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ABSTRACT

Advanced machine learning and deep Learning modeling applications for landslide susceptibility mapping are
becoming increasingly popular. This study applied a deep learning model (DL) with a multilayer neural network to
landslide research in the Phuoc Son district, Quang Nam province. Two methods for selecting conditioning factors,
Correlation Attribute and OneR, were used to choose 12 condition parameters for landslides (Slope, Relief, Elevation,
Distance to road, Rainfall, Land use, Weathering crust, Geology, Aspect, Soil, Distance to fault, and Curvature).
Comparing the predicted results with two standard models, Naive Bayes (NB) and Support Vector Machine (SVM),
showed that the DL model has higher and better prediction performance. Accordingly, the prediction performance of
the DL model on the training dataset was ACC = 92.12%, AUC = 0.970, and on the validation dataset was ACC =
87.52, AUC = 0.944. The LSM developed based on the DL model indicates that areas with high landslide
susceptibility are primarily concentrated in the southern part of the study area. These findings could be highly
beneficial for urban planning management, risk management, and efforts to prevent and mitigate the damage caused
by landslides in Phuoc Son.
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1. Introduction significant  growth, employing various
methods. (Carrién-Mero et al., 2021). From a
spatial research perspective, landslide study
methods can be categorized into two main

Landslides are recognized as one of the
most impactful natural hazards affecting

people and societies. (Alcantara-Ayala, 2002; ] . .

. groups: (1) methods for assessing specific
Froude and Petley, 2018; Novellino et al., landslide mass and (2) for mapping. In group
2024). Over the past 20 years, research on (1) commonly used methods include
landslide  evaluation  has  experienced  determining slope stability factors, monitoring
displacement in  boreholes, measuring
*Corresponding author, Email: tphong1617@gmail.com displacement using surveying techniques,
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field assessments, and mapping landslide
structures. (Pham Van et al., 2023; Soga et al.,
2016). In group (2), some standard methods
include creating landslide maps from field
surveys combined with satellite imagery and
GIS analysis; developing susceptibility and
risk maps using weighted analysis models
(AHP), machine learning models, and
artificial intelligence; and analyzing ground
deformation from SAR imagery for early
landslide warning systems (Novellino et al.,
2024). Landslides are complex processes
influenced by various factors; thus, the choice
of research methods should be tailored to the
specific characteristics of the study area (He
etal., 2024).

Recent advances in machine learning have
proven to be important in generating landslide
susceptibility maps, with commonly used
models including Random Forest (RF),
Artificial Neural Network (ANN), Support
Vector Machines (Badola and Parkash, 2024;
Sharma, Saharia and Ramana, 2024), and
Naive Bayes (Madhu et al., 2024). Numerous
studies have demonstrated that machine
learning and DL models outperform previous
methods (Chen et al., 2024; Kshetrimayum,
H and Goyal; Sharma, Saharia and Ramana,
2024). As a subfield of machine learning,
Deep Learning focuses on developing and
applying deep neural networks (DNN). These
models can learn and extract complex features
from input data to perform -classification,
prediction, and recognition (LeCun, Bengio
and Hinton, 2015). Experimenting with and
adjusting the parameters of machine learning
and DL models can enhance landslide
prediction performance for specific research
areas (Dao et al, 2020). Several notable
examples highlight the superiority of DL in
LSM research and development. For instance,
Azarafza et al. (2021) developed a deep
convolutional neural network (CNN-DNN)
model for LSM generation in Isfahan
Province, Iran (Azarafza et al.,, 2021). This
study compared the performance of the CNN-
DNN model with six typical machine learning

models, including support vector machine
(SVM), logistic regression (LR), Gaussian
naive Bayes (GNB), multilayer perceptron
(MLP), Bernoulli Naive Bayes (BNB), and
decision tree (DT) (Azarafza et al., 2021). The
results showed that the CNN-DNN model
achieved the optimal performance with AUC
= 90.9%, IR = 84.8%, MSE = 0.17, RMSE =
0.4, and MAPE = 0.42 (Azarafza et al., 2021).
In a broader example, Yang et al. (2024)
analyzed 77 papers related to the application
of DL in landslide research from 2015 to
2022, based on the Web of Science (WoS)
database (Yang et al, 2024). The study
revealed that DL is increasingly utilized in
research, and DL models outperform
traditional ~ machine  learning  models,
particularly with the highly flexible U-Net
architecture) (Yang et al., 2024). The paper
also highlighted DL's limitations, such as data
collection challenges and the predominance of
labeled data for supervised classification tasks
(Yang et al., 2024).

