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ABSTRACT

This study evaluates the efficacy of five machine learning algorithms Support Vector Regression (SVR),
Decision Tree (DT), Random Forest (RF), Light Gradient Boosting Machine Regressor (LGBM), and Linear
Regression (LR) in predicting water levels in the Vietnamese Mekong Delta's tidal river system, a complex nonlinear
hydrological phenomenon. Using daily maximum, minimum, and mean water level data from the Cao Lanh gauging
station on the Tien River (2000-2020), models were developed to forecast water levels one, three, five, and seven
days in advance. Performance was assessed using Nash-Sutcliffe Efficiency, coefficient of determination, Root Mean
Square Error, and Mean Absolute Error. Results indicate that all models performed well, with SVR consistently
outperforming others, followed by RF, DT, and LGBM. The study demonstrates the viability of machine learning in
water level prediction using solely historical water level data, potentially enhancing flood warning systems, water
resource management, and agricultural planning. These findings contribute to the growing knowledge of machine
learning applications in hydrology and can inform sustainable water resource management strategies in delta regions.

Keywords: Water level, multi-step-ahead prediction, machine learning, Vietnamese Mekong delta.

1. Introduction

Water level a critical

component in various domains, including

prediction s

industrial agriculture development, natural
hazard management, and water resource
administration (Choi et al., 2019; Wang and

Wang, 2020; Nguyen et al, 2022).
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Fluctuations in water levels have far-reaching
implications for the water cycle, sediment
transport processes, water quality, and
ecosystem dynamics. Consequently, the
ability to forecast water level changes with
high precision is paramount. Such accurate
predictions can provide invaluable support to
local authorities in implementing effective
water resource management strategies and
mitigating natural hazards (Herath et al,
2023; Kim et al., 2022; Do et al., 2022).
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Recognizing the significance of this issue, the
International Joint Commission (IJC) has
emphasized the necessity of developing
innovative methods and techniques to enhance
the predictive capabilities and monitoring
efficiency of existing systems.

Water level and discharge prediction in
rivers can be accomplished through various
models, generally categorized into two main
types: physically-based and data-driven. A
third category, hybrid models, has recently
emerged, combining elements of both
approaches (e.g., Sampurno et al.,, 2021,
Ghaith et al., 2019; Li and Jun 2022; Vinh et
al., 2023a). Physically based models are
mathematical  equations that represent
conceptual models and fundamental physical
principles, such as the conservation of mass
and (Chua, 2012). The
development of these models necessitates the
processing of hydrological parameters, which
demands expert knowledge, high-quality data,
and a comprehensive understanding of the
basin's hydrological processes (Kim et al.,
2015). Examples include Mike Nam (DHI,
1999), the Variable Infiltration Capacity
(VIC) model (Nanda et al, 2019),
TOPMODEL (Peters et al., 2003), and SWAT
(Narsimlu et al., 2015). Hydrodynamic
models, such as the HD module in Mike 11
(Rabuffetti and Barbero, 2005) and HEC-RAS
(Hicks and Peacock, 2005), also fall into this
category. While physically-based models
excel at addressing 'what if' scenarios, their
predictive accuracy depends on the user's

momentum

ability to forecast input variables, which often
additional tasks.
Moreover, these models require complex
and parameter

leading to

involves forecasting

computational
adjustments,

processes

potentially
uncertainties in results and increased time for
water level estimation or prediction (Vinh et

al., 2020; Vinh and Jongho, 2022; Vinh and
Jongho, 2019). The complexity and non-
linearity of water level changes, influenced by
factors such as meteorological conditions,
tidal effects, and inter-watershed flow
exchanges, pose significant challenges for
traditional hydraulic models in achieving
high-precision predictions, especially for
nonlinear problems (Pan et al., 2020; Park et
al., 2022).

In recent years,
computational capabilities has led to increased
application of data-driven methods for water

the advancement of

level prediction across various global regions.
These models
predicting nonlinear relationships between
variables, such as rainfall and streamflow,
significantly enhancing hydrological model

excel in analyzing and

performance. Data-driven modeling
approaches have emerged as valuable tools in
hydrology, offering the ability to analyze
complex terrains and situations with limited
data without requiring extensive knowledge of
underlying physical processes (Wunsch et al.,
2018). These methods often allow for rapid
model development with minimal input
requirements (Mosavi et al., 2018; Vinh et al.,
2024; Vinh et al., 2023b; Nguyen et al.,
2023). While comparing data-driven and
physically-based models presents challenges
due to their distinct characteristics and data
needs, several studies have indicated that
machine-learning techniques may offer
superior water-level prediction capabilities in
specific contexts (Baek et al., 2020; Zhao et
al., 2020; Zhu et al., 2020, Ozdogan-Sarikog
and Dadaser-Celik, 2024). Various machine
learning

