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ABSTRACT

Hyperspectral imagery obtained from Unmanned Aerial Vehicles (UAVs) is increasingly employed to investigate
nutrient concentrations in vegetation. The deployment of a hyperspectral camera on a UAV, flight planning, image
acquisition, preprocessing of hyperspectral data, and the subsequent estimation of nutrient concentrations in
vegetation are facing challenges. These challenges manifest as geometric, spectral distortions and the abundance of
numerous spectral bands. This study seeks to guide the mitigation of the impact of issues encountered during an
experiment to estimate nutrient concentrations in rice leaves using UAV hyperspectral images. An industrial
hexagonal drone equipped with a push-broom hyperspectral camera featuring 122 bands within the Visible to Near-
Infrared (VIS-NIR) wavelength range (400-960 nm) is employed to collect data over a 1-hectare testing rice field.
Models for estimating Leaf Phosphorus Concentration (LPC) and Leaf Potassium Concentration (LKC) are
developed based on the correlation between hyperspectral images, characterized by a 3 cm spatial resolution, and 162
LPC and 162 LKC reference data points. The outcomes of utilizing various vegetation indices for LPC and LKC
estimation reveal that a combination of band wavelengths at 838 nm and 734 nm is effective for LPC estimation,
yielding a Root Mean Square Error (RMSE) of 27.1%. Conversely, LKC estimation exhibits an RMSE of 38.8% with
an insignificant correlation between LKC and the current wavelength ranges. Above all, this study is a primary
example of using UAV hyperspectral data in precision agriculture in Vietnam.
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1. Introduction accumulated inside rice leaves is linked
directly to the plant's yield. Low N, P, and K
concentration levels can cause losses in the
quality and quantity of rice yield. In contrast,
excess N, P, and K can cause overgrowth,
reducing the strength of stems and attracting
X h ) insects, pathogens, and fungi (Campos-
amount of nutrients, especially n1tr.ogen (N),  Soriano et al., 2020; Buresh, 2022). Nitrogen
phosphorous  (P), and  potassium  (K)  fertilizer can increase plant height, panicle

number, spbikelet number, and the number of

Rice provides a vital part of nutrition for
over half of the population in the world
(Wallach, 2022). Monitoring the health of the
rice is an essential demand to maintain and
increase the production of rice products. The

*Corresponding author, Email: tong-si.son@usth.edu.vn filled Spikelet, all of which influence rice
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yield capacity (Dobermann and Fairhurst,
2000). Phosphorus is essential for root
growth, early flowering and ripening, and
resistance to disease and drought conditions.
Phosphorus deficiency may cause rice plant
maturity to be delayed and increase
susceptibility to rice disease (Hindersah et al.,
2022). Potassium application is closely related
to the lignification of sclerenchyma cells,
vascular bundles, and culm strength, all of
which improve lodging resistance (Hindersah
et al., 2022). The deficiency or sufficiency of
N, P, and K alters the chemical components of
rice leaves, affecting the spectral reflectance
signature of leaves or canopy (Sanchez et al.,
2020). Conversely, the color, shape, and
sheath of leaves indicate the nutrient and
health status of the plant, which is closely
related to the nutrition content.

Although it can give an exact result,
analyzing nutrient concentration using the
chemical approach is a high-cost, time-
consuming process and is limited to specific
rice plots. During growth stages, the nutrient
balance process must happen precisely in time,
and applying chemical analysis is a
problematic solution for a large rice field.
Remote sensing is a practical approach for
monitoring rice health due to its rapid, non-
intrusive nature and capability to cover
extensive areas of crops (Delavarpour et al.,
2021). Diagnostic methods based on rice's
spectral signature that use hyper-spectral
imaging techniques can dynamically and
quantitatively extract nutrition status (Stuart
2021). Hyperspectral imaging collects and
processes reflectance signatures to generate
hundreds of spectral bands to find objects,
identify materials (Chang, 2003; Grahn and
Geladi, 2007), or analyze plant chemical
properties (Ling et al., 2019). A hyperspectral
imager integrated into a crewless aerial vehicle
(UAV) acquires hyperspectral images with a
centimeter-level of spatial resolution below
cloud layers; repeatable acquisition at any stage
of vegetation growth is a potential approach for
precision agriculture (Delavarpour et al., 2021).
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UAV hyperspectral images have been used for
determining leave nitro concentration (LNC)
(Wang et al., 2021) and leave potassium
concentration (LKC) with a small plot
experiment (5 x 6 m) (Lu et al., 2020) but no
leave phosphorus concentration (LPC) in rice.
However, the applications of UAV-
hyperspectral imagers face difficulties in
appropriately assembling the UAV system's
components for image acquisition,
preprocessing images, and constructing models
for estimating nutrient concentration from
hyperspectral data (Addo et al., 2017).

In Vietnam, various applications of
satellite images for investigating different
aspects of rice, such as rice productivity
(Clauss et al., 2018), rice mapping (Nguyen et
al., 2015), and rice growth status (Phung et
al., 2020). Hyperspectral data, particularly
from UAV-based hyperspectral systems, is a
gap in measuring nutrient concentration in

rice leaves due to limitations in data
acquisition  equipment and  processing
techniques.