The previously mentioned examples
demonstrate the strength of DL as a model for
predicting and  generating  landslide
susceptibility maps. However, DL also has
limitations regarding data collection levels,
labeled data structure, and the architecture of
DL models, leading to varying performance
across different DL models (Yang et al,
2024).  Consequently, the  predictive
capabilities of each DL model differ
depending on the specific research area.
Given the limited research on DL for LSM
development in Vietnam, this study focuses
on developing a DL model based on a deep
neural network (DNN) with hyperparameters
optimized specifically for LSM generation in
Phuoc Son. Phuoc Son District is one of the
areas most affected by landslides in Quang
Nam Province (Fig. 2). According to Quang
Nam Provincial People's Committee statistics,
natural disasters caused economic losses of up
to 1.016 trillion VND in the first eight months
of 2022  [http://www.quangnam.gov.vn].
Therefore, creating an LSM for Phuoc Son
provides a crucial reference tool for
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policymakers. This study presents the results
of applying the DL model and compares them
with two popular models (SVM, and NB) for
landslide susceptibility mapping in Phuoc
Son, Quang Nam. The results show that the
DL model demonstrates the highest
performance and prediction accuracy. The
LSM in Phuoc Son serves as a valuable tool
for managers in disaster risk management
caused by landslides, as well as for effective
urban planning and land use in the area.
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2. Study area

Phuoc Son is a mountainous district in the
west of Quang Nam province with a
geographical boundary of 15°11'N-15°35'N in
latitude and 107°38'E-108°02'E in longitude
(Fig. 1). A complex geological structure, a thick
weathered crust, and destructive solid faults
characterize the study area. Most of the site is
mountainous terrain with steep slopes, a high
drainage density, and a complex cleavage.
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Figure 1. Study area in Phuoc Son district, Quang Nam province

The average annual rainfall was 3680 mm in
2019-2021 at Phuoc Son station and
concentrated from September to November
every year. Typical economic activities such as
terraced hydropower system development,
including Pak Mi 2 (147 MW), bak Mi 3
(63 MW), biak Mi 4A (148 MW), bak Mi 4B
(42 MW), and bak Mi 4C (18 MW) along with
the construction of road systems, infrastructure,
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and residential planning caused drastic changes
in land use and forest cover in recent years.
Notably, the terraced hydropower system
construction had remarkably re duced the area
of watershed forests. Besides, the way of
backward rudimentary farming and slash-and-
burn cultivation by ethnic minorities have also
been impacting vegetation cover. Natural
conditions and human activities mentioned
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above have increased the number of natural
disasters (Thuc, Thanh Thuy and Huong, 2023).
Landslides are a typical natural disaster that
occurs widely during the annual rainy and
cyclone seasons, causing noteworthy damage to
humans and the economy in the research area.
The study site has recorded many serious
landslide events causing terrific damage in the
2020 rainy season. For example, landslides
combined with debris flow with material

amounts estimated at more than 50.000 m’
occurred in 1 and 3 villages, Phuoc Loc
commune, Phuoc Son district at 2:00 p.m on
October 28, 2020, burying 32 houses and
killing 13 people. Another landslide occurred
on the same day in Phuoc Loc commune,
missing two local officials while mobilizing
people to prevent Typhoon Molave. Figure 2
shows some landslide events during the field
investigation.
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Figure 2. Some typical landslides in the study area are illustrated in the picture: a) Before the landslide
occurred (March 2019); and b) After the landslide occurred (October 2021) at Village 3, Phuoc Loc
commune buried 32 houses, 13 people died; c¢) The landslide caused loss of 2 people; and d) The
landslide at Village 3, Phuoc Kim commune causing road damage. The Image was taken in April 2021

(source: Tran Anh Tuan)
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3. Methods and data used
3.1. Methods

The research methodology in this paper
can be summarized in five steps (Fig. 3):

Step 1: Data Collection: Gather data on the
current status of landslides (locations of
landslide and non-landslide points); collect
data on the conditions influencing landslides,
including 12 parameters (Fig. 3).

Step 2: Data Processing: Normalize the
data to a unified map framework with the
same coordinate system and spatial resolution,
and divide the data into a training set (70%)
and a validation set (30%). ArcMap v10.8 is
the software used.

Step 3: Modeling: Employ the DL model,

LANDSLIDE LOCATIONS
CONDITIONAL FACTOR MAPS NON-LANDSLIDE LOCATIONS
1. Slope (degree) (Using field trips and remote

2. Relief Amplitude (m)
3. Elevation (m)

4. Distance to road (m)
5. Rainfall (mm/day)
6. Landuse

7. Weathering crust y
8. Geology
9. Aspect
10. Soil
11. Distance to fault (m)
12. Curvature

sensing analysis methods)

Expert knowledge and
chosen attribute methods

DATABASE

Validating dataset (30%)

NB, and SVM for modeling. Weka 3.8.6 is
the software used for modeling, with the
deep model the
WekaDeepLearning4j toolkit (Lang et al.,
2019). The detailed hyperparameters of the
models are presented in Table 1.

learning utilizing

Step 4: Evaluation of the models: Assess
the results using classification evaluation
parameters such as ROC curve, Accuracy
(ACC), Area Under the Curve (AUC),
Sensitivity (SST), Specificity (SPF), Positive
Predictive Value (PPV), Negative Predictive
Value (NPV), Root Mean Square Error
(RMSE), and Kappa Index.