techniques, including Gaussian

process regression, multilayer perceptron,
random forest, and multiple linear regression,

have been successfully applied to water level

469



Vietnam Journal of Earth Sciences, 46(4), 468-488

prediction in diverse geographical contexts,
such as Lake Erie in North America (Wang
and Wang, 2020), the Red River in Vietnam
(Phan and Nguyen, 2020), and the Durian
Tunggal river in Malaysia (Ahmed et al.,
2022). However, the literature reveals that
model performance varies across different

regions, emphasizing the absence of a
universal water-level prediction model.
Consequently, selecting and  testing

appropriate models for accurate water level
prediction remains crucial to support decision-
makers and local authorities in effective water
resource management, economic
development, and natural hazard mitigation,
particularly flooding.

In this study, we comprehensively
evaluated various machine learning (ML)
models for water level prediction in the
Vietnamese Mekong Delta to identify the
most suitable model for forecasting in this
region. Specifically, we developed and
compared five ML models: support vector
regression (SVR), Decision Tree (DT),
Random Forest (RF), Light Gradient Boosting
Machine Regressor (LGBM), and linear
regression (LR). These models were applied
to predict water levels at the Cao Lanh station
in Dong Thap province, where water resource
management poses significant challenges to
agricultural development. The predictive
performance of these five models was
comparatively analyzed wusing multiple
evaluation metrics. It is important to note that
most previous related studies in the
Vietnamese Mekong Delta primarily used
hydrodynamic models to simulate flow. The
applicability of ML in this context remains an
open question. This study represents the first
application of these five models for multi-
step-ahead water level prediction at the Cao
Lanh station. The findings from this research
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have the potential to assist decision-makers
and farmers in developing effective strategies
for water management in the study area.

2. Study area and data used

Dong Thap Province is one of the 13
provinces in the Mekong Delta, located at
10°07'-10°58' North latitude and 105°12'-
105°56' East longitude. Dong Thap Province
has a natural area of approximately 3384 km?
and is home to more than 1.6 million people.
The topography of the study area is relatively
flat, with an average height of 1-2 m. The
altitude decreases from north to south and
from west to east. The Tien River system
divides Dong Thap province into two areas:
the north of the Tien River, with an area of
about 250,731 ha, and the area south of the
Tien River, with approximately 73,074 ha.

The study area has a dense river system
with two major rivers: the Tien and Hau
Rivers. Dong Thap province is located in the
tropical monsoon climate zone, the climate of
which is divided into two distinct seasons.
The rainy season starts from May to
November, and the dry season starts from
December to April of the following year.
Precipitation in the study area varies from
1392 to 2388 mm/year, of which about 90%
of the precipitation is concentrated in August,
September, and October. The uneven
distribution of precipitation throughout the
year leads to difficulties in allocating water
resources for agricultural development. The
tide in the study area belongs to the semi-
diurnal tide regime, comprising 2 high tides
and 2 low tides with an average height
ranging from 3 to 4 m.

Dong Thap province, in particular, and the
Mekong Delta, in general, are considered
areas severely affected by climate change.
According to the Ministry of Natural
Resources and Environment's climate change
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scenario, by the end of the 21* century, sea
levels will rise by about 46 cm, making

methods to forecast water levels with high
accuracy plays a vital role in helping people

T
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drought and saltwater intrusion more severe. develop appropriate adaptation measures
Therefore, the development of modern (Fig. 1).
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Figure 1. Location of study area

Several countries upstream of the Mekong
River have built dams and reservoirs to meet
the growing demand for water resources. Due
to the relatively staggered information-sharing
policy  between downstream
farmers cannot get the information in time.
This influences agricultural development
policies downstream. In this study, the daily
maximum, minimum, and average water level
time series extracted from observed hourly
data at Cao Lanh station on the Tien River
from 2000 to 2020 (sources: Southern
Regional Hydrometeorological Center -
Vietnam Meteorological and Hydrological
Administration) was used to build the water

countries,

level prediction models. These three
predictors were chosen following the
requirements dictated in legal documents
relating to hydrological forecasting in

Vietnam (e.g., MONRE, 2023). These data
were divided into two parts: 80% of the data
for data training and 20% of the data for
validation. More specifically, daily data from
January 1, 2000, to October 19, 2016, were
used for model construction/training; from
October 20, 2016, to December 31, 2019, for
model validation; and from January 1, 2020,
to December 31, 2020, for prediction testing.
Figure 2 shows the observed daily maximum
water level time series as an example.
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Figure 2. Daily maximum water level time series measured at Cao Lanh hydrological station

3. Methodology

The methodology used to construct SVR,
DT, RF, LGBM, and LR in this study was
divided into four main stages: (i) data
collection and preprocessing; (ii) construction
of prediction models; (iii) wvalidation of
models for one-step prediction; iv) testing of
models for multi-step prediction (Fig. 3).

