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ABSTRACT

The prediction of permeability in porous media is a critical aspect in various scientific and engineering
applications. This paper presents a machine learning (ML) model based on the XGBoost algorithm for predicting the
permeability of porous media using microstructure characteristics. The seahorse optimization algorithm was
employed to fine-tune the hyperparameters of the XGBoost algorithm, resulting in a model with predictive solid
capabilities. Regression analysis and residual errors indicated that the model achieved good prediction results on the
training and testing datasets, with RMSE values of 0.0494 and 0.0826, respectively. A SHAP value sensitivity
analysis revealed that the essential inputs were the size of the inclusions, with the quantiles representing the
maximum size of the inclusions being the most significant variables affecting permeability. The findings of this study
have important implications for the design and optimization of porous media, and the XGBoost algorithm-based ML
model provides a fast and accurate tool for predicting the permeability of porous media based on microstructure
characteristics.

Keywords: Permeability, machine learning, porous media, FFT, optimization.

1. Introduction Neufeld, 2014; Khalid Awan et al., 2015), and
material behavior under diverse conditions. In

Fluid flow simulations in porous media are . . .
geoscience, understanding the flow of fluids

important in various disciplines, with i )
. . . through porous media such as rocks and soils
particular emphasis on geoscience and

material science (Auriault and Boutin, 1994, is indispensable for analyzing processes like

1993, 1992; de Borst, 2017). This hydrocarbon migration, contaminant
transport, and groundwater movement (Bachu,

2008). Within material science, it is equally
essential for designing and optimizing
materials utilized in applications ranging from
filtration and battery electrodes to fuel cells

computational process is pivotal in
comprehending and forecasting an array of
natural and industrial phenomena (de Borst,
2017), including groundwater dynamics,
hydrocarbon  recovery, carbon dioxide

sequestration (Ewing, 1983; Huppert and (Herzig et al., 1970), where fluid interaction
with the material is of critical concern.

*Corresponding author, Email: banglh@utt.edu.vn Moreover, within the concrete field, the
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formation of cracks in concrete is a significant
concern that can significantly affect its
permeability (Dietrich et al., 2005; Grassl,
2009). Concrete, a widely used construction
material, is inherently porous, and its
permeability is critical in determining its
durability and service life (Li et al., 2019).

Permeability, a key parameter in these
simulations, measures the ease with which a
fluid can traverse porous media (Renard and
De Marsily, 1997). The accurate prediction of
permeability is of utmost importance, as it
directly influences the reliability of flow
simulations. For instance, an underestimation
of the permeability of petroleum engineering
could result in overestimating the energy
required for oil or gas extraction. Conversely,
overestimating permeability may lead to an
excessively optimistic forecast of resource
recovery (Sander et al., 2017). However,
predicting permeability is complex due to the
intricate microstructures inherent in porous
media. These microstructures can exhibit
substantial variability, even within a single
specimen, and significantly influence fluid
flow.

Consequently, accurately modeling these
complex microstructures is a prerequisite for
reliably predicting their permeability. This
necessity presents a challenge, as the complex

microstructures of porous media often
necessitate  high-resolution imaging and
computationally  demanding  simulations

(Borujeni et al., 2013). Furthermore, these
microstructures may evolve due to erosion,
deposition, or chemical reactions, thereby
introducing an additional layer of complexity
(Yasuhara and Elsworth, 2006).

Predicting permeability and fluid flow
through real microstructures presents several
challenges (Al-Omari and Masad, 2004).
While analytical approaches can provide
solutions for simple cases or regular
microstructures, they often struggle with the
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complexity and irregularity of real-world
microstructures (Monchiet et al., 2019; Wang,
2003, 2001). Furthermore, these approaches
may require constrained boundary conditions
that limit their applicability and accuracy.
Finite Element Method (FEM) is a powerful
numerical tool for simulating fluid flows, but
it requires the creation of a mesh that
accurately represents the complex
microstructure (Burman and Hansbo, 2007;
Correa and Loula, 2009; Ly et al., 2015). This
process can be time-consuming and
computationally intensive, particularly for
large or intricate structures.