Step 5: Result Selection: Select the optimal

LSM based on the evaluation from Step 4.

Choose the best model for Landslide
Susceptibility Mapping

/ 5. LANDSLIDE SUSCEPTIBILITY MAP /

Figure 3. A flow chart illustrating landslide susceptibility mapping in Phuoc Son, Quang Nam
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Table 1. The hyperparameters of models used in landslide prediction in this research

Models

No Hyperparameters DL NB SVM

1 Activation Function Softmax - -

2 Loss Function MCXENT - -

3 Optimization Algorithm Stochastic gradient descent - -

4 Weight initialization method XAVIER - -

5 Bias initialization 0 - -

6 gradient normalization method none - -

7 gradient normalization threshold 1.0 - -

8 Attribute normalization standardize training data - -

9 Batch Size 100 100 100
10 Number of Decimal Places 2 2 -
11 Seed 1 - 1
12 Coefficient - - 0
13 Cost - - 1
14 Degree - - 3
15 EPS - - 0.001
16 Gamma - - 0
17 Loss - - 0.1
18 The value of nu - - 0.5

3.1.1. Deep Learning (DL)

DL is a subfield of Machine Learning that
focuses on constructing and training deep
learning models to perform automatic learning

tasks from data (Janiesch, Zschech and
Heinrich, 2021). Typically consisting of
multiple layers of computational units

(neurons), deep learning models are designed
to automatically learn complex features from
data (Janiesch, Zschech and Heinrich, 2021;
LeCun, Bengio and Hinton, 2015). This is one
of the most crucial areas in modern artificial
intelligence, leading to significant application
advancements (LeCun, Bengio and Hinton,
2015). Below is a presentation of the basic
information about DL:

Deep Learning basics

Neural Networks: DL models primarily
rely on artificial neural networks. A neural
network consists of interconnected layers of
neurons (computational units). Neurons in one
layer receive inputs from the neurons in the
previous layer and pass outputs to neurons in
the subsequent layer (Janiesch, Zschech and
Heinrich, 2021).

Layers: A neural
comprises multiple layers:

network typically

(1) Input Layer: From the data, input is
received.

(2) Hidden Layers: Learn features from
the data and process information. These layers
can be numerous and deep, forming the deep
learning model.

(3) Output Layer: Provides the model's
prediction or final output.

Activation Functions: By introducing non-
linearity into the model, activation functions
(such as ReLU, Sigmoid, and Tanh) enable
the network to learn more complex
relationships between inputs and outputs

Training: Optimization algorithms, such as
Gradient Descent, are used to train a DL
model to adjust the network's weights to
predict the model increasingly accurately with
the training data.

Transfer Learning: This method involves
using a model that has been pre-trained on big
data to address new problems with less data. It
is a common approach to leverage pre-trained
models like Residual Network (ResNet) for
new tasks (Ma et al., 2024).

Major DL Architectures

Convolutional Neural Networks (CNNs):
Mainly used in image recognition and signal
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processing, It can learn spatial data such as
images (Song et al., 2019).

Recurrent Neural Networks (RNNs): A
design specifically tailored to handle
sequential data, like text or time series, is
employed. Popular variants of RNNs include
Long Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU), which enhance the
ability to learn from long-term sequential data
(Yuetal., 2019).

Generative Adversarial Networks (GANSs):
The system comprises two adversarial neural

networks, namely the Generator and
Discriminator, which generate new data
Slope (degree) .
Relief Amplitude (m) .\

\

N

resembling the training data used in producing
images, videos, and audio (Pradhyumna and
Mohana, 2022).

Transformer Networks: Widely used in
natural language analysis, such as BERT
(Bidirectional Encoder Representations from
Transformers) and GPT (Generative Pre-
trained Transformer) models. Transformer
models rely on the attention mechanism to
process the relationships between words in a
sentence (Denis and Antonio, 2022).