(i) Data collection and preprocessing: data
on daily maximum, minimum, and average
water levels from 2000 to 2020 were collected
as input data for the prediction model. These
data were divided into three parts: daily data
from January 1, 2000, to October 18, 2016,
were used for model construction/training;
from October 19, 2016, to December 31,
2019, for model validation; from January 01,
2020, to December 31, 2020, for multi-step-
ahead prediction testing (Fig. 2). Since
univariate time series of water levels at a
single gauging station is used for prediction,
sequence length or sliding window width (i.e.
the number of previous time steps used for
prediction) need to be specified. Using this
sequence length, input variables can be
selected. The present study utilized ACF and
PACF plots to determine this value. Besides,
several normalization techniques were tested,
such as Min-Max, Zscore, logistic, and
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LogNormal... However, the models obtained
the highest accuracy with the min-max
normalization technique.

(il)) Construction of prediction models:
This research employs five distinct algorithms
for constructing prediction models: Support
Vector Regression (SVR), Decision Trees
(DT), Random Forests (RF), Light Gradient
Boosting Machine (LGBM), and Linear
Regression (LR). These algorithms are
characterized by specific hyperparameters,
initially set to predefined values. The
appropriate configuration of these parameters
significantly influences the efficacy of
machine learning algorithms. To optimize
model performance, researchers can engage in
hyperparameter  tuning.  This  process
systematically adjusts these settings to
identify the most effective combination for the
given dataset and prediction task. By referring
to the studies of Probst et al., 2019,
Nematzadeh et al., 2022., the hyperparameters
of the algorithms used in this study for
tunning are presented as in Table 1.
Hyperparameter tuning is a problem that has a
long history. Grid search and random search
are two commonly used methods for coarse-
tuning the hyperparameters of machine
learning models. Random search is a
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fundamental improvement on grid search that
generally gives better results than grid search
(Yu Tong and Zhu Hong, 2020). On the other
hand, k-fold cross-validation is often utilized
to verify the generalization of the models
(Gorriz et al., 2024). K-fold cross-validation
is usually used with values K =5 or K = 10

(Pachouly et al., 2022). The value of K was
chosen as 5 for this work. Therefore, this
study uses the random search method with
5-fold cross-validation and RMSE as a loss
function to optimize the hyperparameters of

the models.

DATA COLLECTION AND PREPROCESSING

DATA COLLECTION: WATER LEVEL FROM YEAR 2000-2020
DATA SPLITTING 80% FOR TRAINING AND 20% FOR VALIDATION & TESTING
SELECTION OF INPUT VARIABLES: AUTOCORRELATION FUNCTION AND PARTIALCORRELATION
MAX-MIN NORMALIZATION

|

CONSTRUCTION OF PREDICTION MODELS

f MODEL 1: SUPPORT VECTOR REGRESSION (SVR)
FUNCTION: RBF, PARAMETERS: C, GAMMA AND EPSILON
MODEL 2: DECISION TREE (DT):
PARAMETERS: MAX_DEPTH, MIN_SAMPLES, MIN_SAMPLES_LEAF
MODEL 3: RANDOM FOREST (RF):
PARAMETERS: N_ESTIMATORS, MAX_DEPTH, MIN_SAMPLES_SPLIT
MODEL 4: LIGHT GRADIENT BOOSTING MACHINE REGRESSOR
PARAMETERS: N_ESTIMATORS, COLSAMPLE_BYTREE, REG_ALPHA, REG_LAMBDA

MODEL 5: LINEAR REGRESSION

VALIDATION OF MODELS FOR ONE-STEP PREDICTION:
STATISCALINDICATORS: NSE, RMSE AND MAE

e ANALYSING ~
T PREDICTVESKILS

TESTING THE PROPSED MODELS FOR MULTI-STEP
PREDICTION: NSE, RMSE AND MAE

DISUCCUSION AND RECOMMENDATION

Figure 3. The methodological procedure used in this study
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Table 1. Hyperparameters of the algorithms

Algorithm | Hyperparameter| Type |Lower|Upper
C numeric| -10 10
SVR gamma numeric| -10 10
epsilon numeric| 0 1
max_depth integer 1 30
DT min_samples_split| integer 1 60
min_samples_leaf| integer 1 60
n_estimators | integer 1 2000
RF max_depth integer 1 30
min_samples_split| integer 1 60
n_estimators | Integer 1 2000
LGBM |colsample bytree [numeric| 0 1
reg_alpha numeric| -10 10
reg lambda  |numeric| -10 10

(iii)) Model validation: after obtaining all
the model's hyperparameters, several
statistical indices, namely NSE, RMSE MAE,
R* and walk-forward validation strategy, were
used to evaluate the performance of the
prediction models.