The present study aims to provide

instruction on deploying a UAV hyperspectral
imaging system to investigate the nutrient
concentration in rice leaves. The experiment
is implemented in sample rice fields designed
to plant rice with different amounts of N, P,
and K in fertilizer. Problems, difficulties, and
solutions in integrating the UAV hyperspectral
image system components, UAV
hyperspectral ~ image  acquisition, and
preprocessing images are characterized in
detail. Subsequently, the relationship of LPC
and LKC with their respective hyperspectral
reflectance is analyzed to identify LPC, LKC
responsive wavelengths for estimating these
nutrients from hyperspectral images.

2. Study area and Material
2.1. Experimental site

A test field was established in Lam Thao
district, Phu Tho province, Vietnam, at
coordinates 21.2765°N, 105.3335°E. Located

in the northern part of Vietnam within the Red
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River delta, the area is characterized by
tropical weather and receives an annual
rainfall of 1,720 mm. Residents have
traditionally cultivated rice in this region. The
sample rice field is arranged into 54 square
parcels, each 100 m’ Rice parcels are
fertilized with a different amounts of N, P,
and K to cause the variation of leaf nutrient
concentration. Two species of rice, JO2 and
TBR225, popularly seeded in Vietnam, are
equally planted in the fields, with 27 parcels
for planting J02 and 27 for TBR225 (Fig. 1).
For each parcel, three points are evenly

selected along one of the two diagonals to
measure spectral reflectance and to collect
leaf samples for analyzing nutrient
concentrations. The rice field is cared for
during the growing stages to ensure no
significant crop harm due to water stress or
diseases. At the time of image acquisition,
rice is in the panicle initiation stage with a
height ranging between 0.6 m and 0.9 m. This
stage marks the end of the tillering or
vegetative phase and the beginning of the
reproductive phase with a full crop canopy.
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Figure 1. The sample field with 54 rice parcels named "T" and "J" letters corresponding to TBR225 and
JO2 rice species, respectively

2.2. UAV hyperspectral system

The UAV hyperspectral system used in
the study is integrated of 3 independent
subsystems: a UAV to grab the whole
system, a gimble system to control the
camera orientation, and a hyperspectral data
acquisition system including a camera to

acquire images, a next unit of computing
(NUC) to monitor the camera, and a global
navigation satellite system (GNSS) receiver
to record real-time positions of the camera

(Fig. 2). All subsystems must be
appropriately assimilated before image
acquisition.
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Figure 2. (A) Three subsystems of a UAV hyperspectral system the platform, the gimble system, and the
hyperspectral data acquisition. (B) All subsystems are fully assembled in a UAV hyperspectral system

2.2.1. UAV platform and Gimble system

To ensure the ability to grab the whole
hyperspectral system acquiring images, an
industrial hexagonal drone, DJI Matrice 600
Pro, with a takeoff weight of 15.5 kg, is used
for the experiment. The drone is relatively
large and requires strictly safe conditions for
flight missions. The DJI GO app can visualize
flight paths and control the drone to make
maps.

A gimble stabilization system keeps the
payload in the planned orientation during the
fights. The DJI Ronin-MX gimble used in the
study is typically compatible with the drone
and operates independently of the drone. The
gimble system includes various sensors,
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brushless motors moving on three axes,
batteries, and remote control to control the
pan, roll, and tilt movement of the payload
automatically or manually. For a UAV remote
sensing system, the payload and the drone can
be flexibly integrated by the gimble with a set
of horizontal and vertical adjustment locks.

2.2.2. Hyperspectral Imager System

A hyperspectral camera OCI-F is used to
achieve the hyperspectral images for the
study. The camera is compact and lightweight
(570 g) to operate on the ground or with a
UAV platform. The charge-coupled device
(CCD) sensor of the OCI-F camera comprises
800 lined detectors operating in full push-
broom mode, covering the visible and near-
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infrared wavelength range from 400 nm to
960 nm. The camera generates 122 image
bands with a bandwidth of 5 nm for every
data frame and 60 frames in a second.

NUC computer, a minicomputer installed
with the SpecGrabber software, is integrated
into the imager system for calibrating, setting
operating  the
hyperspectral camera. The camera and a
global navigation satellite system (GNSS)

up  parameters, and

receiver are connected to the NUC to form a
payload. Besides, a rechargeable battery

supplies energy for the regular

accomplishment of the subsystem.

A compacted GNSS receiver for real-time
geotagging on hyperspectral data is mounted
on the drone's top and connected to the NUC
via a USB cable. This GNSS receiver is
different from the drone's GNSS receivers.
Every data frame's coordinates (latitude,
longitude, and altitude) are recorded to
process hyperspectral images.