In some cases, meshing may even be
practically impossible due to the extreme
complexity of the microstructure. Lattice
Boltzmann Method (LBM) (Pan et al., 2004)
and Fast Fourier Transform (FFT)-based
methods can handle complex microstructures
without the need for meshing (Ly et al., 2016;
Monchiet et al., 2009; Nguyen et al., 2013),
making them attractive alternatives. However,
these methods can be computationally
expensive, particularly for large-scale
simulations or when high accuracy is required
(Ly et al, 2022). This can limit their
practicality, especially when dealing with
multiple samples or when real-time
predictions are needed. Therefore, there is a
need for an alternative approach that can
accurately simulate permeability based on real
microstructures while also focusing on
computational efficiency. This could involve
the development of new numerical methods,
the optimization of existing methods to reduce
computational costs, or the use of machine
learning (ML) techniques to  predict
permeability based on microstructure data.

Over the past few decades, the field of
civil engineering has witnessed a significant
evolution in the application of Artificial
Intelligence (Al) and ML (Phoon and Zhang,
2023; Phung et al., 2023; Thai, 2022; Vadyala
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et al, 2022). These technologies have
transitioned from simple rule-based systems
to sophisticated models capable of learning
from complex data, driven by algorithm
advances, increases in computational power,
and the availability of large datasets. Al and
ML have shown great potential in solving
complex problems related to materials,
structures, and geosciences (Ly et al., 2020;
Nguyen et al., 2020; Van Phong et al., 2020;
Xuan et al, 2024). One of the critical
applications of Al and ML in civil
engineering is the analysis of material
behavior (Morgan and Jacobs, 2020; Wei et
al., 2019). For instance, ML algorithms can be
used to predict the mechanical properties of
concrete based on its mix design and curing
conditions. This can help optimize the mix
design to achieve desired properties, reduce
material waste, and improve the sustainability
of concrete structures (Hasanipanah et al.,
2023; Ly et al., 2021; Ly and Nguyen, 2024).
Similarly, ML can be used to predict the
performance of geomaterials, such as soils
and rocks (Nhu et al., 2023), under various
loading conditions, which can aid in
geotechnical engineering design. Another
application of Al and ML in civil engineering
is monitoring and assessing structures (Flah et
al., 2021). ML algorithms can analyze sensor
data from structures, such as bridges and
buildings to detect signs of damage or
deterioration (Zhou et al., 2017). This can
help identify potential safety issues before
they become critical and enable proactive
maintenance. Regarding the problem of
predicting permeability in porous media, Al
and ML present a possible alternative to
traditional simulation methods (Brunton et al.,
2020; Ren et al., 2020). Instead of solving the
fluid flow equations for a given
microstructure, ML models can be trained to
predict permeability directly from

microstructure data (Erofeev et al., 2019;

Phan and Ly, 2024; Tian et al., 2021). This
can significantly reduce the computational
cost, especially for complex microstructures.
Moreover, once trained, ML models can make
predictions almost instantaneously, enabling
real-time analysis and decision-making. They
can also handle uncertainties in the
microstructure data, which can be challenging
to account for in traditional simulations
(Srinivasan et al., 2018). Al and ML offer
promising avenues for solving complex
problems in civil engineering, including
permeability prediction in porous media. As
these technologies evolve, they will likely
play increasingly important roles in this field.
This study leverages Al and ML's power to
enhance permeability prediction in porous
media, a critical parameter in various civil
engineering applications. The seahorse
optimization algorithm (SHOA) is utilized to
finely tune the hyperparameters of the
XGBoost algorithm, a robust ML tool, which
is then applied to a dataset generated from
FFT simulations. The input space of the
model encompasses the quantile distribution
of the size and orientation of inclusions in the
porous media. This study aims to optimize the
ML model's performance to provide an
accurate and efficient tool for predicting
permeability in porous media, ultimately
leading to improved design and management
of civil engineering systems. Furthermore, a
sensitivity analysis is conducted using SHAP
values to evaluate the importance of each
input feature on the predicted permeability,
offering insights into the relationship between
microstructural features and permeability.

2. Fast-Fourier Transform (FFT)

simulation for fluid flow problem
2.1. Overview of FFT simulation

FFT-based
computational
modeling  and

simulation  represents a
approach utilized for the
analysis of nonlinear
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composites (Michel et al., 1999; Moulinec and
Suquet, 1998), then successfully applied in the
context of predicting fluid flow and transport
properties (Ly et al., 2016; Nguyen et al.,
2013). This method leverages the FFT
algorithm, a powerful tool for efficiently
computing the discrete Fourier transform of a
sequence, to provide a robust and accurate
representation of the porous medium. In
porous media simulation, FFT-based methods
typically involve representing the porous
medium as a binary image, where different
pixel values denote solid and fluid phases.
The image is then transformed into the
frequency domain using the FFT algorithm,
and the resulting data is used to solve the
governing equations for fluid flow, such as the
Stokes, Bingham, Darcy or Navier-Stokes
equations. The solution is subsequently
transformed back into the spatial domain to
obtain the desired flow and transport
properties.