(iv) Model testing: after the validation, the
proposed models (SVR, DT, RF, LGBM, and
LR) were operated in a recursive mode to
predict the water levels for one, three, five,
and seven days ahead and compare with the
observed values was undertaken.

3.1. Support vector regression

Support Vector Regression (SVR) is a
supervised learning algorithm initially
introduced by Vapnik et al. (1995) that
addresses classification and regression tasks.
The SVR process operates in two primary
stages: Initially, it employs a kernel function
to map the input data into an N-dimensional
feature space. Subsequently, it constructs a
hyperplane within this space to partition the
data. This hyperplane effectively segments the
space into distinct regions, each encompassing
a specific data category. The algorithm then
decomposes data by calculating the distance
between each data point in the N-dimensional
space and the constructed hyperplane. This
approach allows SVR to effectively model
complex relationships in the data while
maintaining good generalization capabilities
(Dehghani et al., 2020; Zhang et al., 2014).
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SVR uses statistical principles to define

boundaries  between  domains, reduce
generalization errors relative to training
errors, and improve model convergence

acceleration. Kernel functions are used to
convert data from two-dimensional space to
multidimensional ~ space.  This  spatial
transformation makes it possible to define
input-output relationships from the most
complex to the simplest (Essam et al., 2022).
The accuracy of the SVR algorithm can be
improved by adjusting parameters such as C
Gamma. C plays a role in removing
anomalous data points during SVR model
optimization. If this parameter has a
significant value, the optimization process
chooses a hyperplane that best separates all
the data points. The gamma parameter
determines the number of data points to
construct the separating hyperplane. With
small gamma values, data points far from the
median are used in the median calculation.

3.2. Decision Tree

The concept of decision trees has been
present for a long time in statistics and
machine learning. A decision tree is a
supervised learning model widely used for
classification and regression tasks. Unlike
other supervised learning models, DT does
not have a prediction equation; instead, we
seek a decision tree that predicts the training
data well and applies it to make predictions on
the test set. A decision tree consists of a series
of nodes connected by edges. In regression
problems, each node represents a variable and
a value of that variable. Each leaf node
represents the final predictions. When
inputting a new sample, the predicted value is
calculated by traversing the tree from the root
node to a leaf node and taking the prediction
value at that node. DT is advantageous for its
interpretability, yet it may be prone to
overfitting, especially when the tree is too
deep, or the number of leaf nodes is unlimited.
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3.3. Random Forest

The Random Forest algorithm, developed
by Leo Breiman in 2001, is a robust and
popular  supervised learning  method
applicable to classification and regression
tasks. This ensemble technique derives its
name from its structure, consisting of multiple
decision trees built on various subsets of the
original dataset, obtained through bootstrap
sampling. The algorithm operates in three
main phases:

e Subset Selection: The model randomly
selects a subset of data points and features
from the original dataset for each decision
tree. Specifically, it chooses n random records
and m features from a dataset containing k
total records.

e Tree Construction: The algorithm then
builds individual decision trees for these
randomly selected samples.

e Output Aggregation: Each decision tree
produces its prediction. The final output is
determined by combining these individual
predictions. Classification tasks are typically
done through majority voting, where the most
common prediction among all trees is
selected. For regression tasks, the average of
all three predictions is usually used.

This approach allows Random Forest to
leverage the strength of multiple decision
trees while mitigating individual tree biases,
resulting in a powerful and versatile machine-
learning model.

3.4. Light
Regressor

LightGBM (LGBM) is an advanced
machine learning algorithm developed by
Microsoft that falls under gradient boosting
models. Its core concept is derived from the
Gradient Tree Boosting (GTB) model,
introduced by Friedman et al. in 2000. LGBM
is renowned for its speed, distributed
processing capabilities, and high performance,
making it suitable for wvarious machine-

Gradient Boosting Machine

learning tasks, including ranking,
classification, and regression (Fan J. et al.,
2019).

The LGBM process begins with data
preparation, where the training dataset is
separated into input features and target values
for regression purposes. The algorithm
recommends using target values and metric
characteristics. Initial parameters such as
learning rate, tree count, maximum depth, and
feature fraction are set, which can be fine-
tuned to optimize performance. The model's
construction and training involve creating a
series of decision trees. Each tree is built
using a gradient-based optimization technique
to minimize loss functions. The model
iteratively expands its ensemble of trees,
adjusting predictions based on the loss
function's gradient. Once trained, the model
can be applied to new data points for
prediction. LGBM employs a weighted sum
approach to combine predictions from all trees
in the ensemble. These weights are
determined during training based on the loss
function's gradients.

