minor differences between
to cause increased soil salinity in the central the two models.
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The soil salinity map is considered an
important tool to support decision makers or
farmers in understanding the distribution of
soil salinity and propose effective intervention
2measures to reduce the effects of soil salinity
on agricultural development.

5. Discussions

Soil salinity is considered one of the
serious environmental problems, causing
significant damage to the development of
agriculture in the country. The soil salinity
phenomenon is increasingly serious in deltas
where there is low altitude and is influenced
frequently by rising sea levels (Vermeulen
and Van Niekerk 2017, Xiao, Ji et al. 2023).
The altitude of the Mekong Delta varies from
0.5 to 2 m above sea level, making this region
more affected by tides and sea level rise
(Wassmann, Hien, et al. 2004, Kim-Anh, Liou
et al. 2020). The flat terrain creates favorable
conditions for deep penetration of salt water
into the continent through the river canal,
especially in the dry season when the river
level is very low (Ngoc 2017, Van Binh,
Kantoush, et al. 2020). In addition, although
the dense river density is favorable for
agricultural development, this is also the main
route for seawater to penetrate the mainland,
making saline intrusion increasingly severe,
especially with climate change.

Meanwhile, the Mekong Delta is also
home to nearly 20 million people, located
along the Tien and Hau rivers, of which 80%
of the population lives in rural areas and
works in the agricultural sector (Nguyen, Van
et al. 2023). Therefore, soil salinity
significantly affects this region's food security
and livelihoods. The Tra Vinh is one of the
provinces most seriously affected by soil
salinity due to low altitude, tide, and sea level
rise. So, seawater enters the mainland through
the river system, as the river level is
increasingly lowered due to the construction
of dams and reservoirs upstream, combined

with sea level rise in the context of climate
change (Nguyen, Liou et al. 2020). The aim of
this study is to construct the spatial
distribution map of soil salinity, which can
support farmers in proposing investment
measures to reduce the effects of soil salinity
on agriculture.

This study evaluates the feasibility of using
Sentinel 2A optical images to assess soil
salinity. The use of optical imagery to build
soil salinity maps in this study indicates that
optical spectral reflectance quickly affects
salinity and surface characteristics, such as
plant health and soil moisture. Additionally,
Sentinel 2A images with 12 spectral bands,
including visible, near-infrared, and short-
wave infrared regions, enable them to monitor
changes in the reflectance characteristics of
soils and vegetation affected by salinity,
particularly for band 5, band 6m, band 7, and
band 11, band 12. Furthermore, Sentinel 2A
images have different resolutions from 10m to
60m, allowing soil salinity at small and
medium scales. The 5-day temporal resolution
allows Sentinel 2A images to provide
continuous salinity data over time (Taghadosi,
Hasanlou, et al. 2019; Gerardo and de Lima
2022).

In this study, machine learning combines
with remote sensing to monitor soil salinity.
Machine learning can solve massive volumes
of data from different sources, such as satellite
images and ground sensors. This allows for
comprehensive and detailed integration and
analysis of the causes of salinity. Furthermore,
soil salinity is influenced by multiple factors
and is often nonlinear. However, machine
learning is considered an effective tool to
present complex non-linear relationships,
which is very difficult to achieve with
traditional models. Finally, machine learning
can be applied in similar regions, which
allows them to be used in different
environmental contexts (Wang, Shi, et al.
2020, Wang, Peng et al. 2021). However, the
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accuracy of machine learning models strongly
depends on the quality and representativeness
of the training data.

Furthermore, selecting appropriate
algorithms in some algorithms is challenging
because there are no universal guides to
choosing them (Nguyen, Tran et al. 2021).
This study uses two popular algorithms,
namely XGB and RF, to monitor soil salinity
in Tra Vinh province. The XGB model was
more efficient among the two proposed
models, with an R* value of 0.86. Because
XGB uses numerous weak learners in a
sequential method that repeatedly enhances
observations, this method reduces the high
biases that can sometimes be recurrent in
machine learning models. Indeed, XGB offers
a considerable number of hyperparameters.
Thanks to this diversity of parameters, it is
possible to have total control over the
implementation of gradient boosting. It is also
possible to add different regularizations in the
loss function, limiting an Overfitting
phenomenon often occurring when using
Gradient Boosting algorithms (Qiu and Zhou
2023, Kiriakidou, Livieris et al. 2024). With
an R? value of 0.67, the RF model was less
precise than the XGB. RF uses many trees in
the model or trains the model on large data
sets, which can require high computational
costs. Although RF models are often more
efficient during the training phase, creating
predictions can be more time-consuming than
other algorithms, especially when dealing
with large datasets or models with a large
number of trees.