3. Methodology
This study is based on three primary

methodologies: UAV  hyperspectral data
acquisition, hyperspectral image
preprocessing, and estimation of nutrient
concentrations in rice leaves  from

hyperspectral images (Fig. 3).
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UAV Hyperspectral
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Figure 3. Schematic representation of the study methods, with ellipses denoting results or data and
rectangles representing processes
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3.1. Calculate flight parameters

To design flight paths for a hyperspectral
acquisition, some equations are introduced to
help users calculate basic flight parameters
such as the flying height (H'), the distance
between flight lines' centers (C), and the
number of flight lines (NL).

GSD

H'=f><T 1)

C=GSD XN x(100—s) 2

- 100 )
w

NL = —+2 3)

C
where f'is the focal length; p is the detector size;

GSD is ground sampling distance (GSD), the
so-called spatial resolution; N is the number of
lined detectors in the sensor; S is the percent of
side overlap between two swath sizes defined
by adjacent flight lines; W is the width of the
study area.

The hyperspectral camera has a focal
length of 16 c¢m, a field of view of 24°, and a
detector size of 5.3 x 10° m. To take
hyperspectral images with a 0.03 m spatial
resolution, covering the study area of 134 x
120 m size, the drone is designed to fly at a
90 m flight height with 11 light lines along the
long side of the rice field (Fig. 4).

UAV RGB image acquired on 26th March 2022
Projection: WGS84 Zone 48N

B End point
N-

Legend

£ ] ===== Flight lines

Rice samples

Flight height: 90 m

Sidelap: 50%

Distance between flight lines: 14.4 m
Field of View: 24 degree

Focal length: 16 mm

Width coverage: 28.8 m

Scan rate: 50 frames per second
Flight speed: 5 m/s

Flight time: 7 minutes 18 seconds
Image resolution: 0.03 m

Number of bands: 122 bands

| Band width: 5 nm

Figure 4. Hyperspectral UAV flight paths and setting parameters for image acquisition
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Additionally, the flight duration should be
calculated to estimate the appropriate batteries.

The flight duration (E) is calculated by
equation (4).
(LxNL+W+D+H'*4)
E= > 0

where L is the length of the long side of the study
area; D is the distance from the takeoff/landing
point (home point) to the start, and the finish
points of the flights; H' * 4 relatively indicates the
double distance (takeoff and landing) from ground
to the fight height with a plodding speed; V' is
the designed flight speed.

For the study area, the drone flies at 5 m/s.
The distances from the home point to the
starting point and from the endpoint to the
home point are 184 m and 50 m, respectively.
The estimated duration of the flight mission is
438 seconds, equivalent to 7 minutes and 18
seconds. The duration is much smaller than
the flight capacity empowered by a series of
batteries (15 minutes); thus, we need only one
battery series for the entire flight.

3.2. Setting up the flight
3.2.1. Mechanical calibration

All the components of subsystems must be
appropriately assimilated before starting a
fight. The mechanical calibration of each
piece of equipment has been done before
leaving the factories. The users need to
calibrate the balance of the whole system
since the gimble is plugged into the drone and
the data acquisition system is plugged into the
gimble. The hyperspectral acquisition system
must be adjusted to ensure a nadir viewing of
the camera while mounted to the gimble. The
gimble's tilt, roll, and pan axes must be
manually adjusted to have initial balances.
Finally, the orientation of the gimble must be
locked to ensure that the scan direction of the
camera is perpendicular to the flight paths.

3.2.2. Camera spectral calibration

The spectral reflectance of the surface is
calculated according to equation (5) (Geladi et
al., 2004). The spectral calibration of the
hyperspectral camera is a step to measure the
background and reference intensity just before
the flights. The background intensity is the
spectral reflectance from a dark object, which
simulates the case of without photons
interacting with the sensor. To measure the
background intensity, the camera's lens is
fully covered by a black cap to block all the
light from outside while the
continuously records at least 50 image frames.
Besides, the camera records spectral intensity
reflected from a particular white reference for
white calibration. The camera is set up
perpendicular to the white reference with the
elevation calculated by equation (6). This
study's white reference is 21.0 x 29.7 cm,
reflecting 95% of incident radiation. The
camera has a 24-degree field of view (FOV).
Consequently, the camera's elevation should
be lower than 45 cm to ensure the white
reference  fully covers the  ground
instantaneous field of view (GIFOV). The
camera must adjust values of gain and bias
parameters to obtain a maximum intensity of
920 for 10-bit of the hyperspectral sensor
while measuring white reference to avoid
image saturation.

T, = % « 100% (5)
where T, is the
percentage at the wavelength 4; S, is the
reflectance intensity of the surface; D, is the

camera

surface reflectance in

background intensity; R; is the white
reference intensity.
d
< 2xtan(a/2) (6)

where h is the elevation of the sensor counted
from the white reference; d is the diameter of

539



Minh Khanh Luong et al.

the white reference; a is the field of view of
the camera.