LGBM distinguishes itself through its
innovative leaf-wise tree growth approach,
departing from the conventional level-wise
strategies employed by many algorithms. This
method enables the tree to develop along the
most promising paths, yielding a more
profound yet more streamlined structure
contributing to reduced training errors. LGBM
incorporates a histogram-based technique for
determining optimal splits to enhance
computational efficiency. This approach
discretizes continuous variables into bins
rather than processing individual values. The
result significantly accelerates the training
phase and reduces memory requirements.
These features collectively enable LGBM to
handle complex datasets with improved speed

and efficiency while maintaining high
predictive accuracy. By balancing
sophisticated modeling techniques with
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computational pragmatism, LGBM has
established itself as a powerful and versatile
tool in the machine learning domain.

3.5. Linear regression

The linear regression model is the simplest
and most basic statistical and predictive
modeling model. It helps provide a linear
relationship function between the predictors
and the predictand. For data time-series
predictive modeling, it can be described
mathematically by the following equation:

x(t+k+1) =By + Prx(t) + -+ Bex(t + k) (1)
where x(ttk+1) is the one-step-ahead
predictand at time step t+k+1, whose value
needs to be predicted; x(t) is the predictor
observed at time step t; k is the sequence
length; S; (i=0, k) are regression coefficients
that need to be estimated from historical
observations.

The merit of the LR model is that it is
inexpensive to develop, and its structure and
result are easily interpreted. The drawback is
that it does not consider the nonlinear
relationship between the predictand and
predictors and the possible interactions among
predictors. In addition, the assumption of a
Gaussian distribution of predictive errors is
not always valid.

3.6. Performance metrics

In this study, the performance of the water
level prediction model was evaluated using
Nash-Sutcliffe Efficiency (NSE), coefficient
of determination (R?), Root Mean Square
Error (RMSE), and Mean Absolute Error
(MAE). Previous studies have extensively
applied these statistical indices (Nguyen,
2023; Nguyen et al., 2023D).

NSE, R* and RMSE are considered
popular indexes for assessing the quality of
hydrological modeling. It measures the errors
between the simulation values of the models
and the observation values (Adnan et al.,
2020; Adnan et al., 2021; Liu et al., 2020; Xu
et al., 2022; Moriasi et al., 2015; Manh Van
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Le et al, 2023; Dam Duc Nguyen et al.,
2023).
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Where Y,°?S is the value of the observation
water level at time i; Y™ is the prediction
value at time 1; Y°bs is the mean value of the
observed water level; Y59 is the mean value
of the predicted water level; n is length of the
time series used for evaluation.

MAE measures the average of errors in a
set of predictions, regardless of their direction.
It is the sample mean of the absolute
difference between the prediction and the
actual number of observations, where all
differences are weighted equally (Kisi, 2010).
The formula for calculating the MAE is as
follows:

MAE — Zi=1|1/3:i_xl'| — Zi:lleil (5)

n
Where ¢; is the average of the absolute
errors; y; is the calculated/simulated water
level at time 1. x; is the actual water level
measured at time i.

4. Results
4.1. Selection of input variables

Regarding building models for forecasting
time series with seasonal variability,
determining sequence length (also called
seasonal lag) is a nontrivial task. As one may
infer from Fig. 2, bi-weekly lunar tidal cycles
influence the water levels at Cao Lanh station.
That means there are two spring and two neap
tides in a lunar month. To confirm the
existence of this seasonal cycle, plots of the
Autocorrelation function (ACF) and Partial
Autocorrelation function (PACF) of the three-
time series (HmaxCL, HminCL, HtbCL) were
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analyzed. Fig. 4 represents the plots of ACF
and PACF of daily maximum water level time
series at Cao Lanh gauging station. The ACF
plot shows that the time series has a seasonal
cycle with an approximate value of 15 days.
On the other hand, the PACF plot shows
the association between the observed value at
time t and the observed value at time t-k

Autocorrelation
1.00

0.754

0.50

0.25

-0.25

-0.50 1

-0.75 1

-1.00

0 5 10 15 20 25 30

(neglecting the observed values in between).
Theoretically, any value of k that has a value
of PACF lying outside of the significance
bounds (shaded area) should be considered in
a machine-learning model. However, the
PACEF value has the highest negative values at
a window of 15 days. Therefore, the value of
15 is chosen as the sequence length.

