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ABSTRACT

Monitoring chlorophyll-a concentration (Chla) in inland waters is vital for environmental assessment. This study
develops an empirical multivariate linear regression (MLR) model to directly estimate Chla in Quan Son Reservoir
using Sentinel-2B (S2B) Level 2A images. Regression analysis of a 68-point in-sifu Chla dataset measured in Quan
Son Reservoir between 2021 and 2023, in conjunction with the corresponding S2B reflectance data, reveals a
significant correlation between Chla and a combination of the blue (B2), green (B3), and red (B4) bands (coefficient
of determination, R? = 0.95). The Chla estimation model is validated using a 30-point in-situ dataset collected on
various dates (R? = 0.87; the root-mean-squared error RMSE < 5%). Subsequently, the model is applied to ten S2B
images acquired from 2021 to 2023, revealing Chla's spatio-temporal distribution across the reservoir. Two key trends
emerge: (1) Chla is lower during winter (November and December) than in summer and early autumn (July and
September), and (2) The distribution of Chla undergoes noticeable spatial changes, particularly in July, with elevated
levels observed in areas characterized by tourist hotspots. This approach shows promise for monitoring Chla in
similar inland waters.
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1. Introduction Kasprzak et al., 2008) and to evaluate water
quality (USEPA, 2009; UNEP, 2014).

In recent decades, satellite remote sensing
has emerged as a powerful tool, providing
valuable insights into monitoring water
quality in lakes and reservoirs. Among the
numerous applications, the estimation of Chla
stands out as one of the most extensively

The concentration of chlorophyll-a (Chla)
serves as a vital indicator for assessing the
abundance and quality of phytoplankton
biomass in aquatic ecosystems (Ha et al,
2017; Chen et al., 2017). It provides valuable
insights into water quality, biophysical
COIldlth.nS,. ar.ld notably, the level of researched and commonly employed remote
eutrophication in a water body. Consequently, sensing techniques, especially for assessing
Chla is widely used to assess the trophic status aquatic ecosystems and closely tracking the
of lakes and reservoirs (Carlson, 1977; phenomenon of eutrophication (Schalles,
2006). Eminent scientists from diverse fields
*Corresponding author, Email: hantt_kdc@vnu.edu.vn have made Signiﬁcant contributions to the
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endeavor of extracting Chla information from
remote sensing satellites. Their efforts have
spanned a wide range of environmental
assessments, including the study of oceanic
waters (Tehrani et al., 2021; Wu et al., 2020;
Le et al., 2013a), coastal zones and estuarine
regions (Le et al., 2013b; Vilas et al., 2011;
Loisel et al., 2017), as well as inland lakes
(Liu et al., 2021; Chu et al., 2021; Werther et
al., 2022). Despite the critical importance of
Chla monitoring in inland lakes through
remote sensing, such applications have been
hindered by numerous challenges, including
the scientific complexities of retrieving
water's  physical and  biogeochemical
properties and the limitations imposed by
sensor specifications (Palmer et al., 2015).
Currently, various optical satellite imaging
systems have been utilized for estimating
Chla, including the Coastal Zone Colour
Scanner (CZCS) (Conkright et al., 2003), Sea-
viewing Wide Field Sensor (SeaWiFS)
(Gholizadeh et al., 2016), Medium Resolution
Imaging Spectrometer (MERIS) (Moses et al.,
2012; Augusto-Silva et al., 2014), Moderate
Resolution  Imaging Spectroradiometer
(MODIS) (Ogashawara et al., 2014; Li et al.,
2019), Geostationary Ocean Colour Imager
(GOCI) (Kim et al., 2016), Ocean and Land
Colour Instrument (OLCI) (Werther et al.,
2021; Kravitz et al., 2020), Landsat 8 OLI
(Kuhn et al., 2019; Pu et al., 2019; Cao et al.,
2020), and Sentinel-2 (S2) (Sent et al., 2021;
Ogashawara et al., 2021; Niroumand-Jadidi et
al., 2021). Among the numerous optical
satellite datasets available, Sentinel-2B MSI
(S2B) data have garnered recognition as a
promising tool for Chla retrieval in inland
waters (Niroumand-Jadidi et al., 2021;
Perrone et al.,, 2021). The selection of this
sensor is primarily motivated by its temporal
coverage (10 days), spatial resolution (up to
10 meters), and easy accessibility.
Additionally, S2B's spectral bands span all
major color segments within the visible
spectrum, which has a proven track record in

providing high-quality science products for
monitoring coastal and inland waters,
particularly for Chla retrievals in turbid waters
(Pahlevan et al., 2017). Particularly for
monitoring  water quality in  small
waterbodies, the optimal spatial and spectral
resolution of S2B demonstrates its high
capacity.

Various algorithms have been proposed to
quantify Chla using empirical, analytical, and
machine learning approaches. While machine
learning models require a large dataset and are
often applied for monitoring Chla in multiple
or large waterbodies (Cao et al., 2020), they
may not be appropriate for estimating Chla in
small lakes with limited datasets. Empirical
algorithms, though straightforward, are
sensitive to local conditions, which limits
their generalizability. On the other hand,
analytical algorithms offer scalability but
require accurate optical parameter estimates,
making them less effective when applied in
inland turbid waters (Jiang et al., 2019; Liu et
al., 2020). In other words, analytical models
demonstrate proficiency in well-defined
waters; however, for complex inland waters
with varying optical properties (Palmer et al.,
2015), empirical approaches often perform
better in  capturing Chla  patterns.
Consequently, an empirical algorithm is
suitable for monitoring Chla in reservoirs
where water optical features are complex due
to multiple influencing factors from river
discharges and surrounding human activities.

