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ABSTRACT

Landslides are natural disasters most frequent in the mountain region of Vietnam, producing critical damage to
human lives and assets. Therefore, precisely identifying the landslide occurrence probability within the region is
essential in supporting decision-makers or developers in establishing effective strategies for reducing the damage.
This study is aimed at developing a methodology based on machine learning, namely Xgboost (XGB), lightGBM,
K-Nearest Neighbors (KNN), and Bagging (BA) for assessing the connection of land cover change to landslide
susceptibility in Da Lat City, Vietnam. 202 landslide locations and 13 potential drivers became input data for the
model. Various statistical indices, namely the root mean square error (RMSE), the area under the curve (AUC), and
mean absolute error (MAE), were used to evaluate the proposed models. Our findings indicate that the Xgboost
model was better than other models, as shown by the AUC value of 0.94, followed by LightGBM (AUC=0.91), KNN
(AUC=0.87), and Bagging (AUC=0.81). In addition, urban areas increased during 2017-2023 from 25 km? to 30 km?
in very high landslide susceptibility areas. Our approach can be applied to test the other regions in Vietnam. Our
findings might represent a necessary tool for land use planning strategies to reduce damage from natural disasters and
landslides.
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1. Introduction human losses and destruction of infrastructure

Landslide 1s a natural hazard that causes and  property, hence causing economic

damage in the mountain regions, producing difficulties in countries (Chang, Catani et al.,

2023; Merghadi et al., 2020; Nguyen et al.).
*Corresponding author, Email: nguyenhuuduy@hus.edu.vn Landslides occur due to several causes,
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including heavy precipitation, earthquakes,
and human activities. Global landslide data
shows that more than 3,867 landslides
occurred worldwide from 1995 to 2014,
causing 11,689 injuries and 163,658 deaths.
The mountain region of Vietnam is strongly
affected by landslides, accounting for about
22% of landslides in the world (A. L. Achu et
al., 2023). The report of the Meteorological
and Hydrological Administration of Vietnam
shows that there were 300 landslide and flash
floods during 2000-2018, causing about 943
injuries and damages of billions of dollars
(Bui et al.,, 2023; Nguyen, Dang, Bui, &
Petrisor, 2023).

The increase in the frequency and
magnitude of landslides linked to land use and
climate change globally in recent years has
been widely studied by researchers. Several
studies have focused on evaluating the
relationships between changes in land use and
different characteristics of the landslide
phenomenon, for example, an increased
number of landslides due to the
transformation of the surface from natural
vegetation to agricultural and construction
areas. These changes can weaken the roots
that hold the soil together. This phenomenon
increases the landslide risk. In addition, the
construction of infrastructure on slopes can
destroy the soil balance, causing the landslide
to worsen. All these phenomena combine with
more precipitation in the context of climate
change, increasing the occurrence of severe
landslides. So, good planning can reduce
risks, while poor planning can increase the
landslide risk. Therefore, assessing the
relationship between land cover change and
landslides is very necessary, as it can support
decision-makers or planners in drafting
effective strategies for reducing the effects on
human life and the economy.

To carry out these tasks, it is necessary to
classify landslide types, evaluate their trends,
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and construct a hazard zoning map. These
maps can help decision-makers determine the
regions with the probability of landslide
occurrence to propose practical strategies for
reducing the damage to human life and
property (N. Sharma, Saharia, & Ramana,
2024; Su et al., 2023; Van Phong, Ly, Trinh,
Prakash, & Btjvjoes, 2020).

Until now, several qualitative and
quantitative studies have aimed to predict
landslides. Although the qualitative approach
is based mainly on expert knowledge, it has
been proven effective with high precision
(Ganesh, Vincent, Pathan, & Benitez, 2023;
Huang, Peng, Li, Liu, & Zhou, 2023; Khaliq
et al., 2023; Nhu, Thai, & Tien, 2023; Xuan et
al., 2024). However, this approach is often
applied locally and is very expensive and
limited in hard-to-reach regions. Beginning in
the 19™ century, geologists began to recognize
the connections of geology, topography, and
likelihood of landslide occurrence. Then, they
began using quantitative approaches for
landslide zoning based on historical landslide
events (Zeng et al.,, 2024). Advances in
remote sensing and GIS have provided
promising opportunities to determine regions
with landslide probability, considering spatial
relationships between natural and human
factors (Nwazelibe et al., 2023; A. Sharma &
Prakash, 2023). Although researchers have
widely used remote sensing data, these data
have been influenced by clouds and limited by
spatial and temporal resolution. Limited
spatial resolution can impede the detection of
small landslides. Additionally, updating
images less frequently can impede real-time
tracking changes occurring in the field.
Therefore, these methods must be replaced by
more powerful ones, which can help decision-
makers determine the exact regions at
landslide risk to propose effective strategies.