Partial Autocorrelation
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Figure 4. Plots of ACF (upper) and PACF (lower) for daily maximum water level time series

4.2. Validation of models for I-day-ahead
prediction

Table 2 presents the performance metrics
of the models proposed to predict the
1-day-ahead water level in the Cao Lanh
station. The results show that in the case of
HmaxCL, the SVR model outperforms the
other models with (NSE, Rz, RMSE, and
MAE) values of (0.967, 0.964, 6.58, 5). The
following models, arranged in decreasing
order of predictive skills, are LGBM (0.966,
0.962, 6.71, 5), LR (0.966, 0.960, 6.72, 5), DT
(0.955, 0.956, 7.69, 6), RF (0.953, 0.953,
7.86, 6). Concerning HminCL, a similar order
of model performances was obtained, except
that LGBM is as good as the SVR.
Concerning HtbCL, the SVR model retains its
first place, followed by LR, LGBM, DT, and
RF. In general, in all three cases (HmaxCL,
HminCL, and HtbCL), the SVR model
outperforms the other models for 1-day-ahead
water level prediction. LGBM and LR
perform equally well, and the predictive skill

of the DT model is a little better than that of
the worst, the RF model. If only MAE were
considered, the five models could be
separated into two groups concerning their
predictive skills. The first group consists of
SRV, LGBM, and LR models; the second
includes DT and RF models. Furthermore, the
predictive skills of all models concerning
three data types are highest with daily mean
water level (HtbCL). Meanwhile, the daily
minimum water level (HminCL) is the most
difficult to predict.

Figure 5 presents temporal patterns of the
1-day-ahead water level prediction results
using HmaxCL, HminCL, and HtbCL and the
corresponding observed values during the
validation phase. The results show that, in
general, the predicted water level time series
closely follows the observed water level time
series in the cases of HmaxCL, HminCL, and
HtbCL for all models but RF. However, the
predictive skills of all five models are not
much different, as indicated by the similarities
in the corresponding evaluation metrics in
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Table 1. Models' predictions well captured the  overfitted nor underfitted. Therefore, all five
lunar cycle of all observed water level time models are utilized in the testing phase to see
series. The validation results in Fig. 5 also if they can make accurate multi-step-ahead
reveal that all five models are neither predictions.

a) * Observed
240 2 — SVR
— DT
220 RF
LGBM

N
=3
S

R

vvaLer ievel (Ling
=
@
o

160 4
1401
120
N 5 N ~ N 5 N
pe < g g P <V &
& & & ey & & &
Time (day)
1004 b) * Observed
—— SVR
754 — DT
RF
E 04 LGBM
) R
T 254
>
L]
5 O
2
]
2 -5
_504
,75_
& C) > o & o S
&0 & &0 & & & o~
4 N o o o & o
»® » » » »® » »
Time (day)
1801 c) * Observed
—— SVR
160 — or
RF
-
£ 140/ LGBM
k) R
£ 1201
9
g
2 1004
[}
3
80 -
60 1

[N

s
%

~? o

)
o o ~ ~ A N
by N L% ha Y N i)
N o N ad N o Tl
I » » P I » »
Time (day)

Figure 5. The 1-day-ahead water level predictions for HmaxCL (a), HminCL (b),
and HtbCL (c) produced by SVR, DT, RF, LGBM, LR in the validation phase
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Table 2. The performance metrics of the proposed models in the validation phase

| NSE | R | RMSE | MAE
SVR model
HmaxCL 0.967 0.964 6.58 5
HminCL 0.977 0962 8.63 6
HtbCL 0.987 0.979 4.72 4
DT model
HmaxCL 0.955 0.956 7.69 6
HminCL 0.972 0.948 9.53 7
HtbCL 0.980 0.971 5.73 4
RF model
HmaxCL 0.953 0.953 7.86 6
HminCL 0.972 0.950 9.49 7
HtbCL 0.978 0.970 6.10 5
LGBM model
HmaxCL 0.966 0.962 6.71 5
HminCL 0.977 0.959 8.61 6
HtbCL 0.985 0.976 5.01 4
LR model
HmaxCL 0.966 0.960 6.72 5
HminCL 0.976 0.962 8.77 6
HtbCL 0.986 0.979 4.78 4

5. Testing of models for one, three, five,and times using independent testing data series.

seven-day-ahead predictions

After wvalidating the proposed models,

Table 3 presents the performance of the
models proposed to predict the water level in
the Cao Lanh station. In general, model

these models were used to predict the water  predictive accuracy decreases as the lead time
level for one, three, five, and seven days lead increases (Table 3 and Fig. 6).