3.3. Taking hyperspectral data and collecting
auxiliary data

Hyperspectral data were taken between
10h20" A.M. and 10h30' A.M. on 26 March
2022. During data acquisition, the weather
conditions were characterized by thin cloud
cover, a wind speed of approximately 3 m/s
from the northeast, an air temperature of
27°C, and 70% relative humidity. The camera
scanned along flight lines and captured about
2500 imagery frames a line. The flight paths
and parameters for acquiring hyperspectral
data are illustrated in Fig. 4.

Simultaneously, a Red-Green-Blue (RGB)
orthoimage with very high geometric
accuracy (0.04 m of RMSE), 0.01 m spatial
resolution, acquired by UAV-RGB camera,
was used as a reference image for the
hyperspectral geometric correction.

Additionally, spectral reflectance data from
three field points within each rice parcel were
measured using a handheld ASD Fieldspec 4
spectrometer after immediately acquiring UAV
images. A total of 162 spectral reflectance
measurements were used for the spectral
correction of the hyperspectral images.

Subsequently, rice leaves from the exact
locations as the spectral measurements were
collected for LPC and LKC chemical analysis.
To construct the nutrient estimation model
from hyperspectral images, 162 LPC values
and 162 LKC values from rice leaves were
extracted within 54 rice parcels. Moreover,
LKC and LPC from 4 test points were
collected at the surrounding rice fields of local
farmers for accurate assessment of the
models.
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3.4. UAV hyperspectral data corrections
3.4.1. Encountered problems

Preprocessing hyperspectral data is the
process of raw hyperspectral data to achieve
hyperspectral images with a minimized
geometric distortion and the lowest spectral
errors. Many problems were encountered
during the preprocessing steps, including
image distortion, light bias, dead pixels, data
corruption,
coordination. The geometric distortion is
mainly caused by wind and rotation motions
of the UAV during the flights. The gimbal

cannot ultimately trace and remove these

spectral noise, and incorrect

motions; it can minimize them. The distortion
also causes the incorrect coordination of
images. Suppose the images are distorted
severely (e.g., the positions of image frames
are far away from each other). In that case, the
program used for processing raw data cannot
merge the image frames to create a perfect
hyperspectral cube, that
corrupted. Images acquired from two flight
lines are overlaid with a 50% sidelap. The
process involves merging the two overlaid
images, so-called image stitching. Distinctive

rendering cube

features can be found in each image and then
rapidly establish
correspondences between pairs of images.

efficiently matched to

However, the light source of the overlaid
images is not guaranteed to be identical;
stitching two images together can create a
visible seam.

For a view consisting of 11 hyperspectral
cubes, there are 11 visible seams and 11 areas
with different illumination. This effect is later
called light bias, a significant issue that must
be handled before data analysis. After creating
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hyperspectral cubes, some areas appear more
significant than the actual size due to

distortion, while others appear more minor.

(A)

Therefore, unmatched regions appear in the
stitched image. Visualization of the problems
is shown in Fig. 5.

Figure 5. Problems encountered while preprocessing hyperspectral data cubes: (A) Stitched, unmatched,
light-biased cubes at the band of 560 nm wavelength; (B) Corrupted cubes cannot be used to merge at the
band of 560 nm wavelength; (C) Dead pixels (salt and pepper pixels) between 2 cubes when stitched at
the band of 560 nm wavelength; (D) Distorted hyperspectral images of square rice parcels in the nature

color composite

3.4.2. Correction method for hyperspectral
image

The geometric correction must be done
before other processes, such as the spectral
correction. The geometric correction uses the
reference coordinates extracted from the RGB
orthoimage and ground control markers. The
coordinates of shape and apparent features
appearing
images are also collected for geometric
correction. Each hyperspectral spectral cube is

in reference and hyperspectral

individually corrected using a minimum of 10
reference points.

The spectral correction initially uses high-
precision  handheld  spectrometer  data
measured in selected field points to remove

the source bias effect. The measured
reflectance power is affected by many factors,
which can be described in the following
equation (Davies et al., 2022).
Simage(4,x,y) = QE(L) x Toptics(A) x Tfilter(L) x
Qe(4) x Robject(4,x,y) x Geff(1) (7)

Where Sipqge 1 the measured signal of an
image pixel. QE is the quantum efficiency of
the sensor. T, is the spectral transmission of
the optical system. T, is the spectral
transmission of the filter on the sensor. Q, is
the spectral radiant energy from the light
source. Ry 1S the spectral reflectivity of
each point in the scene, and G.4is the grating
efficiency.

Most of the factors have been factored out
during the first calibration using white and
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black references, but the factor O, depends on
the instant light source of the system and
cannot be factored out. Spectrometer-measured
results work as references to calibrate the

whole images according to equation 8.

Scatibrated = Simage M ®)
fieldpoint

where S.uinraea 18 the calibrated data of an

image, Rpecromerer 15 the averaged reference

spectrums of field points, and Speigpom 1S the

UAV signals at  the

corresponding field points. Spegpoin: 1S taken

hyperspectral

from hyperspectral cubes as the means of the
measured signal of squares of 9 x 9 pixels (or
27 x 27 cm) for every wavelength at field
points. The ratios of the references and
measurements are the calibration coefficients
for the whole image. Consequently, all cubes
have balanced reflectance signals if every
coefficient is obtained.