FFT-based simulation offers several
advantages for porous media modeling. It is
highly efficient, particularly for large-scale
simulations, and can easily handle complex
geometries and microstructures. It also allows
for directly calculating effective transport
properties, such as permeability and
diffusivity, without explicit pore-scale
simulations (Mezhoud et al., 2020). However,
FFT-based methods also have some
limitations. They assume periodic boundary
conditions that may not always be appropriate
for representing real-world porous media.
They also require regular grids, which can
limit their ability to represent complex
geometries and microstructures accurately.
Despite  these  challenges,  FFT-based
simulation remains a valuable tool for porous
media modeling, offering a powerful and
efficient approach for predicting fluid flow
and transport properties in complex porous
media systems. Its robustness and accuracy
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make it a popular choice for researchers and
engineers seeking to understand and optimize
the behavior of porous media in a wide range
of applications.

2.2. Permeability dataset

The present study utilized a dataset of
permeability values to investigate ML
algorithms' efficacy in predicting porous
media permeability. Ly et al's paper
elucidates the underlying principle of the
problem to be solved. (Ly et al., 2022). A total
of 2000 simulations were performed on
generated microstructures, as illustrated in
Fig. 1, where the inclusion and porous solid
(matrix phase) are represented by yellow and
blue colors, respectively. The microstructures
were generated such that 100 inclusions were
present in the unit cell, with the permeability
of the porous phase set at 10°°.

To introduce variability into the dataset,
the positions of the 100 inclusions were
randomly distributed inside the unit cell. The
two dimensions along the Ox and Oy axes
were randomly chosen to fall between 0.01
and 0.2, resulting in a diverse range of
microstructures. An FFT
conducted for each generated microstructure
to obtain the corresponding permeability

simulation was

value. The resulting permeability values were
in ML
simulations. This dataset provides a valuable
testing ML
predict  the

then saved for subsequent use

resource for training and

algorithms to  accurately
permeability of porous media based on the
The

dataset's diversity in terms of inclusion

characteristics of the microstructure.

positions and dimensions enables the
assessment of the ML algorithms' ability to
generalize and make accurate predictions for a

wide range of microstructures.
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Figure 1. Examples of complex microstructure with 100 inclusions

2.3. Input space selection

In ML, selecting an appropriate input
space is a critical factor that significantly
influences the model's efficacy (Blum and
Langley, 1997). The identification of relevant
features that bear a direct relationship with the
given problem is of paramount importance. In
the context of the complex problem of fluid
flow through generated 2D microstructures, a
judicious choice of input features is essential
to predict the permeability of a porous
medium accurately.

First, the spatial arrangement of the 100
inclusions  within  the  microstructure
significantly affects the fluid flow patterns

and, consequently, the permeability of the
porous medium. Therefore, the positions of
the inclusions constitute a critical input
feature for the ML model.

Second, the dimensions of the inclusions
can influence the porous medium's fluid flow
and transport properties. Thus, the sizes of the
100 inclusions represent another important
input feature of the ML model.

Third, the permeability of the porous phase
itself can significantly impact the porous
medium's overall fluid flow and transport
properties. Therefore, including this parameter
in the input space can enhance the accuracy of
the ML model.
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Finally, the orientation of the inclusions
can affect the fluid flow patterns and,
consequently, the permeability of the porous
medium. Thus, the angle of rotation of each
inclusion represents a critical input feature of
the ML model.

In summary, the input space for the ML
model should encompass the positions, sizes,
and angles of rotation of the 100 inclusions
and the permeability of the porous phase.
These features capture the microstructure
characteristics that influence the porous
medium's fluid flow and transport properties.
By considering these factors, the ML model
can accurately predict the permeability of a
porous medium based on the microstructure
characteristics, thereby providing insights into
the behavior of complex porous media
systems. In the context of ML simulations,
incorporating all information of the 100
inclusions into the input space would result in
a considerable input space, leading to
significant computational challenges.
Therefore, based on a preliminary analysis, a
judicious selection of inputs was made to
ensure  computational feasibility = while
maintaining the model's accuracy.