Additionally, because RF incorporates
many decision trees, it becomes difficult to
clearly understand the logic behind each
prediction, which sometimes leads to the
model being viewed as a "black box" that is
difficult to interpret (Langsetmo, Schousboe
et al. 2023). Finally, although this study only
uses 68 soil salinity samples as input data for
the XGB and RF model. However, the
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precision of these models was more than 0.7
for training data and 0.67 for validation data.
These results are acceptable because the XGB
and RF models can handle small data sets
through parameter and ensemble optimization.
In addition, both models have the advantage
of avoiding the overfitting problem by using
parameters such as max depth or
min_samples. Although the soil salinity
samples used in this study were small, this
study uses the RF model to evaluate the
importance of conditioning factors; therefore,
the XGB and RF model can achieve high
precision by evaluating the complex
relationships between input variables.
Although this study successfully built the
soil salinity map using machine learning with
high accuracy. However, this study also has
limitations related to data use. This study
collected 68 soil salinity samples evenly
distributed throughout the Tra Vinh province
to use as input data for the machine learning
model. The number of samples was similar to
previous studies that used machine learning to
estimate the soil salinity of different regions
worldwide. However, 68 samples can be
considered insufficient to have high precision.
However, collecting soil salinity samples is
very difficult, especially in developing
countries, due to the limited funding and time.
In future research, we will try to add samples
to improve the model performance. The
second is related to the machine learning
model, and the third is related to the nonlinear
relationship between soil salinity locations in
the past and the conditioning factors. This
study collected soil samples at depths of 0 to
30 cm. However, the big question is whether
the salinity data collected from Sentinel 2A
satellite images can reflect soil characteristics
at 0 to 30 m depths. Sentinel 2A data can be
compared to soil samples collected at 0 to 5 m
or 0 to 10 m depths. In addition, many
environmental factors, such as soil quality,
humidity, or human activity, can affect soil
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salinity, such as vegetation and the salinity
index.

Furthermore, the machine learning models
in this study also have uncertainties related to
optimizing model parameters. This study uses
a trial-and-error method to select the optimal
parameters. However, this method stops only
when a seemingly suitable solution is obtained
but does not guarantee that the solution is
optimal. In many cases, better solutions may
be missed due to a lack of information or
because not all possibilities have been
examined. In the future, our goal is to
integrate machine learning algorithms with
optimization algorithms to provide more
accurate models in soil salinity monitoring.
Finally, this study uses Sentinel-2 images to
monitor and analyze soil salinity. Although
Sentinel-2 images have significant advantages
in high spatial (10-20 m) and temporal (revisit
every 5 days) resolution, they are suitable for
small-scale monitoring with high accuracy.

Furthermore, multispectral bands can
effectively capture salinity-related features.
However, this study's difference between soil
sample collection and satellite image
acquisition could influence field and remote
sensing data consistency. However, several
studies point out that soil salinity varies
mainly with seasons, especially when the river
and sea levels are low (Nguyen, Tran, et al.
2021). Therefore, this temporal difference did
not influence the results of this study.

Finally, one of the limitations of this study
is related to the use and selection of
conditioning factors. Although the study used
25 conditioning factors to monitor and control
soil salinity, some critical factors were not
collected due to finance and time constraints.
In the future, we will try to add more factors
directly related to soil salinity, such as soil
moisture, river density, and high tide level.
These factors can provide more detailed and
accurate information, helping to clarify the
causes and mechanisms that lead to soil

salinity, thus improving the effectiveness of
analysis and forecasting models.

The results of this study can be used to
predict or estimate soil salinity in the coastal
region, even for prediction with high
accuracy. These results are undoubtedly
helpful in supporting decision-makers or
farmers in managing land resources to
develop agriculture to ensure security in the
region or country.

6. Conclusions

Soil salinity is considered one of the most
dangerous environmental problems, and it has
significantly affected the development of
agriculture and food security in the region,
particularly the Mekong Delta. Therefore, soil
salinity monitoring is essential in intervening
ineffective measures. This study aims to
construct the soil salinity map with high
precision using machine learning and Sentinel
2A, namely XGB and RF, in the Tra Vinh
province of the Mekong Delta. The
conclusion of this study is as follows.

(1) This study justifies the ability of the
XGB and RF models to monitor soil salinity.
This result can support decision-makers or
farmers in constructing intervention measures
to reduce the effects related to soil salinity.

(i1) Of the two proposed models, the XGB
model had a higher performance than the RF
model, with an R? value of 0.86. Therefore,
this study recommends using the XGB model
to monitor soil salinity in the province of
Tra Vinh.

(iii) The soil salinity map highlights that
areas near the sea and along the Tien and Hau
rivers are more affected by soil salinity due to
the low altitude and density of the river. These
maps can support decision-makers or farmers
in managing land resources to develop
agriculture.

This study successfully constructed a high-
accuracy soil salinity map to support
sustainable land resource management.
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Furthermore, in policy-making, governments
can use soil resources to implement remote
sensing technologies and machine learning
models to predict soil salinity, providing
practical  strategies and  policies for
agricultural development. By applying this
method, decision-makers or planners can
significantly improve food security in the
region or at the national level.
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