3.5. Wavelength selection and vegetation
indices

Dealing with the whole spectral domain is
very time-consuming and storage-inefficient.
Thus, selecting some of the most essential
wavelengths for data analysis is necessary.
Neighboring bands of a hyperspectral image
are usually highly correlated and often
provide the same information (Rodarmel and
Shan, 2002). The recursive feature elimination

Table 1. Vegetation indices to monitor plant health

(RFE) method (Pullanagari et al., 2018) is
introduced to identify the most critical
wavelengths for further analysis. Five models
have been chosen consisting of the Least
Absolute Shrinkage and Selection Operator
(LASSO) regression (Kumar, 2023), Elastic
net regression (Giba, 2023), Ridge regression
(Granitto et al., 2006; Poona et al., 2016;
Kumar, 2023), Random Forest regression
(Sruthi, 2024), and Gradient
regression (Brownlee, 2020) to perform the
RFE method.

Data from 162 field points under the form of

boosting

a mean value of 81 pixels around each point are
passed to the models, and the test is taken to
find the most responsive wavelengths with the
two parameters P and K. Finally, 10 of the most
essential wavelengths is returned by each model
for a total of 50 results. Spectral bands with the
highest repetition within those 50 results are
selected. The most informative wavelengths are
used to calculate vegetation indices (Table 1).
Vegetation indices that exhibit the strongest
correlation with the nutrient concentrations of
162 rice leaf samples are employed to develop
the estimation models. These models are then
utilized to linearly estimate the Leaf
Phosphorus Concentration (LPC) and Leaf
Potassium Concentration (LKC) across the rice
field.

Indexes

Equation

Normalized  difference vegetation index (NDVI)

RNIR — RRed
RNIR *+ RRed

Green NDVI (GNDVI)

RNIR — RGreen
RNIR + RGreen

Normalized difference Red-Edge (NDRE)

RNIR — RRededge
RNIR + RRededge

Modified soil adjusted vegetation index (MSAVI)

2RNIR + 1~/ (2RNIR+1)?—8(RNIR—RRed)
2

Renormalized difference vegetation index (RDVI)

RNIR — RRed

VRNIR *+ RRed

542



Vietnam Journal of Earth Sciences, 46(4), 533-552

4. Results
4.1. Corrected UAV hyperspectral images

The hyperspectral image, generated by
stitching raw data, comprises 122 spectral
bands evenly distributed across a wavelength
range of 400 nm to 960 nm. The data is

spectral
geometric

10-bit
and

surface
lacks

encoded with

reflectance values

coordinate information. Figure 6 illustrates
hyperspectral images before doing corrections
(A) and after corrections (B). The image
before corrections shows different brightness
levels between image strips. The divergent
brightness levels gradually decrease from the

bottom to the top of each image strip

(Fig. 6A).

Figure 6. (A) The stitched hyperspectral image of the rice field before corrections. (B) Hyperspectral
image in the pseudo color composition of Red, Green, and Blue assigned by bands with wavelengths
770 nm, 620 nm, and 550 nm, respectively, after geometric correction and spectral correction (yellow and
blue curves corresponding to spectral reflectance in the range from 437 nm to 900 nm of rice and bare soil

in the hyperspectral image)

Additionally, the lines separating rice
parcels are not straight, and the areas of
parcels are not equal as they are. Under the
effect of distortion, the area between the
outermost paths to the right of the field was
enlarged. Therefore, these paths appear to be
more separated as we reach the bottom of the
image. The spectral and geometric distortions
are the consequence of the unstable camera
during the flight and the change of flight path.
After corrections (Fig. 6B), the effect of light
bias has been minimized, rice edges are
parallel, and parcels are squared. The

unmatching regions can still be observed in
the image due to the lack of ground control
points. The features selected as control points
were usually field although
recognizable using bare eyes, the field corners
are  sometimes not sharp  features.
Misalignment only happens in the outer
region of the study area, which has fewer
control points.

Figure 7 compares field spectrometer
measurements and the spectral reflectance of
UAV  hyperspectral Coefficient
numbers are ratios between two data sets from

corners;

images.
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six field points in the parcels T4 and TS.
Generally, spectral bands with wavelength
range from 400 nm to 437 nm and 900 nm to
960 nm are not used since the coefficient is
much greater than 1. Other bands, from
437 nm to 700 nm, show a minor fluctuation,
which means that the measurements using the
spectrometer agree sufficiently with the UAV
results. The remaining part of the spectra,
from 700 nm to 900 nm, indicates the fitting

between UAV data and spectrometer data with
a coefficient of around 1. Figure 6B illustrates
the fully corrected image after applying
Equation (8) for image bands from band 7 to
band 109 corresponding to the wavelengths
from 437 nm to 900 nm. Consequently, a
hyperspectral image with 103 bands is used
for further processes to estimate LKC and
LPC of'rice.