Empirical algorithms rely on statistical
relationships between remotely sensed data
and in-situ  Chla, often employing
straightforward mathematical functions of the
band values of band ratios. While no single-
band algorithm has consistently demonstrated
superior performance in quantifying Chla in
inland waters (Moore et al., 2014; Ylostalo et
al.,, 2014; Kim et al., 2022), various multi-
band ratios have been proposed, including the
two-band (Mishra and Mishra, 2012; Vinh et
al., 2019), three-band (Gitelson et al., 2011),
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and four-band ratio algorithms (Le et al.,
2013b). These algorithms typically utilize the
difference between the absorption peak of
Chla at the red band (675 nm) and other
bands, helping to mitigate the influence of
other water constituents on Chla estimation.
However, band-ratio algorithms perform well
in coastal waters but exhibit uncertainties
when applied to highly turbid water bodies
(Dall'Olmo and Gitelson, 2005). Furthermore,
recent literature reviews have highlighted
uncertainties  associated ~ with  current
atmospheric  corrections for S2 data,
particularly regarding the derived surface
reflectance, R,s(4) in near-infrared (NIR)
bands (Warren et al., 2019; Pahlevan et al.,
2021). Consequently, traditional band-ratio
algorithms, which often rely on NIR band
reflectances (Gitelson et al., 2011), may not be
optimal for accurately estimating Chla from
S2 data. Therefore, there is a pressing need to
develop new algorithmic approaches to
accurately estimate Chla in small and complex
inland waters using S2 data to fully leverage
the potential of these datasets for monitoring
water quality.

To address the challenges stemming from
uncertainties in atmospheric correction and to
develop a universal and optimized model for
Chla based on lake datasets, several studies
have employed the multivariate linear
regression (MLR) approach (Cho et al., 2009;
Matus-Hernandez et al.,, 2018; Lins et al.,
2018; Ouma et al., 2020; Franklin et al., 2020;
Zhang et al., 2023). These investigations
highlight MLR as a potent statistical
technique, providing a flexible framework for
elucidating the relationships between Chla
and satellite-derived reflectances while
considering the influence of multiple
independent variables. Noteworthy is the
effectiveness of MLR in estimating Chla from
S2 level 2 data, consistently achieving high
accuracy with R? values exceeding 0.7 (Ouma
et al., 2020; Barraza-Moraga et al., 2022;
Latwal et al., 2023). These findings strongly
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indicate that the MLR algorithm holds
promise for accurately estimating Chla in the
Quan Son Reservoir using S2B data.

This study aims to develop a Chla
estimation model for Quan Son Reservoir in
Hanoi, Vietnam, using S2B imagery and the
MLR approach. To achieve this, a dataset
comprising 68 in-situ Chla measurements was
cross-regressed with R.g(A) values extracted
from five different S2B scenes captured at
various times over the reservoir. After
validation using another 30-point dataset, the
model was applied to ten cloud-free scenes,
enabling the exploration of Chla's spatial-
temporal dynamics from July 2021 to July
2023. In the study, we also further evaluated
the performance of various atmospheric
corrections for S2B images, including the
Image correction for atmospheric effects
(ICOR), dark object subtraction (DOS), and
Sentinel 2 Correction (Sen2Cor) using
in-situ water surface reflectances (N = 18)
obtained on November 14, 2021.

2. Materials and Methods
2.1. Study area

Quan Son Reservoir, located in the Hop
Tien communes of My Duc district, southern
Hanoi City (Fig. 1), is an artificial waterbody
established in 1960. Its primary purposes
include irrigation, aquaculture, and regional
ecological enhancement. The reservoir spans
approximately 80 hectares, averaging 2 to 4
meters deep. Its operation involves storing
water during the rainy season (April to
September) and releasing it in the dry season
(October to March of the subsequent year).
Multiple water sources contribute to the
reservoir, including the Cau Duong Stream,
local precipitation, and smaller streams from
the surrounding limestone mountains.
Annually, Quan Son Reservoir provides 180
tons of fish and other aquatic products
(Nguyen et al., 2010).
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With its captivating and diverse landscape,
Quan Son Reservoir has been designated as an
ecotourism destination (Ha Tay Provincial
Committee, 2008). Consequently, a tourist
area has been developed, featuring restaurants
and other tourist amenities, situated in the
southeastern corner of the reservoir (Fig. 1).
Additionally, several rest stops and bird-
watching spots have been established on small
islands within the reservoir to enhance
tourism experiences. During the summer, the
lotus ponds in the southern part of the
reservoir bloom with vibrant flowers,
attracting a flurry of tourist activities.
According to statistical data from 2015, the
number of visitors to Quan Son Reservoir
reached approximately 10,000, nearly
doubling the figures from 2007. However,
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from the end of 2019 to mid-2022, tourism
and service activities surrounding the
reservoir were interrupted due to the impact of
the COVID-19 epidemic. Fortunately, by the
end of 2022, these activities resumed and
flourished again.