Table 3. Performance of the models measured by MAE for one, three, five, and seven days lead times

Time series

| 1-day forecast | 3-day forecast | 5-day forecast | 7-day forecast

SVR model
HmaxCL 5 8 11 14
HminCL 7 10 14 17
HtbCL 4 6 9 11
DT model
HmaxCL 6 8 10 11
HminCL 8 11 13 16
HtbCL 5 8 11 13
RF model
HmaxCL 6 8 12 14
HminCL 8 11 14 17
HtbCL 5 7 10 12
LGBM model
HmaxCL 5 8 12 14
HminCL 7 10 15 17
HtbCL 4 6 9 12
LR model
HmaxCL 5 8 12 14
HminCL 7 9 13 16
HtbCL 4 6 9 11
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Figure 6. Comparisons of performance metrics of the five prediction models with different lead times

Particularly, for the SVR model, in the case
of HmaxCL, the value of MAE increases from
5 in 1-day-ahead prediction to 8, 11, and 14 for
3-day-ahead, 5-day-ahead, and 7-day-ahead
predictions, respectively. For HminCL, the
value of MAE increases from 7 to 10, 14, and
17 for 1-day-ahead, 3-day-ahead, 5-day-ahead,
and 7-day-ahead predictions, respectively; and
increases from 4 in 1-day-ahead prediction to
6, 9 and 11 for HtbCL for 3-day-ahead,
5-day-ahead and 7-day-ahead predictions,
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respectively. Concerning the 1-day-ahead and
3-day-ahead predictive skills results similar to
those of the corresponding ones in the
validation phase were obtained. In other words,
two models can be distinguished: the first
group consists of SRV, LGBM, and LR
models, and the second group includes DT and
RF models. However, this picture becomes
different when longer lead time predictions
(i.e., 5- and 7-day lead times) are considered.
The DT outperforms the other models in
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predicting HmaxCL and HminCL. In contrast,
for predicting HtbCL, the SRV, LR, and
LGBM retain their first places. Concerning
predictability, the daily minimum water level
remains the most difficult to predict, and the
daily mean water level is the easiest.

Figure 7 visually presents the temporal
dynamics of the 7-day-ahead water level
predictions for HmaxCL, HminCL, and
HtbCL using the SVR, DT, RF, LGBM, and
LR models. The forecasted water level using

the DT model closely follows the observed
water level in the three use cases of HmaxCL,
HminCL, and HtbCL. This is the best model
to reproduce the dynamic pattern of the
observed water levels, especially for the peaks
and troughs. That is the reason why the
predictive skill of the DT model is highest
concerning daily maximum and minimum
water level predictions with longer lead times

(i.e., 5 and 7 days ahead).
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Figure 7. The 7-day-ahead water level predictions for HmaxCL (a), HminCL (b),
and HtbCL (c) produced by SVR, DT, RF, LGBM, LR in the testing phase

481



Vietnam Journal of Earth Sciences, 46(4), 468-488

6. Discussions

6.1. Variations in machine learning
performance across different study regions

Machine learning (ML) application in
water level forecasting has been extensively
studied across various regions, revealing
significant differences in model performance
and optimal input selection for each case
study. Our research on the Tien River in the
Mekong Delta identified Support Vector
Regression (SVR) as the most suitable model.
However, other studies have yielded different
results: a combination of statistical ML and
ARIMA models proved most effective for the
Red River (Thi-Thu-Hong Phan and Xuan
Hoai Nguyen 2020)., multiple linear
regression performed best for Lake Erie (Qi
Wang and Song Wang, 2020), Gaussian
Process Regression showed superior results
for the Durian Tunggal River (Ahmed et al.,
2022), and Random Forest was the preferred
model for the Upo Wetland in South Korea
(Choi et al., 2019). These diverse outcomes
underscore the importance of conducting
region-specific studies to determine the most
appropriate model for each area. The
variability in results demonstrates that no
single ML model is universally optimal for all
regions, highlighting the necessity of tailored
approaches that account for local hydrological
conditions and data characteristics. This
emphasizes the critical need for comparative
analysis when developing water level
prediction systems for new areas rather than
assuming that a model successful in one
region performs equally well in another.

6.2. Data quality/quantity, overfitting issue

Predicting water level is considered one of
the complicated tasks in tidal rivers where the
complicated topography, hydrodynamics, and
human interventions co-exist. Hydrodynamic
modeling often requires high-quality, detailed
field observed data (Kong et al., 2023; Li et
al., 2023; Siddique-E-Akbor et al., 2011).
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However, hydrological station networks have
been poorly distributed, particularly in
developing countries like Vietnam. Therefore,
statistical models and machine learning have
received attention from the scientific
community. This study developed and
compared statistical and machine learning
models to predict the water level in the Cao
Lanh station in the Tien River. This study's
results are considered an alternative tool to
support decision-makers or managers in
distributing water resources to develop the
economy.

This study used RMSE as the function
objective for SVR, DT, LGBM, and LR or the
machine learning model in general. Therefore,
considering the overfitting problem is
necessary to improve the prediction model's
quality (Nguyen et al., 2020; Van Phong et al.,
2020). We used several techniques, such as
adjusting the model parameters and limiting
the search boundary to reduce its effects.
Several studies have pointed out that
including more training data, such as rainfall,
evaporation, and river flow, can reduce the
effects of the overfitting problem. However,
collecting enough training data is a big
challenge for the hydrological field because
the available data is still limited (Nguyen
et al., 2020).