20 1 Ta41 20 T8.1
10 1 10 4
—
0 T T T T T T D T T T T T T
= 20 T4 20 1 8.2
@
g10 10 1 i
g A~ A
o 0 T T T T T T D T T T T T T
20 4 143 20 1 8.3
10 1 10 1 ,
—
0 =" |
400 500 600 700 800 500 400 500 600 700 80O 900

Wavelength {(nm)

Wavelength (nm)

Figure 7. The spectral coefficient calculated by the ratio between field spectrometer measurement
and hyperspectral images of 3 points T4.1, T4.2, T4.3 in the T4 parcel and 3 points T8.1, T8.2, T8.3
in the T8 parcel

4.2. Wavelengths and vegetation indices used
for estimating LPC and LKC

Table 2 indicates the results of using the
recursive features elimination method for
hyperspectral data to coordinate the essential
features (spectral bands). The five models'
most significant spectral bands are in the
near-infrared and red domains. Vegetation
indices are mainly calculated from four
spectral domains: the Green, the Red, the
Red-edge, and the Near-infrared. The red
edge region is the transition region between
red and infrared domains where the spectral
reflectance of plants changes rapidly. The
green range is evoked mainly by wavelengths

544

from 495 to 570 nm. For each region
nominated, we select only two wavelengths
with the highest vote by five models in
recursive feature elimination to put into
computing. Those are 838 nm and 802 nm
corresponding to bands 95 and 87 for the
NIR wavelength; 734 nm and 721 nm or
bands 72 and 69 for the Red-edge
wavelength; 635 nm and 607 nm
corresponding to bands 44 and 50 for the
Red; 566 nm and 539 nm corresponding to
band 35 and 29 for the Green. The selected
wavelength bands are used to calculate
vegetation indices to investigate the nutrient

concentration further.
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Table 2. Resultant wavelengths from recursive feature elimination

. Wavelengths (nm)
Times selected by models Near-Infrared Red-Edge Red Green Blue
4 838, 802
3 797,779 635, 607
2 856 639, 666 566, 539 442, 456
1 865, 860, 815 734, 721 671, 630,689, 612 | 525,571, 584 | 488,475

4.3. LPC and LKC estimated in the rice field

Tables 3 and 4 contain expressions of
vegetation indices and correlation coefficients
corresponding to phosphorous and potassium
Each of the
indices utilizes wavelengths in two regions of

concentration in rice leaves.
the electromagnetic spectrum, and two bands
are selected for each region. Subsequently,
four results are calculated for every vegetation
index, but only indices with the highest

correlation are displayed. Generally, the
vegetation indices correlate insignificantly
with nutrient concentration. The highest
correlation to LPC comes from NDRE 838
734 with the correlation coefficient r = 0.401.
The correlation coefficient of GNDVI is
0.379. The other indices return an r value with
LPC less than 0.3. NDRE, with a correlation
of 0.401, is acceptable and can be used to
estimate LPC.

Table 3. Vegetation indices correlate the most in their group with phosphorous concentration in rice leaves

' .

Vegetation Index Expression Peazzt:;;;:;:iz;twn
Rs3snm — Beomn

NDVI 838 607 838nm 607nm 0292
gBBH'HTH. + Rﬁ()?n.m.

GNDVI 838 539 -838nm — L1539nm 0.379
Ré%li&n-m + R535J'mn
RSZ%HTmL - R734nm

NDRE 838 734 0.401
Rsssnm + Rrsanm

MSAVI 838 635 2Rg38nm + 1 — \/(2H838HH| ;‘ 1)2 — S(H&m”,” — Hﬁiﬂnm) 0.221

RSBS'nm — RGOerm

RDVI 838 607 0.241

\/-[?8387?.111- + -H'GO?nm.

Table 4. Vegetation indices that correlate the most in their group with potassium concentration in rice leaves

Lo . Pearson's correlation
Vegetation index Expression coefficient (r)

R — Rgomn

NDVI 802 607 802nm 607nm 20328
gﬁll‘hun + RGUTH i

GNDVI 838 566 -838nm 566nm 20325
R838H.‘IH + R”)G(i'nm

INDRE 802 721 -802nm T21nm 20323
RS(IErun + R?Ql'nm

IMSAVI 802 635 2R8[12-n-m. + 1-— \/(QHBI)Qn m + 1)1 - S(HBI]QIJ-m - Hﬁ:ﬁ-n m) -0.237

2

RDVI 802 635 R&(]an- - R(il‘}ﬁn m 20261

\/R802-n.m + RG35nm
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The NDVI 802 607 is the most correlated
vegetation index with a r = -0.328 for LKC.
LKC correlates negatively with every index
proposed. MSAVI correlates the least with
LKC, with r ranging from -0.233 to -0.237.
RDVI follows MSAVI, with r lying between

Pearson's correlation coefficient = 0.401

8
]

— 0.619*x+1754.889

g

=]
1=
o

8
S

5000

4000

3000

af phosphorus content(mg/kg)

Le.
=1
S
o

1000

"020 022 024 026 028 030 032 034
NDRE 838 734

-0.254 to -0.261. NDRE, GNDVI, and NDVI
all show the same level of relationship with
LKC, with the r value varying from -0.3 to
-0.328. The most corresponding indexes to
LPC and LKC with their linear equations are
represented in Fig. 8.