It's worth noting that food service
restaurants along the reservoir often discharge
wastewater directly into the reservoir, posing
a direct threat to water quality. Moreover,
along the southern shore of the reservoir, a
residential community thrives, engaging in
livelihood activities such as livestock raising.
Unfortunately, domestic wastewater from
these households is also directly discharged
into the reservoir, further exacerbating
concerns about  water quality and
environmental health.
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Figure 1. Location of Quan Son Reservoir in Hanoi city and water sampling points over the reservoir water
on five surveyed dates

Positioned at the mountain base and distant
from residential and agricultural zones,
natural hydrological processes primarily

influence the reservoir's water quality.
However, the onset of tourism and
aquacultural activities in the area has also
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affected the water quality (Quan Son Fisheries
and Tourism Joint Stock Company, 2013).
Based on in-situ data, Thao et al. (2023)
identified Quan Son Reservoir as a eutrophic
water body, consistently exhibiting a Carlson's
Trophic State Index (TSI) value exceeding 60
at all measurement points. High TSI values
were particularly noticeable in areas near
tourism service facilities, signifying the
impact of human activities on the reservoir's
trophic level.

2.2. Water sampling and measurement

In-situ data were collected at 98 points across
the entire reservoir's surface during five field
campaigns conducted on the following dates:
November 14, 2021; September 20, 2022;
December 19, 2022; May 18, 2023; and July 07,
2023. These points were accurately located
using the Garmin eTrex Summit HC handheld
Global Positioning System (GPS), as illustrated
in Figure 1. The fieldwork dates were chosen to
align with S2B satellite overpasses during
periods of low cloud cover. Data collection
occurred within one hour before and after the
S2B satellite acquired the local scene.

At each designated point, water samples
were collected at a depth of 30 cm using a Van
Dorn water sampler and stored in 1-L dark-
colored bottles. The water samples underwent
analysis in the laboratory to determine Chla,
following the standard method coded SMEWW
10200H: 2012 of the American Public Health
Association (APHA, 1998). This involved
filtering the water samples through a 0.45 um
pore size, 47 mm diameter Whatman Cellulose
Nitrate filter to capture all algal cells in the
water. Subsequently, the material retained on the
filter paper was extracted using 90% acetone.
Chla in the extracts was then determined
spectrophotometrically using a DR 6000 UV-
VIS Laboratory Spectrophotometer (Hach,
USA) equipped with a 1 nm spectral bandwidth
and optically matched 13 mm diameter cuvettes.
The Chla was calculated using the following
equations:
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CoxVy
Chl,(ug/L) = — (1)
o
where V] is the extract volume in litter (L), V,
is the sample volume in cubic meters (m’), C,
is Chla of pigment in the extract, which was
calculated by the following equation:
C, =11.85Dggs — 1.54 - Dgyy @)
— 0.08 - Dg3p
where Dgga, Des7, Do3o are optical density at
wavelengths 664, 647, and 630, respectively.
Above-water surface reflectance
measurements were conducted at 18 water-
sampled sites on November 14, 2021, across
Quan Son Reservoir using the GERI1500
spectroradiometer (Spectra Vista Corporation,
New York, U.S), following the protocol
method (Mueller et al, 2003). In-situ
reflectance at each measurement point was
calculated using the following equation:
Rw(/l) — Rp . (Lw(/l) r Lsky(’D) (3)
T Ly (1)
where R, represents the reflectance of the
standard reference panel, L, (1) signifies
water-leaving radiance, Lg,, (1) represents the
radiance of the sky measured sequentially at
40-45 degrees from the nadir and zenith,
respectively, and 135 degrees from the Sun in
azimuth (Mobley, 1999), L,(1) corresponds to
the radiance of the reference panel, and 7 is
the air-water interface reflectance, with a
value of 0.022 for the calm weather (Tang et
al. 2020) as the condition at the reservoir on
November 14, 2021. The unit of R,, (1) is sr’".
The in situ Ryg(A) then was obtained by
multiple R, (1) by pi (Lehmann et al., 2023).
Concurrently with water sampling, water
clarity was assessed using a standard 20-cm
plastic Secchi disk (Wildco, Yulee, FL, U.S).
The Secchi depth (SD) data served as a
reference in the field to select sampling points
while mitigating the effects of the reservoir
bottom on water reflectance data.

2.3. Sentinel-2B image processing

Concurrently with the field observations, we
utilized R.g(A), the water-leaving reflectance,
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derived from five S2B level 2 images, which
were acquired on the same dates as the water
measurements to calibrate and validate the Chla
estimation model. The image's detailed
information is provided in Table 1. All these five
images were directly downloaded from the
Copernicus  Open Access Hub  website
(https://scihub.copernicus.eu/dhus/#/home). The
S2 level 2 provides bottom-of-atmosphere
(BOA) reflectance, also known as surface
reflectance, using the Sentinel-2 Correction
(Sen2Cor) atmosphere correction processor. The
Sen2Cor performs comprehensive atmospheric,

terrain, and cirrus corrections on the Top-Of-
Atmosphere Level-1C data to generate a Level-
2A BOA product (Louis et al., 2016; Pflug et
al., 2020). It is worth noting that while
Sen2Cor was initially designed for land
applications, it demonstrated reasonable
accuracy for water retrievals in inland waters

(Al-Kharusi et al, 2020; Grendait¢ and
StoneviCius, 2022; Martins et al.,, 2017).
However, further evaluation of the

performance of this product for water retrievals
in typical inland waters, such as highly
eutrophic and turbid waters, is still warranted.