3. ML methods
3.1. Extreme Gradient Boosting

XGBoost, short for Extreme Gradient
Boosting, is a powerful and versatile ML
algorithm that has gained significant
popularity in predictive modeling (Chen and
Guestrin, 2016). It implements gradient
boosting, a technique that builds a stage-wise
ensemble of weak prediction models, typically
decision trees, to create a robust predictive
model.

The primary working mechanism of
XGBoost involves iteratively adding new
models to the ensemble, with each subsequent
model designed to correct the errors made by
the previous ones. This is achieved by having
each new model focus on the residuals, or the
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differences between the actual and predicted
values, of the previous model. By iteratively
refining the predictions in this manner,
XGBoost can achieve high accuracy and
robustness.

XGBoost offers several advantages,
making it a popular choice for many
predictive modeling tasks. Its use of gradient
boosting allows it to achieve high accuracy
and handle complex data sets. It also includes
several regularization techniques to prevent
overfitting, such as L1 and L2 regularization
of the weights of the decision trees, and a
method called shrinkage, which scales down
the contributions of each tree to the final
prediction. Furthermore, XGBoost supports
parallel processing, which can significantly
speed up computation time and handle
missing values in the data.

However, XGBoost also has some
potential drawbacks. Its high complexity
makes it more difficult to interpret and
understand than simpler models. It also has
several hyperparameters that need to be tuned,
which can be time-consuming and require
expert knowledge. Moreover, XGBoost can
be resource-intensive, mainly when working
with large data sets, which can be a limitation
in some applications. Despite these
challenges, XGBoost remains a relevant tool
in the ML toolbox, offering a powerful and
flexible solution for many predictive
modeling problems.

3.2. Seahorse Optimizer Algorithm (SHOA)

The SHOA is a sophisticated, nature-
inspired algorithm for complex optimization
problems (Zhao et al., 2023). It derives its
principles from the distinctive foraging
behavior and movement patterns exhibited by
seahorses adept at navigating and hunting
within intricate marine environments. The
algorithm initiates with a population of
seahorses (pop_size), each symbolizing a
potential solution within the problem space. It
emulates the seahorse's hunting strategy,



Vietnam Journal of Earth Sciences, 46(4), 515-532

where they camouflage by changing their skin
color, maneuvering their heads and tails
independently, and utilizing their elongated
snouts to capture prey. This strategy is
translated into a series of mathematical
operations within the algorithm, enabling each
seahorse to update its position based on its
own and other seahorses' experiences. The
SHOA maintains a balance between
exploration (scanning the entire space for
potential  solutions) and  exploitation
(concentrating on promising areas) to
efficiently locate the optimal solution.

The SHOA offers several advantages,
including  versatility,  efficiency, and
robustness. Its applicability extends to various
optimization problems, such as engineering
design, feature selection, and parameter
tuning. SHOA demonstrates resilience against
local optima, enabling it to discover the global
optimum even in complex problem spaces
frequently. However, SHOA faces challenges
related to parameter selection, such as
determining the optimal number of seahorses
and iterations through experimentation. Its
complex nature, involving  extensive
mathematical operations, can complicate
implementation and comprehension compared

to simpler algorithms. Furthermore, while
effective  for  various problems, its
performance on large-scale or high-
dimensional tasks requires further exploration.

Overall, SHOA was chosen in this study
for hyperparameter tuning due to its effective
balance between global exploration and local
exploitation, which is crucial for avoiding
local minima and achieving optimal solutions
efficiently.

3.3. Cross-validation

Cross-validation (CV) is a crucial
technique in evaluating the performance of
ML models. In this study, a 5-fold CV is
employed to optimize the hyperparameters of
the XGBoost algorithm (Fig. 2). This
approach involves dividing the dataset into
five equal subsets, where each subset is used
as a validation set. In contrast, the remaining
four are used for training. By iterative training
and validating the model on different subsets
of the data, 5-fold CV provides a robust and
reliable estimate of the model's performance,
allowing for  selecting the  optimal
hyperparameters and improving the model's
predictive accuracy.

spit1  |Fold1| [Fold2| [Fold3]
stz |Fold 1| 'Fold 3|
Split 3 - - Fold 3
spiit4  [Fold 1| [Fold2| [Fold3]
spiits  [Fold 1| [Fold2| -