Few data-driven approaches have been
recently used to landslide
susceptibility maps, statistical

construct
including
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engineering and machine learning. The
statistical model analyzes the relation between
landslide events and their drivers from a
spatial perspective. Statistical relationships
often used in landslide susceptibility include
frequency ratio (Nwazelibe et al., 2023),
bivariate statistical analysis (Poddar & Roy,
2024), weights of evidence (WOE) (B.
Mandal, Mondal, & Mandal, 2023; Qazi,
Singh, Vishwakarma, & Abdo, 2023).
Although statistical analysis was shown
effective in assessing landslide susceptibility,
as mentioned above, the landslide occurs
mainly due to slope and rainfall, and, under
climate change settings, weather tends to be
more erratic and rainy, making the prediction
of landslides more difficult. At the same time,
the statistical model has been limited in
explaining the complex nonlinear connection
between landslide events and their drivers. In
recent years, machine learning has received
attention from researchers to overcome these
limitations. Machine learning algorithms
include support vector machine (I. Mandal &
Pal, 2020), random forest (Kim, Lee, Jung, &
Lee, 2018; Taalab, Cheng, & Zhang, 2018),
adaboost (Wu et al.,, 2020), Bagging (T.
Zhang et al., 2022), decision tree (Saito,
Nakayama, & Matsuyama, 2009; Yeon, Han,
& Ryu, 2010). The main benefit of machine
learning is its ability to reproduce and
quantitatively analyze the impact of different
drivers on the development of landslides and
their potential to update continuously. (Cao et
al., 2023) wused five machine learning
machines, namely Logistic Regression (LR),
Support Vector Machines (SVM), Extreme
Gradient Boosting (XGBoost), Random
Forest (RF), and Linear Discriminant Analysis
(LDA) to unearth the regions with the
probability of occurrence of landslides in
Western Henan Province. The findings
indicated that the Xgboost model was better
than the others. (Qasimi, Isazade, Enayat,
Nadry, & Majidi, 2023) Three models,

namely Maximum Entropy (ME), Generalized
Linear Model (GLM), and Random Forest
(RF), were applied to construct a landslide
susceptibility map for Badakhshan province,
Afghanistan. The results showed that RF
outperformed the other two models. (Rai,
Pandey, Sharma, & Sharma, 2024) compared
seven machine learning models, namely
Fisher discriminant analysis (FDA), boosted
regression tree (BRT), multivariate adaptive
regression splines (MARS), generalized linear
model (GLM), random forest (RF), model-
architect analysis (MDA), and the support
vector machine (SVM) to construct a
landslide  susceptibility map for the
Bhilangana Basin, Garhwal Himalaya. The
findings show that the random forest model
had a better accuracy than the others. The
literature review shows no consensus
concerning the most suitable type of model
for landslide susceptibility. Even a slight
improvement in the accuracy of landslide
susceptibility can have a significant impact on
constructing landslide susceptibility maps and
change the characteristics of the landslide
susceptibility level distribution. Therefore, the
exploration and comparison of different
models are needed to determine the most
appropriate models to construct landslide
susceptibility maps, which can felp decision-
makers designing effective strategies for
diminishing landslide-related damages.

This study aims to build a machine
learning methodology using Bagging, KNN,
LighGBM, and Xgboost to assess the
connection between landslide susceptibility
and land use change in Da Lat city, Lam Dong
province, Vietnam. This study is the first to
assess the relationships between land use
change and landslide susceptibility in Da Lat
city. In recent years, the rate of land use has
changed; for example, the increase in
construction areas has increased rapidly,
increasing the flood risk. This study's results
can help decision-makers make land use
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planning more sustainable. Moreover, the
approach in this research can be replicated in
other regions if data is available.