Table 1. Information of S2B Level-2A images used in this study

No. Scene Identifier Acquisition Date
1 S2B_ MSIL2A 20210717T032539 N0500 R018 T48QWH_20230225T022304  [uly 17. 2021
2 S2B MSIL2A 20211114T033009 N0301 R018 T48QWH 20211114T054001  [November 14 2021
3 S2B MSIL2A 20211204T033119 N9999 R0O18 T48QWH 20221116T072100  |December 4 2021
4 S2B MSIL2A 20220403T032539 N0400 R0O18 T48QWH 20220403T080206  |April 3 2022
5 S2B_MSIL2A 20220503T032529 N0400 R018 T48QWH_20220503T064952 May 3 2022
6 S2B_MSIL2A 20220702T032519 N0400 R018 T48QWH_20220702T064119  July 2 2022
7 S2B MSIL2A 20220920T032519 N0400 R018 T48QWH _20220920T063937  [September 20. 2022
8 S2B MSIL2A 20221219T033139 N0509 R018 T48QWH 20221219T060245 |December 19 2022
9 S2B_MSIL2A 20230518T032519 N0509 R018 T483QWH_20230518T075517 May 18 2023
10 S2B_MSIL2A 20230707T032519 N0509 R018 T48QWH_20230707T064529  |July 7 2023

Additionally, five other cloud-free images
acquired between July 2021 and July 2023 were
employed to detect the temporal variations of
Chla across the reservoir. Accordingly, the BOA
reflectance of water pixels across the reservoir
in the images was then extracted to develop the
Chla estimation model and evaluate the
performance of various atmospheric correction
methods. In extracting the lake water surface,
pixels near the shore are excluded because the
reflectance spectrum of these pixels is affected
by the bottom surface, owing to the shallow
water level along the shore and the composition
of the shore material.

In this study, two other atmospheric
correction methods, namely iCOR and DOS,
were further evaluated and compared with the
output of the Sen2Cor processors. iCOR is a
scene-generic atmospheric correction approach
designed for various environments, including
land, coastal, inland, or transitional waters (De

Keukelaere et al., 2018; Sterckx et al., 2015).
The iCOR atmospheric correction process
involves four main steps (De Keukelaere et al.,
2018): All pixels with land and water values are
identified and separated. Next, the Aerosol
Optical Thickness (AOT) values are extracted
from the soil pixels based on an improved
version of the method developed by Guanter
(2007). Then, the SIMEC method is utilized to
implement the adjacency correction approach
for water pixels and fixed background land
(Sterckx et al., 2015). Finally, the radiative
transfer equation is solved to obtain the surface
reflectance. iCOR employs the MODTRANS
Look-Up Table (LUT) for performing the
atmospheric  correction process mentioned
above (Berk et al., 2006). In this study, S2B
images were processed using default parameters
with iCOR (v.0.3) through SNAP software.

DOS (Chavez 1988) is an image-based
atmospheric correction method that operates
under the assumption that particular objects
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were in complete shadow during image
acquisition and, thus should exhibit zero
reflectance. However, due to atmospheric
scattering and absorption, the imaging system
records a non-zero digital number (DN) value
for these dark objects. This constant non-zero
DN value, DN haze, can be identified from
the image histogram and subtracted from all
bands. This study applied DOS correction to
L1C images using the atmospheric correction
module in the QGIS 3.28 software.

2.4. Multivariate Linear Regression Approach

In this study, we employed a MLR approach
to construct a model for estimating Chla. The
model assumes that the relationship between the
dependent variable (Chla) and the independent
variables (R.s(A)s derived from five S2B) is
linear. This model leveraged both in-sifu Chla
data and the spectral reflectance values from
S2B Level-2A bands 2 through 8A, as illustrated
in equation (4). To establish the model, we
incorporated all reflectance values from the
RGB bands (2, 3, and 4), the red-edge bands (5,
6, and 7), as well as the NIR bands (8 and 8A)
as predictor variables. Subsequently, non-
significant predictor bands with p > 0.05 were
systematically excluded from the model to

enhance its predictive accuracy  and
effectiveness.
Chla (pg/L) = ay + a;B; + a;3B,
+ a3Bs; + - 4)
+a,B, + ¢

Where Chla is the dependent variable,
a are coefficients related to the independent or
predictor variables (which in this case are the
reflectivity of the bands (B)), and ¢ is the
residual error associated with the regression.

The model underwent calibration using a
68-point dataset collected on November 14,
2021, September 20, 2022, and July 7, 2023,
followed by validation using the remaining
30-point dataset obtained on December 19,
2022, and May 18, 2023. The optimal model
selection hinged on several critical criteria,
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including the coefficient of determination (R°),
the F-test, and p-values. Specifically, a
threshold of R* > 0.7 was set, indicating that at
least 70% of the dataset's residuals should
conform to the linear relationship established
by the model. The model's fit was rigorously
tested at a significance level of p = 0.05, with a
removal significance level of 0.10. The F-test
was conducted at a 95% confidence level to
assess the model's acceptance. Additionally,
validation was performed using the root mean
square error (RMSE) indicator.