Foidd] [rous| /

>~ Hyperparameters tuning

Final evaluation M) | Testing Data

Figure 2. 5-fold CV illustration
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3.4. Model metrics

The root mean square error (RMSE), mean
absolute percentage error (MAPE), correlation
coefficient (R), and mean absolute error
(MAE) are metrics used to evaluate the
performance of the predictive models in this
study. RMSE is a standard metric that
calculates the square root of the average of
squared differences between predicted and
actual values, making it highly sensitive to
significant errors. R is a statistical metric that
measures the strength and direction of the
linear relationship between two variables,
measuring how well the observed outcomes
correlate with the predicted outcomes. Lastly,
MAE measures the average magnitude of the
errors in a set of predictions without
considering their direction, making it less
sensitive to significant errors than RMSE.
These metrics offer different perspectives on
the performance of a predictive model, and
the choice of which metric to use depends on
the specific goals and requirements of the
modeling task at hand. These metrics are
formulated in the relevant literature (Ly and
Nguyen, 2024; Phan and Ly, 2024).

4. Results and discussions
4.1. Feature selection and database analysis

It is mnecessary to establish several
notations utilized in this study to facilitate
understanding. Fig. 3 illustrates the relevant
parameters, where the major and minor axes
of the elliptic inclusion are represented by a
and b, respectively. The angle of rotation of
the inclusion is defined by the intersection of
the Ox and the ellipse's major axis.
Furthermore, the position of the elliptic
inclusion is specified by its coordinates in the
Ox and Oy directions.

Referring to Fig. 4, the distribution of the
primary characteristics of the 100 inclusions is
presented, including the sizes of the major (a)
and minor (b) axes, their respective positions
along the Ox and Oy axes, and the rotation
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angle (Phi). It can be observed that the sizes
of the inclusions are predominantly small,
with over 95% of the inclusions having a size
of less than 0.06. Only a few inclusions have a
size larger than 0.06. In terms of the position
of the inclusions, they appear to be evenly
distributed throughout the unit cell. A similar
trend is observed for the rotation angle, with
the values of Phi being relatively uniformly
distributed from O to approximately 180
degrees.

Figure 3. Illustration of the notation of the porous
media in this study

In addressing the problem, the most
straightforward approach (ML) would be to
consider all inclusions as input parameters.
However, this method could significantly
increase the input space, potentially resulting
in more than 100 features. To simplify the
process, the authors propose to extract only
relevant information from the input space and
perform ML simulations on this reduced
dataset. Four cases are considered for initial
assessment, as presented in Table 1. Different
quantile levels are taken to retrieve significant
information related to the microstructure for
ML simulation. The ML modeling uses the
XGBoost algorithm with default
hyperparameters for simplification. The
results regarding the training, testing, and
overall dataset are presented in Table 2.
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Figure 4. The distribution of the primary characteristics of the 100 inclusions

Table 1. Cases were considered for the initial
assessment of feature selection
Cases |Quantile levels considered
1 0;0.25;0.5;0.75; 1
2 0;0.2;0.4;0.6;0.8; 1
3 0;0.5;0.6;0.7;0.8;0.9; 1
4 0; 0.5;0.8;0.85;0.9;0.95; 1

Table 2. Permeability dataset and statistical

analysis

Case| Data RMSE | MAE R MAPE
Training | 0.004 | 0.003 | 0.999 | 0.002

1 Testing | 0.106 | 0.078 | 0.657 | 0.049
All 0.058 0.025 | 0.893 0.016

Training | 0.003 0.002 | 0.999 0.001

2 Testing | 0.105 | 0.076 | 0.664 | 0.047
All 0.057 | 0.024 | 0.895 | 0.015

Training | 0.003 | 0.002 | 0.999 | 0.001

3 Testing 0.099 0.071 | 0.701 0.044
All 0.054 0.023 | 0.906 0.014

Training | 0.003 | 0.002 | 0.999 | 0.001

4 Testing | 0.099 | 0.071 | 0.709 | 0.044
All 0.054 | 0.023 | 0.908 | 0.014

The results of the study indicate that the
accuracy of the ML model in predicting

permeability increases with the inclusion of
higher quantile levels of inclusion sizes. In
case 1, where only five Ilevels were
considered, covering the entire range from 0
to 100%, the accuracy of the ML model was
relatively low, with an R-value of 0.657.
However, as more significant quantile levels
were included in cases 2 and 3, the R values
increased to 0.664 and 0.701, respectively.
The highest accuracy was achieved in case 4,
where the quantile levels focused on the larger
inclusion sizes, greater than 80%. In this case,
the ML model's accuracy was acceptable, with
an R-value of 0.709. Therefore, the input
space for this problem should include the
features considered in case 4.