Figure 4 presents an illustration of the
operation of Deep Learning in landslide
prediction used in this research:
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Figure 4. The illustration of the neural network in deep Learning for landslide prediction in Phuoc Son,
Quang Nam

3.1.2. Naive Bayes (NB)

The NB model is a classification approach
grounded in probability theory, leveraging
Bayes' theorem to assume independence
among features. It is among the simplest and
most effective classification algorithms,
mainly when the number of features is large,
or the data exhibits evident classification
characteristics (Wickramasinghe and
Kalutarage, 2021).
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Fundamental Principles

Bayes' Theorem: This is the theoretical
foundation of the NB model. Bayes' theorem
describes an event's probability, utilizing prior
knowledge of related conditions. This is the

formula:
_ P(ID).P(D)
PDIx) = 2D2E) (1)
where: P(D|X) represents the posterior

probability of class D given the data Y.
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P(Y|D) presents the likelihood of data Y
given class D. P(D) denotes the prior
probability of class D. P(Y) denotes the prior
probability of class Y.

NB operates under the assumption that
attributes are independent of each other within
each class. While this assumption may not
always hold in practice, it significantly
reduces the model's complexity and often
yields good results.

Types of NB Model

Gaussian NB is used when the features are
continuous and assumed to follow a Gaussian
(or normal) distribution (Ontivero-Ortega et
al., 2017).

Bernoulli NB: Suitable for binary features
(0 or 1) and is often used in text classification
problems where words are treated as binary
features (present or absent) (Artur, 2021).

Multinomial NB: Appropriate for features
that follow a multinomial distribution,
commonly used in text classification tasks and
applications where features are counts or
proportions (Jiang et al., 2016).

3.1.3. Support Vector Machine (SVM)

The SVM is a powerful and versatile
classification method in artificial intelligence
(Badola and Parkash, 2024). Although SVM
was developed for classification and
regression problems, it is most renowned for
its performance in binary classification tasks.
The SVM model seeks to optimize a
hyperplane that separates data into distinct
classes. SVM is among the most commonly
used models in landslide prediction (Badola
and Parkash, 2024; Sharma, Saharia and
Ramana, 2024). Below is some basic
information about SVM:

Fundamental Principles

Hyperplane: A hyperplane in a
multidimensional space is a flat surface
capable of dividing data into classes. SVM
aims to identify the optimal hyperplane that
maximizes the margin between the classes,
i.e., the maximum distance achievable
between the hyperplane and the classes.

Support Vectors: Support vectors, which
are the data points nearest to the separating
hyperplane, establish the hyperplane's position
and orientation. Support vectors are the most
critical data points in the SVM model.

Margin: The distance between the
hyperplane and the support vectors of the two
classes defines the margin. SVM optimizes the
hyperplane to maximize this margin, thereby
improving the model's generalization ability.

Types of SVM

Binary SVM: Designed to classify data
into two classes. The SVM determines the
optimal hyperplane that maximizes the
margin, effectively separating the data of the
two classes (Ke et al., 2024).

Multiclass SVM: An extension of binary
SVM to handle multiclass classification
problems. The two main approaches are "One-
vs-One" (OvO) and "One-vs-Rest" (OvR)
(Nie, Hao and Wang, 2024).

Kernel SVM: Applied in cases where the
data cannot be separated linearly. It applies a
kernel function to transform the data into a
higher dimension where the classes can be
linearly separated (Liu et al., 2024). Common
kernel functions include :

- Linear Kernel: Utilized when the data
allows for separation by a linear hyperplane.

- Polynomial Kernel: Transforms the data
into a higher dimension using different
degrees of polynomials.

- Gaussian Kernel: Uses a Gaussian
function to handle data that a linear
hyperplane cannot separate.

3.1.4. Accuracy Assessment Methods

Classification metrics are employed to
evaluate models used to predict landslide
susceptibility, including AUC, PPV, NPV,
SST, SPF, ACC, Kappa, and RMSE (Tharwat,
2021). Expressed as percentages, the metrics
PPV, NPV, SST, SPF, and ACC are computed
from four parameters of the confusion matrix,
which are True Positive (TP) and False
Positive (FP), representing the number of
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correctly and incorrectly predicted landslides,
and True Negative (TN) and False Negative
(FN), representing the number of correctly
and incorrectly predicted non-landslides (Le
Minh et al, 2023). Improved model
performance is indicated by higher PPV,
NPV, SST, SPF, and ACC values and lower
RMSE values (Tharwat, 2021). AUC, a key
parameter for assessing classification model
performance, is derived from the ROC curve,
which combines SST and SPF values across
different threshold levels of the predicted
values. AUC values span from 0 to 1, where
values approaching 1 indicate superior model
performance (Tharwat, 2021). The Kappa
Index is a statistical measure to assess the
agreement between predicted and actual
values (Banerjee et al., 1999). The range of
Kappa values is from 0 to 1, with values
closer to 1 indicating greater prediction
accuracy. A model is deemed highly reliable
if Kappa exceeds 0.6. The formulas for
calculating the above metrics are as follows:

PPy = % )
TP+FP
NPV = 3)
TN+I’;1¥

SST = 4)
TP%—I{}'N

SPF = (5)
e

ACC = —————— (6)

TN+FN+TP+FP

RMSE = M (7)

M-K

where x; and X; are the actual and predicted
values of landslide susceptibility. M is the
number of estimated parameters, including the
constant. K is the number of landslide points.