3. Results
3.1. In-situ data

Table 2 displays the in-situ data collected
at Quan Son Reservoir on five distinct
measurement dates. Accordingly, the Chla
exhibited substantial variability across the
surveyed dates, ranging from 22.6 pg/L on
November 14, 2021, to 63.2 pnpg/L on
September 20, 2022. The mean Chla were
28.8 ug/L (November 14, 2021), 58.5 pg/L
(September 20, 2022), 43.5 pg/L (December
19, 2022), 45.8 pg/L (May 18, 2023), and
41.5 pg/L (July 7, 2023). In contrast, in-situ
SD measurements at 98 points showed
insignificant variation, ranging from 0.45 m to
0.76 m, with a mean value of 0.64 m
(November 14, 2021), 0.57 m (September 20,
2022), 0.62 m (December 19, 2022), 0.6 m
(May 18, 2023), and 0.58 m (July 7, 2023).
The five-time measurements revealed no
significant correlation between Chla and SD
(the Pearson correlation coefficient, », ranged
from 0.33 to 0.44). Chla is relatively
correlated with SD (r = —0.44) in the entire
dataset, suggesting that factors other than
algal density contribute to reducing water
clarity within Quan Son Reservoir. The
variation of Chla in different survey months in
Table 2 aligns with the understanding that
phytoplankton growth is influenced by factors
such as water temperature, nutrient
concentrations and forms, and photosynthetic
conditions (Cloern et al., 2014). As a result,
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the Chla content in Quan Son Reservoir and in
water bodies worldwide (Adams et al., 2021;

Brown et al.,, 1998), fluctuates over time,
requiring continuous monitoring.

Table 2. Descriptive statistics of water parameters obtained in five surveys

Date Parameter slz::;[?lfe Minimum Maximum Mean IS)E&:}I;:;L‘?] r
14 Nov. 2021% Cllslia)(élrf};L) 12 é.zsg 0%796 ﬁ.géi 0%657 033
20 Sep. 2022* Chslla)((P:ﬁ;L) ;g 315 (6)36? (5)85§ 02.675 040
19 Dec. 20220 |- 83— 0%
May 18 2023%* Chsl]a)(gﬁ;L) 2 05e ot 050 0o 042
e Y S - 5 B

(*): data belongs to the calibration dataset. (**) are components of the validation dataset

The measured water reflectance, R, (1),
spanning 400-900 nm, and recorded at 18
sites across Quan Son Reservoir (Fig. 1) on
November 14, 2021, is depicted in Fig. 2.
These spectra curves reveal three distinct
peaks: one centered around 555 nm in the
green region and two in the NIR region at
approximately 710 nm and 810 nm. The first
two peaks in the reflectance spectra, occurring
at 555 nm and 710 nm wavelengths, are
associated with the absorption of Chla in the
water (Rundquist et al.,, 1996). The peak at
810 nm is linked to variations in suspended
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matter within the water (Chen et al., 1992; Ma
et al, 2007). An additional small peak,
appearing near 650 nm in the red region, is
considered to be associated with phycocyanin
fluorescence (Hunter et al., 2008). Two
notable troughs are observed clearly between
these peaks, around 625 nm and 675 nm,
respectively. These spectral features align
with the typical characteristics of eutrophic
waters and closely resemble previously
reported spectra (Gitelson, 1992; Bennet and
Bogorad, 1973; Schalles et al., 1998; Ma and
Dai, 2005).
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Figure 2. Reflectance spectra curves of water sampling points over Quan Son Reservoir measured on
November 14, 2021, overlaid S2B visible to NIR bands (band 1: B1 to 8A: B8A) locations
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3.2. Performance of Sentinel 2 Level 2 data

R.s(L) at these 18 measured points, derived
from TOA reflectances (Fig. 3b) and processed

The in-situ water reflectance spectra shown
in Fig. 2 were transformed into S2B band
reflectance spectra using the averaging spectral
band response function (Barsi et al., 2014), as
presented in Fig. 3a. In this transformation, the
reflectance value at each S2B band is computed
by averaging the R q(L)s values within the
spectral range of the band. Figure 3b displays
the top-of-atmosphere (TOA) reflectances at 18
measured points extracted from the S2B image
acquired on November 14, 2021. It is evident
that TOA reflectance is significantly higher and
exhibits a different variation across the spectral
bands than the water surface reflectance in
Fig. 3a. The satellite-based surface reflectances,

using DOS, ICOR, and Sen2Cor atmospheric
correction methods, are depicted in Fig. 3c-e,
respectively. Notably, all three atmospheric
correction methods yield higher R,s(A) values
in the blue (band 1) and NIR bands (bands 6 to
8A) compared to in-situ Rpg(A). It's worth
highlighting that the variations in satellite-based
R;s(A) values in the NIR bands are non-
uniform and distinctly different from the
variations in in-situ R.g(A) values. In other
words, all three atmospheric correction methods
exhibit less accuracy in the NIR bands. This
observation aligns with the findings of Pahlevan

et al. (2021) and Pereira-Sandoval et al. (2019).
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Figure 3. The in-situ R () (a) compared to those derived from the S2B image (November 14, 2021)
level 1 and level 2 using different atmospheric corrections: iCOR (c), DOS (d), and Sen2Cor (e)