As mentioned earlier, the quantile levels of
the size of inclusion "a" and "b" were set at 0,
0.5, 0.8, 0.85, 0.9, 0.95, and 1, and seven
inputs related to each quantile level were
chosen. Additionally, seven inputs related to
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the quantile distribution of the orientation of
the inclusions were also included. As a
preliminary study aimed at predicting the
permeability of image-based microstructures,
a simplification was made by assuming a
constant permeability of the porous phase. In
other words, all the values of the permeability
of the porous phase were taken as 10,
Overall, the problem to be solved
comprises 21 inputs, including the quantile

Table 3. Permeability dataset and statistical analysis

distributions of the sizes and orientations of
the most significant inclusions, and one
output, which is the predicted permeability of
the porous medium (Table 3). This
simplification enables the ML model to
accurately predict the permeability of the
porous medium while maintaining
computational feasibility, thereby providing
insights into the behavior of complex porous
media systems.

Variable | Average | std | min 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | max
X1 0.01 [0.00| 0.01 | 0.01 | 001 | 001 | 0.01 | 001 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
X2 0.01 [0.00/ 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 001 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02
X3 0.03 [0.00| 0.02 | 0.02 | 0.02 | 002 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03
Xa 0.03 |0.00{ 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04
Xs 0.04 |0.00f 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.06
X6 0.05 [0.01) 0.03 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.10
X7 0.12 [0.03] 0.05 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | 0.20
X3 0.01 |0.00{ 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
Xo 0.01 |0.00f 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02
Xio 0.03 |0.00{ 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04
Xi1 0.03 [0.00|/ 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04
Xi2 0.04 [0.00] 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05
Xi3 0.05 |0.01] 0.03 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.09
Xi4 0.12 |0.03] 0.05 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.12 | 0.13 | 0.15 | 0.16 | 0.20
Xis 1.78 [1.76] 0.00 | 0.18 | 0.41 | 0.66 | 092 | 1.25 | 1.62 | 2.11 | 2.84 | 4.12 | 15.44
X6 90.17 |8.71] 63.93 | 79.03 | 82.94 | 85.51 | 88.00 | 90.08 | 92.32 | 94.77 | 97.75 {101.29|119.87
X1z 143.67 |7.08|117.27|134.74|137.52|139.93 | 142.06 | 144.05 | 145.66 | 147.65|149.67 | 152.49 | 167.71
Xis 152.56 [6.301124.39(144.52|147.14|149.36[151.14|152.99|154.54[156.24|158.07160.36 [ 170.76
Xi9 161.47 [5.211140.30(154.74|157.19|158.82[160.54|161.75|163.01 [164.41 |166.00 | 168.09 | 174.34
X20 170.38 [3.87]150.36|165.20|167.38|168.76[169.84|170.80|171.81[172.72|173.70 | 174.88 | 178.23
Xai 178.24 [1.74]163.44|176.10(177.16|177.83178.41[178.79[179.09[179.40[179.61|179.79 | 180.00
Y 1.56 [0.13] 130 | 142 | 146 | 149 | 152 | 1.55 | 1.57 | 1.61 1.66 | 1.73 | 2.50

4.2. Hyperparameter selection

This section describes the use of the
SHOA to tune the hyperparameters of the
XGBoost algorithm finely is described. 70%
of the data (training set) is utilized to
accomplish this. CV with 5 folds is applied to
the training dataset, and the SHOA is
employed to  define four  critical
hyperparameters of XGBoost, namely
n_estimator, learning rate, max_depth, and
subsamples. The n_estimator parameter
determines the number of trees in the gradient
boosting ensemble, while the learning rate
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parameter controls the step size in the gradient
descent algorithm used to minimize the loss
function. The max_depth parameter specifies
the maximum depth of each tree in the
ensemble, and the subsamples parameter
defines the fraction of samples to be used for
training each tree. The pop_size of the SHOA
is chosen as 30 to ensure a balance between
computing time and effectiveness, and the
number of iterations is chosen as 200. For
each iteration, the 5-fold CV score is
estimated, and the best set of hyperparameters
is defined as the one that gives the lowest
RMSE CV score between the ML-based and
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FFT-based permeabilities. This approach
leverages the SHOA's power to optimize the
XGBoost  algorithm's ~ hyperparameters,
thereby improving the model's accuracy.
Using CV and minimizing the RMSE CV
score can identify the optimal set of
hyperparameters, resulting in a more accurate
and reliable predictive model.