Kappa = Plo__szl (8)
Where P, represents the recorded

consensus among raters and B,, represents the
likelihood of agreement occurring by chance.

3.1.5. Ranking and Selection Methods for
Conditional Factors

Correlation Attribute Evaluation (CAE)
The CAE coefficient measures the linear
correlation between two continuous variables.
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It quantifies their linear relationship's strength
and direction (Nettleton, 2014). The range of
the coefficient extends from -1 to 1. This
study calculates the correlation coefficient
between the conditional factor and the
occurrence of landslides or non-landslides in
the training dataset (Lucchese, de Oliveira and
Pedrollo, 2020). The -correlation value is
adjusted to a scale from 0 to 1. A coefficient
close to 1 signifies a strong positive
correlation, indicating that the conditional
factor significantly affects the likelihood of
landslides. Conversely, a coefficient near 0
reflects a weak linear relationship between the
influencing parameter and landslides. The
formula for computing the correlation
coefficient is provided below (Nettleton,
2014):

2xm=%)Ym—Y)

R= a0 20m-77 ®
where x,, and y, represent the values of the
two variables and X and y are their respective
means.

OneR Method

OneR (OneRule) is a straightforward and
comprehensible machine learning method for
data classification. This method falls under
the category of classification algorithms and
can be considered a technique for ranking and
reducing the number of features (Witten and
Frank, 2005).

Principle of Operation

Rule Construction: OneR generates a
classification rule for each attribute in the
dataset. The process involves:

- Creating  Rules:  Formulating a
classification rule for each wvalue of the
attribute.

- Calculating Accuracy: Evaluating the
accuracy of each rule based on its ability to
classify data samples correctly.

- Selecting the Best Rule: After
constructing rules for all attributes, OneR
selects the attribute with the rule that has the
highest accuracy and uses it as the final
classification model.
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Detailed Process

Accuracy Calculation: For each attribute,
OneR constructs a classification table for each
attribute value.

Rule Evaluation: To evaluate the rule,
OneR calculates accuracy, defined as the ratio
of correctly classified samples to the total
number of samples.

Selecting Best Rule: The accuracy of the
rules from all attributes is compared. The
attribute with the rule having the highest
accuracy is chosen for classification.

3.2. Data used

Landslide Inventory

The landslide inventory map includes 858
landslide occurrences collected from primary
sources, including field investigation (275),
and visual analysis from Google Earth satellite
images (583). The landslide inventory dataset
was randomly divided into two parts for
landslide susceptibility analysis: 70% (601
landslides) was used for modeling, and 30%
(257 landslides) was wused for validating
(Fig. 1).

Conditional Parameters

In this study, 12 condition parameters are
used to model landslide susceptibility maps in
Phuoc Son, Quang Nam. The data sources for
these 12 parameters are presented in Fig. 5
and Table 2. The selection of condition
parameters is based on a synthesis of expert
methods, consideration of the specific
conditions of the study area, and the
comparison of statistical evaluation methods
(Correlation Attribute Evaluation, OneR).
Specifically, the elevation (m) represents the
"terrain energy," where higher elevations are
more conducive to landslides (Dao et al.,
2020). The weathering crust (style) indicates
the degree of weathering of the bedrock,
which relates to the stability of the soil and
rock (Regmi et al., 2013). The geology
includes formations, each representing a
combination of soil and rock with common
characteristics regarding age, formation
conditions, and lithological  features
(Ohlmacher, 2000). The soil reflects different