To gain a comprehensive understanding
of the differences between band-based R.s(\)
and in-situ R g(A), cross-comparisons were
conducted and presented in Fig. 4. The
computed metrics, including the correlation
coefficient () and RMSE, reveal significant
overestimations of R.¢(A) in the NIR bands by
the DOS, iCOR, and Sen2Cor methods (Fig.
4f-1). However, on average, these methods
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yield reasonable R.s(A) in bands 3, 4, and 5
(B3, B4, and B5) (Fig. 4c-e). ICOR
demonstrates the best performance among the
three methods, while DOS and Sen2Cor exhibit
similar RMSE wvalues in B3, B4, and B5
(Fig. 4c-e). Specifically, R.s(A) derived from
Sen2Cor exhibits stronger correlations with
in-situ Ryg(A) than those from DOS, with
values of » = 0.75, 0.74, and 0.75 for B3, B4,
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and BS5, respectively. All methods display
acceptable correlations for band 2 (B2)
(r = 0.52). The results indicate that there is not
a significant difference in using R.s(A) in the
visible bands (B2 to B5) processed by ICOR or

processing, particularly when dealing with
images with a high percentage of cloud cover,
Sen2Cor offers time-saving advantages in
image processing (Bui et al., 2022; De
Keukelaere et al, 2018). Consequently,

Sen2Cor. While ICOR demands more Sen2Cor is deemed suitable for estimating
infrastructure and technical conditions during Chla in Quan Son Reservoir.
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3.3. Model for estimating Chla from S2B
imagery

This study examined the relationships
between in-situ Chla and the R.s()) values at

individual bands of S2B Level 2A imagery.
The findings revealed that Chla exhibited poor
and unstable correlations with the S2B band
data overall (Fig. 5a). While Chla measured
on July 7, 2023, demonstrated moderate
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correlations with all nine S2B bands (r = 0.68
to 0.72), the in-situ Chla measured on
September 20, 2022, and November 14, 2021,
did not exhibit significant correlations with
any of the S2B bands (r = -0.13 to 0.42).
These results suggest that the single-band
algorithm is unsuitable for estimating Chla in
Quan Son Reservoir, and utilizing multiple
spectral S2B  bands would be more
appropriate.  Further analysis  involved
investigating the correlations between in-situ
Chla and S2B band ratios, and the results are
presented in Fig. 5b. Notably, Chla showed
negative correlations with band ratios of
B3/B2 (r =-0.94), B3/B4 (r = -0.79), B5/B2
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Figure 5. Correlations between in sifu Chla with S2B band's

(r = -0.73), and B5/B4 (r = —0.70). These
negative  correlations  contradicted the
expected behavior based on the absorption
characteristics of Chla, which typically
exhibits high absorption (low reflectance) in
the blue and red regions (corresponding to B2
and B4) and low absorption (high reflectance)
in the green and NIR regions (B3 and BY5)
(Mitchell & Kiefer, 1988; Fujiki, & Taguchi,
2002). As a result, these correlations between
S2B band ratios and Chla do not adhere to
physical laws but instead appear random,
indicating that these correlations are
unsuitable for developing a Chla estimation
model.
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r denotes the Pearson coefficient

To improve Chla estimation accuracy and
develop the optimal regression model, we
analyzed all R.s(A)s of eight S2B bands as
explanatory variables (B2 to B8A) in a
multivariate analysis using the calibration
dataset of 68 data points. Results of the
analysis are shown in Tables 3 and 4. Our
analysis revealed that bands B2, B3, and B4
had significant regression coefficients (B =
0.075, —0.043, —0.028) with p-values less than
0.05, indicating their statistical validity as
explanatory variables (Table 4). While B5 of
S2 level 2 imagery demonstrated a relatively
high correlation value with the in situ R.s(A)
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(r = 0.75, Fig. 4e), it does not hold a
significant value in estimating Chla within the
multivariate regression model. This is because
its p-value exceeds 0.05 (p = 0.223), so it is
not selected as a variable for the Chla
estimation model. We then evaluated MLR
models using these three significant variables
(B2, B3, and B4), resulting in the best-fit
model with a maximum adjusted R2 of 0.95,
explaining 95% of Chla variation. The RMSE
was 2.76 pg/L (Table 3), which is considered
acceptable given the mean Chla of 48.5 ng/L
at the 68 in-situ points.
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Table 3. Summary of the multivariate linear
regression model for estimating Chla from selected
exploratory variables, B2, B3, and B4

. IAdjustedl RMSE

2
Variablel r R R2 ug/L F p
B2é5’3’ 0.97 | 0.95 0.95 2.76 1434.4| 0.000

F and p denote the F — ratio and statistical significance
of the coefficient, respectively

The Chla prediction model summarized in
Table 3 and 4 demonstrated statistical
significance (p < 0.05) as the significance value
(p) was 0.00, lower than the alpha value of
0.05. Additionally, the model exhibited an
overall solid fit to the data, with F' (3, 68) =
4344 at p < 0.05. The constant value of the
model, which is 26.76 (p = 0.00), indicates that
the estimated TSI value of the model is 26.76
when reflectance values at bands B2, B3, and
B4 of the images are simultaneously equal to
zero (Smith, 2015). However, this situation
may not occur in Quan Son Reservoir because
the water body of the reservoir does not behave
as an absolute blackbody that absorbs all of the
light's energy in the visible bands. The model's
coefficients (B) indicated that Chla increased
with higher B2 values (r = 11.16; p = 0.00) and
decreased with lower B3 (¢ = -2.73; p = 0.08)
and B4 values (¢ = -3.79; p = 0.00). Among
these variables, B2 had the most substantial
impact on Chla estimation (Table 4). The MLR
model for estimating Chla in Quan Son
Reservoir can be expressed as:

Chla (ug/L) = 26.76 + 0.084

* B2 — 0.039
x B3 — 0.031 ©)
* B4

Here, Chla is in units of pg/L, while B2,
B3, and B4 represent R(L) derived from the
blue (B2), green (B3), and red (B4) bands of
S2B level 2 images. Figure 6 illustrates the
performance of Eq. (5) in estimating Chla
using a 30-point validated dataset measured
on December 19, 2022, and May 18, 2023.
The results demonstrate that Eq. (5) is
appropriate for estimating Chla in Quan Son

Reservoir, with a low error value (RMSE =
1.68), corresponding to approximately 5% of
the in-situ mean Chla.