As can be observed (Fig. 5), the CV score
curve tends to reach lower values after
several iterations, indicating that SHOA is
effectively fine-tuning the hyperparameters
of the XGBoost algorithm. The RMSE is

0.068 from the first iteration, and it decreases
to 0.067 and 0.0665 after 200 iterations,
demonstrating a gradual improvement in the
model's accuracy. Notably, after only 25
iterations, the SHOA reaches its most
effective values in finely tuning the
hyperparameters of XGBoost. This suggests
that the SHOA 1is a computationally efficient
optimization algorithm that can quickly
identify the optimal set of hyperparameters
for the XGBoost algorithm. At convergence,
the identified best set of hyperparameters is
presented in Table 4.
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Figure 5. Fine-tuning process of XGBoost using SHOA with pop_size = 10, 20, and 30 over 200 iterations

Table 4. XGBoost hyperparameters selected for fine-tuning by SHOA

n_estimator learning_rate max_depth subsamples
Min 5 0.001 1 0.1
Max 1000 0.7 16 1
Best value by SHOA 180 0.020 4 0.150

525



Hai-Bang Ly et al.

For comparison purposes, the computation
time per iteration is shown in Fig. 6.
Specifically, the tuning process involved 200
iterations, and the computation time varied
with the pop_size used. For a pop_size of 10,
the hyperparameter tuning took approximately
8 s per iteration. Increasing the pop_size to 20
resulted in a computation time of about 18 s
per iteration. With a pop_size of 30, the
computation time was around 100 s per
iteration, totaling around 5.5 hours for the
entire process. The objective function, RMSE
of the 5-fold CV score, is 0.0665 at
convergence. This indicates that the SHOA

can effectively optimize the hyperparameters
of the XGBoost algorithm to achieve a high
level of accuracy in predicting the
permeability of porous media based on the
microstructure characteristics.

In summary, using the SHOA to optimize
the hyperparameters of the XGBoost
algorithm is a computationally efficient and
effective approach for predicting the
permeability of porous media. The optimal set
of hyperparameters can be identified by
minimizing the RMSE of the 5-fold CV score,
resulting in a more accurate and reliable
predictive model.
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Figure 6. Computation time per epoch of XGBoost fine-tuning process

4.3. Learning curve of the algorithm

Overfitting is a critical issue in ML, and it
needs to be carefully addressed and checked
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once the model is constructed. One of the
many ways to effectively detect overfitting is

using the learning curve. The learning curve
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of the developed XGBoost model is plotted in
Fig. 7, showing the model's performance as
the size of the training set increases.
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Figure 7. Learning curve of the XGBoost model

The learning curve analysis reveals how
the model behaves with different training set
sizes and 5-fold CV. It shows that increasing
the size of the training set and utilizing 70%
of the data enhances the model's ability to
generalize to new data. The decreasing CV
score as the training samples grow indicates
improved generalization capability. At the
same time, the rising trend in the training
score suggests effective learning without
overfitting the training data. These findings
demonstrate that utilizing 70% of the dataset
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ML-based permeability

further enhances the model's performance,
effectively minimizing overfitting. Thus,
optimizing XGBoost hyperparameters with
SHOA proves to be an effective strategy for
predicting porous media permeability with
robust and reliable outcomes.

4.4. Model predictive ability

This section describes the model's
predictive ability by presenting the regression
analysis and residual errors for the training
and testing datasets. The regression plots are
shown in Fig. 8, along with the respective
histograms of the distribution of values. For
the training dataset, it can be observed that the
model achieves good prediction results where
the training data points are close to the
diagonal line. This indicates that the model
accurately captures the relationship between
the input features and the output variable.
Several errors are found for the testing
dataset, but the overall trend is good,
indicating that the model can generalize well
to new data. The computed RMSE values are
0.0494 and 0.0826, the R values are 0.916 and
0.808, the MAPE values are 0.0240 and
0.0346, and the MAE values are 0.0378 and
0.0564 for the training and testing sets,
respectively.
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Figure 8. Performance of the XGBoost model in predicting the permeability of porous media (a) training
and (b) testing
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These results demonstrate the model has
good predictive ability, with low errors and
high correlation coefficients for both the
training and testing datasets. Overall, the
model shows promising results and can be a
useful tool for various applications in
predicting the permeability of porous media.