2. Study area and material

2.1. Study Area

Da Lat city is located on the Lam Vien
plateau, northeast of Lam Dong province,
with a natural area of 39,105 hectares (Fig. 1).
Da Lat's terrain belongs to the plateau type,
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with an average elevation of 1,520 m above
sea level, and is divided into three main
categories, i.e., high mountains, low hills, and
valleys, mainly characterized by a strong
cleavage in the terrain. The north and
northwest areas of Da Lat are divided by the
Lang Biang mountain range, while the east
and southeast gradually decrease in altitude to
the Da Nhim valley. In the West and
Southwest, the terrain gradually decreases in
altitude to the Di Linh plateau.

108°2‘5'0"E

108°30'0"E 108°35'0"E

108°20'0"E

\ ), N
| 7, | Lac Duong M| Z
~»ﬁ, =B jL L&
. . $ /S ‘ &
China / ' » —
Viet nam .- ) -
) ~ Laos
& z
=) £
Thailands = e . (.’:
-
: _ Landslide
Campuchia
s e No
2 Lam Ha
(g_i e Yes
0 .
2t| z| Elevation (m) .
Calkl 1812 )
5 o — M3
> = ! A 4 Don Duong | ¢,
- /rv/ 012 4 6//’8 B
W . 993 . -:-:—;—‘—Km

108°25'0"E 108°30'0"E 108°35'0"E

Figure 1. Location of Dat Lat city in Vietnam

Da Lat is located in the tropicalmonsoon
area near the equator. However, its climate is
mainly influenced by altitude and natural
terrain. The climate in Da Lat has two main
seasons: the rainy one spans from April to
October every year, and the dry one from
October of the previous year to April of the
following year. The rainfall in Da Lat has an
annual average of about 1800 mm, with a
higher intensity in August and September
every year. The dry season, where water
becomes scarce, occurs in December, January,
and February (Viet Nam Meteorological and
Hydrological Administration).
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Da Lat's geology comprises many raw
materials, such as igneous rocks, sedimentary
rocks, and metamorphic rocks. Typical soil
types in Da Lat include red-yellow fertility
soil (Fs), red-yellow fertility soil (Fa), grey-
yellow humus soil (Fha), yellow-brown
fertility soil (Fda), red-brown fertility soil
developed in basalt (Fk), purple-brown
fertility soil developed on metamorphic rocks
(Ft), yellow-red soil developed on
metamorphic rocks (Fj), alluvial soil (P), and
conglomerate slope soil (Dt) (Lam Dong
province Department of Natural Resources
and Environment).
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Da Lat city is one of Vietnam's landslide
hotspots. Each year, landslides cause
significant  socioeconomic damage. For
example, the landslide on 29 June 2023 left 2
people dead and 5 injured. Therefore,
developing maps of landslide susceptibility
can assist local authorities and policymakers
in identifying areas highly susceptible to
significant landslides and establish measures
for adequate protection.

2.2. Materials
2.2.1. Landslide Inventory

The landslide inventory plays an essential
role in building the landslide susceptibility
model. The landslide data set included the
position, type, and size of the landslide event in
history (Goetz, Brenning, Petschko, & Leopold,
2015; Kavzoglu, Colkesen, & Sahin, 2019).
Ultimately, 202 landslide events from 2017 to
2020 were obtained from the Vietnam Institute
of Geosciences and Mineral Resources, and 50
landslide events were collected from the field
mission in 2021 and 2022.

In addition, this study used binary
classification for the landslide susceptibility
model. Therefore, non-landslide points must
be collected. Several studies have pointed out
that several non-landslides similar to the
landslide points can increase the accuracy of
models (Nguyen et al.; Viet Du et al., 2023).
Therefore, 252 non-landslide points were
selected randomly from regions never affected
by the landslide, such as the low slope and
elevation region.

In the end, 504 landslide and non-landslide
points were assigned to two sets: the first 70%
of the data was utilized to train the four
landslide susceptibility models, and the other
30% to validate them.