Table 4. Coefficients of the model for estimating
Chla in Quan Son Reservoir

Unstandardized [Standardized
Coefficients | Coefficients :
Standard 4
B p
error
(Constant)| 26.76 | 2.984 8.9670.000
B2 0.084| 0.008 4.578 11.163|0.000
B3 }-0.039] 0.014 -2.180  |-2.732/0.008
B4 10.031 0.008 —1.651 -3.797|0.000
60 ,/ * Observed
bt ,,’ ) --- Linear
55- RMSE = 1.68 /’/(/ —=Line 1:1
= 501 /’(*
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Figure 6. Scatterplot comparing in-situ Chla to
estimated Chla values using Eq. (5) and the
calibration dataset

3.4. Variations of Chla
Reservoir in space and time

in Quan Son

Equation (5) was then applied to assess the
spatial and seasonal variations in Chla
distribution across Quan Son Reservoir using
ten S2B images captured from July 2021 to
July 2023. The results, displayed in Fig. 7,
reveal that Chla in Quan Son Reservoir
ranged from 10.2 pg/L (on December 4, 2021)
to 73.9 pg/L (on July 2, 2022), with mean
values ranging from 26.4 pg/L (on December
4, 2021) to 56.6 ug/L (on September 20,
2022). Spatially, the distribution of Chla
appeared relatively homogeneous, except
during May and July. Chla distribution
patterns became more pronounced in warmer
months with increased precipitation. Higher
Chla were observed around Doc Lap Hill,
Trau Bac Mountain, and the eastern part of the
reservoir, areas known for their higher human
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activity, residential areas, and tourism
hotspots. Conversely, Chla were
comparatively lower in the reservoir's

northern and central parts, where is less
interfered by human activities. Of particular
concern is the estimates in September 2022
when Chla exceeded 60 ug/L, covering the

entire reservoir's water surface. According to
Carlson and Simpson (1996), Chla levels
exceeding 56 pg/L indicate a hypertrophic
state, posing a risk of algal blooms. As a
result, increasing the frequency of Chla
monitoring in the reservoir is imperative
during the summer and autumn seasons.
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Figure 7. Changes in Chla distribution in Quan Son Reservoir from July 2021 to July 2023
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Figure 8 illustrates the temporal variations
in mean Chla distribution across Quan Son
Reservoir. A discernible trend emerges, with
Chla levels being lower in November and
December, slightly increasing in April, and
reaching peak levels in mid-summer (July) and
early autumn (September). This seasonal
pattern aligns with the observed Chla patterns

80

in tropical irrigation reservoirs (Ledn et al.,
2016). The wide range of in-situ Chla in both
calibration (ranging from 22.6 to 63.2 ug/L)
and validation (ranging from 34.2 to 55.3 ug/L)
datasets, taken across different months over an
annual cycle, underscores the suitability of the
model for estimating Chla in Quan Son
Reservoir throughout different periods.
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Figure 8. Temporal variations of Chla obtained from ten S2B images

4. Discussions

Our study employed MLR analysis to
develop a robust model for estimating Chla in
Quan Son Reservoir using S2B imagery and
68-point data. This model, as expressed in Eq.
(5), was based on three bands in the visible
region of S2B imagery (B2, B3, and B4) and
exhibited excellent predictive capabilities, as
evidenced by the high correlations and small
error in calibration (R? = 0.95 and RMSE =
2.76, respectively). The wvalidity of our
proposed model was rigorously tested using a
separate validation dataset, comprising 30-
point data collected on December 19, 2022,
and May 18, 2023. The validation results
demonstrated a strong agreement between
estimated Chla  values and  in-situ
measurements (R?= 0.87), as indicated by the
low RMSE value of 1.68, affirming the
model's high performance. The high accuracy
and reliability of the Chla estimation model
using MLR in this study are aligned with
other studies using similar methods and data