4.5. Sensitivity analysis

In this section, a SHAP value sensitivity

analysis is conducted to evaluate the influence
of inputs on permeability (Fig. 9). The
analysis is based on two viewpoints using
bee-swarm SHAP analysis, namely the mean
value of SHAP and the maximum value of
SHAP. Among the 21 inputs considered in the
database, only the 9 most important ones are
shown, while the remaining inputs are shown
as a sum effect.
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Figure 9. Shap values analysis of XGBoost model using bee-swarm plots: (a) based on mean SHAP
values, and (b) based on max SHAP values

Interestingly, the most essential input is the
size of the inclusions, ranging from the most
prominent sizes to smaller ones. X7 and X4,
which represent the maximum size of the
inclusion, are classified as the most important
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variables affecting the permeability. Xs and
X3 represent the quantile at 95% of the size
distribution and are also identified as essential
variables. The following vital variables are the
smaller sizes, representing the quantiles at



Vietnam Journal of Earth Sciences, 46(4), 515-532

90%, 85%, and 80%. On the other hand, the
orientation of the inclusion does not
significantly affect the permeability of the
porous medium in this case, or at least they
are less influential than the dimensions. This
suggests that the size of the inclusions is the
dominant  factor in determining the
permeability of the porous medium, while the
orientation of the inclusions has a minimal
effect. The SHAP value sensitivity analysis
provides helpful information on the relative
importance of the input variables and their
effects on the permeability of the porous
medium. This information can be used to
optimize porous media design and improve
the accuracy of predictive models.

4.6. Discussions

The findings of this study hold significant
implications for predicting permeability in
porous media based on microstructure
characteristics. The selection of the XGBoost
algorithm was driven by its robustness and
scalability in capturing intricate feature
relationships through gradient boosting and
effective regularization methods to prevent
overfitting. Its scalability enables efficient
handling of large datasets and complex feature
spaces typical in porous media simulations.
Moreover, utilizing the SHOA  for
hyperparameter tuning markedly improved
model performance. These advantages
position XGBoost as the preferred algorithm
for our study's objectives.

However, the study acknowledges
limitations, such as simplifying permeability
variations within the porous phase, which may
not fully reflect real-world complexities.
Additionally, the model's sensitivity to input
data quality and quantity highlights ongoing
challenges in deploying robust models.

The study employed learning curve
analysis to address overfitting, demonstrating
the model's ability to generalize without
merely memorizing training data patterns. The

SHAP value sensitivity analysis highlighted
the importance of inclusion size, where larger
sizes and higher quantile levels notably
influence permeability predictions. Enhancing
the granularity of quantile levels in the input
space, particularly for larger inclusion sizes,
could further enhance model accuracy.

Future research directions should consider
expanding datasets to encompass diverse
microstructure characteristics and realistic
permeability variations across various porous
media types. Exploring alternative
optimization algorithms for hyperparameter
tuning could also provide additional insights
into optimizing model performance under
diverse conditions.

5. Conclusions

The study presented an XGBoost
algorithm-based ML model for predicting the
permeability of porous media based on
microstructure characteristics. The SHOA was
utilized to finely tune the hyperparameters of
the XGBoost algorithm, resulting in a model
with good predictive ability. The regression
analysis and residual errors showed that the
model achieved good prediction results for the
training and testing datasets, with RMSE
values of 0.0494 and 0.0826, respectively.
The SHAP value sensitivity analysis revealed
that the most important input was the size of
the inclusions, with the quantiles representing
the maximum size of the inclusion being the
most important variables affecting the
permeability.

The findings of this study have important
implications for the design and optimization
of porous media. The XGBoost algorithm-
based ML model provides a fast and accurate
tool for predicting the permeability of porous
media based on microstructure characteristics,
which can aid in designing and optimizing
porous media for various applications.
Furthermore, the SHAP value sensitivity
analysis provides insights into the relationship
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between the input variables and the
permeability of the porous medium, which
can guide the selection of input variables for
future studies.
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