Pearson's correlation coefficient = -0.328

— -303998.653*x+318444.774

80000

0.86 088 090 092 094
NOVI 802 607

Figure 8. The relationship between (A) NDRE composed of 838 nm and 734 nm wavelength bands and
LPC, (B) NDVI composed of 802 nm and 607 nm wavelength bands and LKC

Figure 9A and Fig. 9B illustrate LKC and
LPC concentration in rice leaves using the
linear regressions obtained from the indexes
NDVI 802 607 and NDRE 838 734,
respectively.  The show blatant
discrimination between LKC and LPC. A
higher LKC is seen in the JO2 rice species (J

maps

letter in Fig. 1). However, it's a reversed case
in LPC, as the higher LPK belongs to TBR225
parcels. The quantitative difference between
LKC and LPC is indicated in Fig. 10.
Figure 10 shows the box diagrams of nutrient
The
undermost lines, the box's undermost lines,

concentration for two rice varieties.
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and the yellow lines represent the minimum
given value, the median of the lower half, and
the median of the dataset, respectively. The

two uppermost lines illustrate the counterparts
of the two undermost lines. Generally, LKC
for TBR225 is typically higher than that of
JO2, while the opposite happens for LPC. This
study used LKC and LPC of four test points in
the farmer's field surrounding rice sample
plots to assess the accuracy of estimation
models. The model for LPC returns a root
mean squared error (RMSE) of 27.1%, while
the estimating model for LKC has an RMSE
of 38.8%.
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Figure 10. Nutrient distributions of rice varieties, displayed in box plots with outliers removed,
(A) Distribution of LKC for two rice variants, (B) Distribution of LPC for two rice variants

5. Discussions

Hyperspectral data acquisition via UAVs

presents  distinct advantages, including
flexible  acquisition  timing,  reduced
atmospheric  interference  compared to
satellite-based  platforms, and achieving

hyperspectral images with very high spatial
resolution (centimeter level). Nevertheless,
the utilization of UAVs for hyperspectral data
acquisition is confronted with several
challenges associated with the mechanical
integration of the UAV-Gimbal-Sensor
system, geometric correction processes, and
the spectral calibration of hyperspectral data.
The absence of an automated system for
synchronizing the movements of UAVs,
gimbals, and sensors during hyperspectral
data scanning presents a significant challenge
in the pre-flight installation process. Typically,
the gimbal must be manually configured to
ensure that the scanning direction of the
sensor remains parallel to the flight lines in
the designated field (Fig. 4). To facilitate this
alignment, flight lines are ideally designed
parallel to linear features such as straight
roads, simplifying the definition of scanning
direction in the field. When a straight road is
unavailable, a makeshift linear object, such as
a toilet roll, can temporarily guide the camera
and gimbal for accurate alignment.
Geometrical distortion may manifest in the
hyperspectral cube (ex. Fig. 5), attributed to
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imperfectly aligned coordinates from GNSS
receivers to the data frames (Skiles et al.,
2023). In addressing this issue, using UAV
photogrammetry to generate RGB
orthoimages as a reference image for the
georectification of hyperspectral cubes is
preferred over using a series of ground control
point (GCP) markers. The RGB orthoimage,
acquired concurrently with hyperspectral data
using UAV-RTK technology, exhibits
millimeter-level resolution, achieves
exceptionally high geographical accuracy, and
potentially provides reference coordinates due
to the ease of identifying identical objects.
Therefore, using an RGB orthoimage for geo-
correcting hyperspectral images minimizes
effort compared to utilizing GCP markers.

The primary challenge in generating
hyperspectral cubes from UAV-based data lies
in mitigating atmospheric effects despite the
UAVs operating beneath the cloud layer. The
brief 2-minute flight duration for each flight
line introduces variability in atmospheric
conditions due to dynamic factors such as
clouds, fog, or wind leading to fluctuations in
incident radiation on the land surface. Relying
solely on the unique white calibration of the
camera performed before UAV takeoff proves
inadequate for fully processing all spectral
cubes. While using ground spectrometer
measurements may be sufficient in the current
study, integrating a spectrometer into the UAV
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for real-time spectral calibration of the
hyperspectral camera emerges as a potential
solution for future endeavors. Despite some
residual bias in the results, UAV-based
hyperspectral data remains the predominant
methodology to fill the existing gap in
satellite-based hyperspectral data.