soil types, each having varying impacts on
landslide susceptibility (Ho et al., 2012). Land
use represents the vegetative cover on soil and
rock; generally, areas with dense forest cover
have a lower probability of landslides (Glade,
2003; Nguyen Huu et al, 2024). Relief
amplitude denotes the vertical distance
between the highest and lowest points within
a specified area (Fang-fang et al., 2008). It
measures the terrain's elevation variability and
describes the ruggedness or unevenness of the
landscape. In geographical and geological
contexts, relief amplitude helps understand the
morphological characteristics of an area and is
often used in terrain analysis, erosion studies,
and landslide susceptibility assessments
(Fang-fang et al., 2008). Rainfall (mm/year) is
an indicator of landslide-triggering factors
(Doan et al., 2024). When rainfall occurs,
water infiltrates the soil and rock, saturating
them and weakening their original cohesion
(Finlay, Fell and Maguire, 1997). Higher
precipitation levels increase the likelihood of
landslides. In this study, rainfall is averaged
annually. Distance to road (m) infrastructure
reflects human impact on landslides (Moayedi
et al., 2019). Human activities such as road
construction through hilly areas disrupt the
original slope stability. Generally, the closer
the proximity to roads, the higher the
landslide risk. Distance to faults (m) indicates
the degree of rock and soil destruction due to
tectonic factors; proximity to faults results in
more significant destruction and higher
susceptibility to landslides (Moayedi et al.,
2019). The slope (degree) gradient is a crucial
factor for landslide occurrence, with gradients
between 5° and 45° being more prone to
landslides (Dao et al., 2020). The aspect that
characterizes windward slopes is indirectly
related to the moisture absorption capacity of
soil and rock from humid wind currents
(Gorokhovich and Vustianiuk, 2021). The
Curvature describes the surface features of the
terrain, where flat terrain with curvature
values between -0.05 and 0.05 is less prone to
landslides, while concave (<-0.05) and convex
(>0.05) terrains are more conducive to
landslides (Bien et al., 2022).
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Figure 5. Condition maps for landslide susceptibility in the study area: (a) Slope (degree), (b) Relief
Amplitude (m), (c) Elevation (m), (d) road distance (m), (e) Rainfall (mm/year), (f) Land use,
(g) Weathering crust (style), (h) Geology, (i) Aspect, (j) Soil, (k) Distance to faults, and (1) Curvature
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Table 2. Data sources for condition parameters related to landslides in Phuoc Son, Quang Nam

No Factor Scale / Resolution Source
1 Slope (degree) 20 m/pixel Generate from DEM

2 Relief Amplitude (m) 20 m/pixel Generate from DEM

3 Elevation (m) 20 m/pixel Generate from DEM

4 Distance to road (m) 20 m/pixel Generate from National topographic maps

5 Rainfall (mm/year) 20 m/pixel |Vietnam Meteorological and Hydrological Administration
6 Landuse 20 m/pixel Esri Inc

7 Weathering crust (style) 1: 100,000 (Hung, 2012)
8 Geology 1: 50,000 [The Vietnam Geological Department

9 Aspect 20 m/pixel Generate from DEM

10 Soil 1: 50,000 Soil and Fertilizers Institute

11 Distance to fault (m) 20 m/pixel Generate from Geological map

12 Curvature 20 m/pixel Generate from DEM

4. Results and sixth ranks are consistently assigned to

rainfall (mm/year) and Land use by both
methods. The Weathering crust (style) is

The ranking results of the conditioning ranked seventh by CAE but only eleventh by
parameters reflect the significance of each  OneR. Geology is consistently ranked eighth
factor concerning landslides in the study area. by both methods. Aspect is ranked ninth by
Both the CAE and OneR evaluation methods CAE and tenth by OneR. Distance to faults
consistently rank the three most influential (m) is ranked eleventh by CAE and is
factors in order of importance, which are considered the least influential by OneR.
slope (degree), relief amplitude (m), and Curvature is ranked last (twelfth) by CAE but
elevation (m) (Table 3). A divergence begins  seventh by OneR. Overall, the assessment of
at the fourth rank, where CAE ranks distance  the importance of conditioning factors for
to road (m), while OneR ranks soil. The fifth landslides using different methods reveals that

4.1. Ranking of Attribute Results
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these factors each have a certain degree of
influence on the causes of landslides (Table
3). The most critical factors include Slope

Table 3. Ranking of Conditional parameters

(degree), Relief Amplitude (m), Elevation
(m), Rainfall (mm/year), Land use, Soil, and
Distance to road (m).

Methods
Ranked Correlation Attribute Evaluation OneR

Average merit Factor Average merit Factor
1 0.676 Slope (degree) 80.634 Slope (degree)
2 0.629 Relief Amplitude (m) 80.291 Relief Amplitude (m)
3 0.527 Elevation (m) 78.577 Elevation (m)
4 0.339 Distance to road (m) 73.179 Soil
5 0.303 Rainfall (mm/year) 72.493 Rainfall (mm/year)
6 0.279 Landuse 66.923 Landuse
7 0.176 Weathering crust (style) 66.152 Curvature
8 0.129 Geology 63.410 Geology
9 0.090 Aspect 62.639 Distance to road (m)
10 0.048 Soil 57.069 Aspect
11 0.043 Distance to fault (m) 55.955 Weathering crust (style)
12 0.012 Curvature 49.700 Distance to fault (m)

4.2. Performance evaluation of the models

The models' reliability and accuracy were
assessed based on key parameters, including
AUC, PPV (%), NPV (%), SST (%), SPF
(%), ACC (%), Kappa, and RMSE. The
numerical evaluation results are presented in
Fig. 6 and Table 4. Among the models, the

Deep Learning (DL) model demonstrated the
best performance on the validation set,
achieving an AUC of 0.944, a PPV of
83.98%, an NPV of 91.05%, an SST of
90.34%, an SPF of 85.09%, an ACC of
87.52%, a Kappa of 0.75, and an RMSE of

0.30 (Fig. 6b, Table 4).