6.3. Model complexity

Model  complexity is a  critical
consideration when data availability is
limited. Utilizing overly complex models
heightens the risk of overfitting. This issue
arises when a model captures not only the
underlying patterns but also the biases present
in the training dataset. Therefore, these
models cannot be generalized to new datasets.
In addition, the use of models that are too
simple leads to the problem of underfitting.
This problem occurs when the models are too
simple and cannot learn the entire training
data. Therefore, model selection is essential
and challenges the scientific community
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(Tran and Kim, 2022). This study tried five
machine learning and statistical models: SVR,
DT, LGBM, RF, and LR. SVM was justified
as a more appropriate algorithm than the RF,
DT, LGBM, and LR model. Besides the
advantage of being efficient in high
dimensions, SVR is also efficient in cases
where the dimension of the space is larger
than the number of training samples.

Moreover, for the decision, SVM does not
use all the training samples, only a part (the
support  vectors). Consequently, these
algorithms require less memory (Gu et al.,
2015; Ma et al., 2003). The RF model was
second class because RF can -effectively
handle regression and classification tasks with
high accuracy. Known for its ability to
estimate missing values, this method
maintains good accuracy even in incomplete
data. Additionally, it facilitates the assessment
of the importance or contribution of variables
to the model, making the analysis more
intuitive and informative (Ao et al., 2019;
Langsetmo et al., 2023). The DT model was
third class because DT facilitates decision-
making by adopting a structured and targeted
approach, thus representing a primary
advantage of this method.

Furthermore, Building a decision tree via
DT is a quick process that requires few
resources, making this tool particularly
effective for data analysis (Almuallim et al.,
2002;  Quinlan, 1987). LightGBM is
considered more efficient than other gradient-
boosting algorithms on decision trees.
Because it generates more complex decision
trees through a leaf-split rather than a level-
split approach, a crucial factor in achieving
better accuracy, this method can sometimes
result in overfitting. Therefore, in the
proposed model, LightGBM was ranked
fourth (Li et al., 2024; Wang et al., 2021). The
accuracy of the LR model is less than that of
the other two models because the LR method
directly uses previously observed water level

data to train the model and forecast water
levels for the following days. Therefore, this
method is limited in solving nonlinear water-
level forecasting problems (Jadhav and
Channe, 2016).

6.4. Future study for climate change and
human activities

This study successfully predicted the water
level in the Cao Lanh Station in the Dong
Thap province in Vietnam. In the context of
climate change and changing human activities
such as dam construction, machine
learning/statistical models can effectively
predict these contexts. Their prediction skills
can be improved if data related to climate
change and changes in human activities are
sufficient. However, data collection in
developing countries, particularly Vietnam, is
complicated due to data availability and
sharing policies. Moreover, one of the
significant ~ challenges using  machine
learning/model statistics is the extrapolation
problem, i.e., the models cannot predict the
water level outside of the training data.
Various studies have pointed out that
integrating machine learning/statistical and
optimization models is crucial and widely
applied to solve these problems (Nguyen et
al.,, 2023a). In future research, we integrate
the individual models with the advanced
optimization algorithms to improve the skill
of water level prediction.

7. Conclusions

This study presents a comprehensive
comparative analysis of various machine
learning (ML) models for water level
forecasting in the Tien River region of the
Mekong Delta. The research yielded several
significant findings. The proposed models -
Support Vector Regression (SVR), Random
Forest (RF), Decision Tree (DT), Light
Gradient Boosting Machine (LGBM), and
Logistic Regression (LR) - demonstrated
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successful water level predictions for three,
five, and seven days in advance. Among
these, the SVR model -consistently
outperformed the others across all scenarios,
followed by RF, DT, and LGBM.

The study underscores the critical
importance of input variable selection in water
level prediction. Results indicate that
HmaxCL (maximum water level) yields the
most accurate predictions across all five
models, followed by HtbCL (average water
level) and HminCL (minimum water level).
This case study highlights the significant
potential of machine learning approaches in
water level prediction. These methods are
valuable tools for decision-makers and water
resource managers, particularly in climate
change and wupstream dam construction.
Future studies should consider incorporating
additional input variables, such as rainfall and
evaporation data, to enhance prediction
accuracy.

In conclusion, this research not only
demonstrates the effectiveness of machine
learning in water level forecasting but
emphasizes the importance of model selection
and input variable choice. The findings
provide a solid foundation for improved water
resource management in the Mekong Delta
region and offer promising avenues for future
research in hydrological forecasting.
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