The index NDRE 838 734 indicates a
maximum correlation of r = 0.401 with LPC,
consistent with previous studies (Mahajan et
al. 2016, Pinit et al. 2022, Zhang et al. 2023).
The positive correlation between red-edge
wavelengths (670-760 nm) and LPC is
explained by the concentration of
anthocyanins in leaves. Anthocyanins, being
water-soluble pigments, reflect the spectral
wavelength at around 550 nm and 800 nm but
not at 700 nm (Gitelson et al. 2009, Zhang et
al. 2023). The concurrence of reflectance
peaks at 550 nm and 800 nm are the same
wavelengths with chlorophyll reflectance
properties. In this study, the subtraction of the
734 nm wavelength in the NDRE 838 734
index  isolates the  contribution  of
anthocyanins. Notably, the variability in
phosphorus levels is identified as a stimulant
for anthocyanin concentration (Jiang et al.,
2007; Li et al., 2023). Consequently, NDRE
838 734 is an appropriate approach for
estimating LPC in rice leaves.

In contrast to the behavior exhibited by
LPC and spectral reflectance, LKC
demonstrates a negative correlation with
vegetation indices. Despite attempts to predict
LKC based on visible (607 nm) and near-
infrared  wavelength (802 nm), the
effectiveness is compromised by a weak
correlation, reaching a maximum of
r = -0.328. This outcome aligns with the
findings reported by Albayrak (2008) and Lu
et al. (2020), suggesting that the challenging
investigation of LKC in vegetation arises from
the overlapping regions of nitrogen- and
potassium-sensitive wavelengths (Albayrak,
2008; Lu et al., 2019). The integration of

visible and near-infrared bands in vegetation
indices proves to be more responsive to
nitrogen content or plant pigments than to
potassium content (Liu et al., 2019; Wang et
al., 2021). Furthermore, the water content in
leaves positively correlates with potassium
ions around the guard cells (Nieves-Cordones
et al., 2014). As relative water concentration
increases, the absorption in near-infrared and
short-wave infrared regions increases,
reducing the reflectance at these wavelength
regions. However, the negative relationship
between water concentration and the
reduction of the short-wave infrared
reflectance is much more significant than
near-infrared (Das et al., 2017). Thus, the
promising wavelengths for rice LKC
monitoring are supposed to be short-wave
infrared regions (Lu et al., 2019).

The assessment of LPC and LKC by
applying UAV hyperspectral data in this
investigation yields notable discrepancies
(RMS error of 27.1% for LPC and 38.8% for
LKC). Besides the technical -challenges
associated with the acquired data, accuracy is
inherently influenced by the complex
interplay of various factors governing
characteristic  reflectance. These factors
encompass chlorophyll and other light-
absorbing pigments, water content, proteins,
starches, waxes, and structural and
biochemical molecules like lignin and
cellulose, which are ubiquitous in vegetation
(Lu et al. 2020). Consequently, the specific
estimation of nutrient concentrations such as
phosphorus or potassium in leaves proves
challenging. Integrating hyperspectral data
with  deep  learning  algorithms  as
convolutional neural networks (Nalepa et al.,
2020) or DeepSpectra (Zhang et al., 2019) is a
promising solution for enhancing accuracy.
Collecting extensive datasets to employ deep
learning models effectively is implemented to
estimate leave nutrient concentrations in
future studies. Subsequently, the development
of software incorporating deep learning
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techniques is ideally anticipated, which will
facilitate the map of nutrient levels in
hyperspectral images collected from broad
rice fields.

6. Conclusions

This study provides instructions for using
UAVs integrated hyperspectral cameras for
nutrient content monitoring in rice leaves, one
of Vietnam's most essential food types of
crops. The experiment demonstrated the
ability to use UAV-based remote sensing to
quantify rice plants' phosphorous and
potassium deficiencies in a label-free,
noninvasive, and non-destructive manner.
Although the relationship between phosphorus
content in rice leaves and rice spectral
footprint between 400 nm and 1000 nm is not
very strong, a relationship between the NDRE
index and LPC has been found with a
correlation of r=0.401. A linear regression
model for estimating LPC from the NDRE
index has been built with an estimative
capability of 27.1% RMSE. LKC can be
estimated from the NDVI index using
wavelengths of 802 nm and 607 nm with an
acceptable accuracy.

From the experiment, several
recommendations for future studies are
identified. Firstly, a hyperspectral camera with
an expanded spectral range, specifically
between 900 and 2500 nm, is suggested for
investigating LKC, and other chemical
components. Secondly, integrating
measurement data and hyperspectral data into
deep learning models is proposed as a
promising method to enhance the accuracy of
nutrient estimation. Many field measurements
in various rice crops should be collected for
the deep learning approach. Thirdly,
deploying a UAV system for data acquisition
and processing is complex. Tasks such as
calculating flight parameters, designing flight
paths, and calibrating images are manually
performed by researchers, while the software
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integrated into drones handles the actual flight
according to these parameters. This study
offers a comprehensive overview of the
integration of components within a UAV
hyperspectral system. The methodologies
outlined in this study can be effectively
utilized for various applications within earth
sciences and environmental monitoring
domains. Furthermore, this research is
pioneering the use of UAV hyperspectral
technology to assess vegetation health in
Vietnam, an agriculturally significant nation.
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