1

1 =
a b
0.8 ( ) 0.8 ( )
z06 z 06
2 2
2 %
c <
QU QU
“ 0.4 Y 04
DL (AUC = 0.970) DL (AUC = 0.944)
0.2 NB (AUC = 0.943) 0.2 NB (AUC = 0.934)
SVM (AUC = 0.970) SVM (AUC = 0.905)
0 T T T T 0 T T T T
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
1 - Specificity 1 - Specificity

Figure 6. The performance of models used the ROC curve and AUC methods, (a) training dataset, and (b)
validation dataset
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Table 4. Performance evaluation results of the models

Models
No Parameters Training dataset Validating dataset
DL NB SVM DL NB SVM
1 TP 519 487 519 215 208 151
2 N 556 545 557 234 234 249
3 FP 48 80 48 41 48 105
4 FN 44 55 43 23 23 8
5 PPV (%) 91.53 85.89 91.53 83.98 81.25 58.98
6 NPV (%) 92.67 90.83 92.83 91.05 91.05 96.89
7 SST (%) 92.18 89.85 92.35 90.34 90.04 94.97
8 SPF (%) 92.05 87.20 92.07 85.09 82.98 70.34
9 ACC (%) 92.12 88.43 92.20 87.52 86.16 71.97
10 Kappa 0.84 0.77 0.84 0.75 0.72 0.56
11 RMSE 0.25 0.30 0.25 0.30 0.34 0.38

4.3. Landslide susceptibility mapping

The landslide susceptibility maps were
generated using sample datasets covering the
entire study area. A total of three landslide
susceptibility maps were created, corresponding
to three models: DL, NB, and SVM (Fig. 7).
The susceptibility classes for each map,
determined using the natural break method,
consist of five categories: very low, low,
moderate, high, and very high (Fig. 7).
According to the susceptibility classes, the DL
model has the largest area in the very low class
(31.13%), followed by the very high, low, high,
and moderate classes with areas of 26.05%,
15.86%, 13.89%, and 13.07%, respectively
(Fig. 7c, Table 5). The frequency of landslide

and non-landslide occurrences was calculated
as a percentage of susceptibility classes based
on the validation dataset. The landslide
susceptibility map generated using the DL
model shows an increasing frequency across the
classes, from very low to very high, with values
0f 0.06, 0.27, 0.45, 0.87, and 2.91, respectively.
Conversely, the frequency of non-landslide
occurrences increases from the very high to the
very low classes, with values of 0.28, 0.48,
0.60, 0.69, and 2.16, respectively (Fig. 7c,
Table 5). Similar results for the maps generated
using the NB and SVM models are detailed in
Table 5 and Figures 7a and 7b. The evaluation
results indicate that the landslide susceptibility
map generated using the DL model provides the
most stable and optimal outcomes.

Table 5. Performance evaluation based on the frequency of landslide susceptibility map classes (note: LS

- Landslide; FR-Frequency ratio)

Model| Class |Number of pixels | LS pixels |[Non-LS pixels|% pixels| % LS |% Non-LS|FR LS| FR Non-LS
Very low 900600 5 172 31.13 | 1.95 67.19 0.06 2.16
Low 458916 11 28 15.86 | 4.28 10.94 0.27 0.69
DL | Moderate 378187 15 20 13.07 | 5.84 7.81 0.45 0.60
High 401973 31 17 13.89 | 12.06 6.64 0.87 0.48
Very high 753659 195 19 26.05 | 75.88 7.42 291 0.28
Very low 889585 11 189 30.75 | 4.28 73.83 0.14 2.40
Low 267661 8 14 9.25 3.11 5.47 0.34 0.59
NB | Moderate 229737 13 8 7.94 5.06 3.13 0.64 0.39
High 290605 18 13 10.04 | 7.00 5.08 0.70 0.51
Very high 1215747 207 32 42.02 | 80.54 12.50 1.92 0.30
Very low 243125 3 115 8.40 1.17 44.92 0.14 5.35
Low 141816 1 22 490 | 0.39 8.59 0.08 1.75
SVM | Moderate 444540 13 44 15.36 | 5.06 17.19 0.33 1.12
High 1315811 73 53 45.48 [28.40| 20.70 0.62 0.46
Very high 748043 167 22 25.85 | 64.98 8.59 2.51 0.33
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Figure 7. Landslide susceptibility maps in Phuoc Son, Quang Nam based on different machine learning
models, a) Naive Bayes Model, b) Support Vector Machine Model, ¢) Deep Learning Model
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5. Discussions