(Ouma et al., 2020; Barraza-Moraga et al.,
2022; Latwal et al., 2023). The superior R?
value of our proposed model (R? = 0.95) is
similar to those (R? = 0.93-0.97) proposed by
Barraza-Moraga et al. (2022). The selection of
bands 2, 3, and 4 of S2B level 2 data as
variables of the MLR model for estimating
Chla in this study demonstrates the great
importance of reflectances within the visible
region for quantifying Chla in lakes, as
demonstrated in many previous works (e.g.,
Brezonik et al.,, 2005; Lim and Choi, 2015;
Matus-Hernandez et al., 2018). Particularly in
cases where reflectances retrieved from the S2
NIR bands are often lower than ground-truth
data (Warren et al., 2019). The success of our
MLR model for estimating Chla in Quan Son
Reservoir using S2B imagery carries
significant implications. This model is a
valuable tool for monitoring water quality
within the reservoir, enabling timely responses
to changes in Chla, which are essential for

managing algal blooms and preserving the
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reservoir's ecological health. Our approach
aligns with previous studies that have
highlighted the effectiveness of MLR models
in estimating Chla in various aquatic
environments (Brezonik et al., 2005; Kim et
al., 2016; Patra et al., 2017; Lim and Choi,
2015; Matus-Hernandez et al., 2018).
However, it is essential to note a fundamental
limitation of our study: the relatively small
number of in-situ measurements used for
calibration and validation (N = 68 and 30,
respectively). To enhance the robustness of
the model, it would be beneficial to expand
validation efforts by incorporating
independent data sources.

In this study, we further evaluated the
performance  of  existing  atmospheric
correction methods for water retrievals from
S2 images using in-situ R s(1) measured at 18
points across the reservoir. Three commonly
used atmospheric correction methods were
assessed, including DOS, iCOR, and Sen2cor.
Our results align with previous findings
regarding applying these methods for
correcting images over subtropical regions
(Warren et al., 2019; Ogashawara et al., 2021;
Pahlevan et al., 2021). For instance, all three
methods failed to retrieve in-situ R.s(A)s in
S2's NIR bands from band 6 to band 8A (r =
0.05-0.33; Figure 4). Similarly, our study also
found a moderate relationship between in-situ
R.s(A) and BOA-R (1) obtained at band 2
(blue), band 3 (green), band 4 (red), and band
5 (NIR band centered at 705 nm) from these
methods (r = 0.50-0.76; Fig. 4). This finding
indicates that any algorithms relying on the
NIR region beyond 740 nm using water
surface reflectances are inappropriate for
application to the S2 images. Additionally, the
reflectances obtained from bands 2, 3, 4, and
5 of S2 data after applying these atmospheric
correction methods are promising for water
quality monitoring purpose.

The findings of this study highlight the
need for more frequent and vigilant
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monitoring of water quality during the
summer-autumn period when Chla tends to
increase. Elevated Chla levels, significantly
when exceeding 56 pg/L (indicative of a
hypertrophic state), raise concerns about
potential algal blooms. Such blooms can
negatively impact water quality, disrupt
ecosystems, and pose health risks to humans
and aquatic life.

However, it is essential to note that our
Chla estimation model is tailored to Quan Son
Reservoir and may not directly apply to other
water bodies with different optical properties
and geographic conditions. Future research
should explore the model's adaptability in
diverse settings. To further enhance our
understanding of Chla dynamics in Quan Son
Reservoir, future studies could investigate the
specific sources of nutrient inputs and their
seasonal variations. Additionally, assessing
the impact of algal blooms on water quality
and ecosystem health within the reservoir
would provide valuable insights for
management and conservation efforts.

S2B data in this study provides valuable
insights into the estimation and mapping of
Chla in Quan Son Reservoir. However, its
revisit frequency of ten days limits the
temporal coverage available for this study.
Future studies could consider integrating data
from other satellite sensors, such as S2A,
Landsat 8 and 9, to address this limitation to

detect more detailed Chla dynamics.
Additionally, continued monitoring with
multiple  Earth-observing  satellites can

provide more extended time series data for a
more comprehensive analysis of water quality
dynamics.

5. Conclusions

This study has successfully developed an
empirical MLR model to estimate and map
Chla in Quan Son, a small tropical eutrophic
reservoir, using S2B Level 2A images. The
comprehensive evaluation of all S2B bands
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against a calibration dataset of 68-point data
of in-situ Chla demonstrated the effectiveness
of using a combination of the blue (B2), green
(B3), and red (B4) bands of S2B for Chla
estimation (R? = 0.95, RMSE = 2.7 pg/L).
Importantly, this MLR model showed strong
agreement with 30-point data of in-situ Chla
collected on December 19, 2022, and May 18,
2023, with RMSE values lower than 5% of
the mean in-situ Chla value, reaffirming the
reliability of our proposed method.

The spatial distribution of Chla in Quan
Son Reservoir, derived from ten S2B images
acquired on days with minimal cloud cover
since July 2021, was effectively mapped. This
revealed that the spatial distribution of Chla
exhibits variability, particularly during the
summer months. Specifically, Chla levels
were elevated at sites with tourist activities on
the reservoir. Despite the limited number of
available S2B images in this study, we were
able to elucidate the seasonal, temporal
dynamics of Chla in Quan Son Reservoir:
Chla levels tend to peak during the summer
months (July) and gradually decrease from
autumn to lower values in the winter months
(November and December).

The resulting spatial distribution maps of
Chla over the reservoir underscore the high
applicability of our proposed method for
monitoring Chla in Quan Son Reservoir. This
model  contributes to the effective
management of water quality and the timely
identification of changes in Chla, which is
particularly critical in mitigating the risks
associated with algal blooms and ensuring the
ecological health of the reservoir. However, it
is essential to acknowledge that the model's
applicability beyond Quan Son Reservoir to
water bodies with different optical properties
and geographic conditions warrants further
investigation in future research. Future studies
could also explore specific sources of nutrient
inputs and their seasonal variations to enhance
further our understanding of Chla dynamics in
Quan Son Reservoir.
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