The results presented in Section 4
demonstrate that the DL model outperforms
the NB and SVM models in generating
landslide susceptibility maps for Phuoc Son,
Quang Nam. This finding is consistent with
several studies (Dao et al., 2020; He et al.,
2024), showing that Deep Learning is an
effective model for predicting and generating
landslide susceptibility maps. However, it is
important to note that Deep Learning requires
substantial data to achieve optimal
performance (Janiesch, Zschech and Heinrich,
2021; Sharma, Saharia and Ramana, 2024). In
landslide research, collecting large datasets is
challenging due to the need to gather
numerous parameters over extensive areas
(Zhong et al., 2020). Therefore, the trend of
using transfer learning techniques with Deep
Learning models is necessary for the future to
improve landslide prediction results in data-
scarce regions and for larger study areas
(Wang, Wang and Zhang, 2023).
Additionally, utilizing high-resolution satellite
imagery with wide coverage can provide a
significant source of data for landslide
research (Ma et al., 2024; Sharma, Saharia
and Ramana, 2024; Zhong et al., 2020).

Moreover, the selection of influencing
parameters impacts the model's outcomes. For
instance, the parameter of slope aspect has
been debated in the literature. Some studies
suggest that aspect has little to no impact on
landslides (Capitani, Ribolini and Bini, 2013).
However, other studies in different regions
indicate that aspect can influence landslides,
particularly during severe storms
(Gorokhovich and Vustianiuk, 2021). In this
study, based on the attribute ranking results
presented in Table 3, the aspect was ranked
9th out of 12 influencing parameters
according to the CAE method and 10™ out of
12 according to the OneR method. Therefore,
we chose to include the aspect as a
conditioning factor for landslides in Phudc

Son, Quang Nam. However, depending on the
specific conditions of each area, the aspect
may or may not be selected as an influencing
factor. Additionally, the selection of non-
landslide sites and the ratio of landslide to
non-landslide instances also affect the
performance of machine learning and DL
models (Shao et al., 2020; Yang et al., 2023).
We believe that the use of weighted labeling
techniques for landslide prediction is one of
the approaches that future experiments should
explore to enhance prediction performance.

Landslide prediction is a complex issue,
particularly the challenge of accurately
predicting the timing of landslides (Lombardo
et al., 2020). Therefore, detailed spatial and
temporal landslide data, along with the
development of new techniques and methods,
are essential for advancing landslide research.
Deep Learning remains a promising model for
the future due to its complex "thinking"
capabilities (LeCun, Bengio and Hinton,
2015). We believe that experimenting with
modifications and developments of Deep
Learning parameters in the context of
landslide prediction also helps improve
prediction  performance.  This  study
successfully applied the Deep Learning model
for the first time to generate landslide
susceptibility maps in Phuoc Son, Quang
Nam. The results from these maps will assist
in urban planning, disaster prevention, and
mitigation efforts against landslide-related
damages in Phuoc Son. We recommend
applying the DL model in other areas with
similar conditions.

6. Conclusions

This study focuses on a comparative
experiment of applying Deep Learning (DL)
against two widely used models, Naive Bayes
(NB) and Support Vector Machine (SVM), in
the development of landslide susceptibility
maps in Phudc Son, Quang Nam. The
evaluation results indicate that the DL model
demonstrates the highest and most optimal
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performance. The DL model is recommended
for generating landslide susceptibility maps in
other areas with similar conditions. Among
the 12 conditioning parameters, each
evaluation method reveals varying impacts of
these conditions. The primary influencing
factors include Slope (degree), Relief
Amplitude (m), Elevation (m), rainfall
(mm/year), Land Use, Soil, and Distance to
Road (m).

The models identified that approximately
39.94% of the study area has the highest
landslide susceptibility, primarily
concentrated in the southern part of the

region. The distribution of landslide
susceptibility  classes  provides critical
scientific ~ information for  government

authorities in managing and planning future
construction projects and implementing
preventive measures to mitigate landslide
risks. This study highlights the necessity of
continued research to enhance landslide
prediction performance further. Future
landslide prediction models can be improved
by developing and modifying Deep Learning
model parameters, applying transfer learning
techniques combined with high-resolution and
large spatial coverage remote sensing data,
and experimenting with selecting input
parameters for Deep Learning models.
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