2.2.2. Conditioning factor

The selection of drivers is an indispensable
task when using machine learning to model
landslide susceptibility because these factors
have complex relationships with landslide

events in history (Zhou et al., 2018). In this
study, 13 drivers, i.e., elevation, aspect, slope,
curvature, distance to the river, road distance,

land use, NDVI (Normalized difference
vegetation index), NDBI (Normalized
Difference Built-up Index), NDMI

(Normalized Difference Moisture Index),
rainfall, soil type, lithology were chosen to
construct the landslide susceptibility model.
These drivers are similar to those used by
previous studies (Fig. 2).

Elevation, aspect, curvature, and slope
were obtained from a DEM (Digital Elevation
Model) with a 10m resolution constructed
from the topography map (available at the
Ministry of  Natural Resources and
Environment) with a scale of 1/50,000.
Distances to road and river were extracted
from the topography map scaled 1/50,000.
Soil type and lithology were obtained from
the Ministry of Natural Resources and
Environment. 2021 land use was downloaded
from
https://www.arcgis.com/apps/instant/media/in
dex.html?appid=fc92d38533d440078f17678¢
bc20e8e2&fbelid=IwAROV3ZEdUqhn79gN
INPMtswxWfi2dE1 Gj-
1ZD XcN70PyGMSn3-  scE9KY. NDVI,
NDBI, and NDMI were extracted from a
Sentinel 2A image from September 2021
(available at https://dataspace.copernicus.eu).
2021 annual rainfall was retrieved from
https://chrsdata.eng.uci.edu/.

Using machine learning, elevation is an
essential driver for identifying regions with
the probability of landslide occurrence. It is
controlled by geology, lythology, and
precipitation.  Elevation influences the
stability of slopes. It has been extensively
used to study landslide susceptibility (J.
Zhang et al., 2023).

The slope has an essential role in the
landslide susceptibility model. The slope may
significantly affect soil stability, increasing
landslide likelihood in a specific region (A.
Achu et al., 2023; Chang, Huang, et al., 2023;
D. Sun, Q. Gu, et al., 2023).
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Figure 2. Conditioning factors for landslide susceptibility in the Da Lat city
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Figure 2. Cont.

Curvature is considered an indicator of the
shape of the surface and influences landslide
susceptibility in several ways. For example,
the curvature has essential effects on the
stability of the ground, which is linked to the
modification of the distribution of stresses and

shear stresses. Furthermore, the low curvature
value can cause water to concentrate,
significantly impacting soil stability (A. Achu
etal., 2023).

Aspect, i.e., slope orientation, is essential
in assessing landslide susceptibility because it
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affects precipitation, water flow direction, soil
moisture, and vegetation distribution. The
orientation of the slope exposed to prevailing
wind and precipitation may increase
precipitation and be more prone to moisture,
increasing the likelihood of landslide
occurrence. Moreover, the aspect influences
the distribution of vegetation on the slope (H.
Sun et al., 2023).

Land wuse/land cover is essential in
analyzing the probability of landslide
occurrence in a region as it is directly linked
to human activities. Activities like urban
expansion or infrastructure construction
significantly trigger landslides. Such activities
require cutting or excavating slopes to build
infrastructure that modifies natural
characteristics and disrupts soil stability
(Tyagi, Tiwari, & James, 2023).

NDVI measures vegetation density in a
region and is considered an indispensable
driver in assessing landslide susceptibility.
Vegetation is essential for soil stability
because it reduces erosion and consolidates
soils (Niraj, Singh, & Shukla, 2023).
Generally, NDVI values range from — 1 to 1;
the higher the vegetation value, the denser the
curvature.

NDBI is the density of construction in a
region. It is widely used to pinpoint regions
with the probability of landslide occurrence
because construction activities can cause soil
instability, causing landslides (F. Huang et al.,
2023).

NDMI is a surface soil moisture indicator.
The state of soil moisture can change
depending on several drivers, e.g.,
precipitation, topography, and vegetation
density. Soil moisture can cause soil
saturation. Saturated soil can lose cohesion,
making it more susceptible to ground
movement. Heavy precipitation on saturated
soil can cause a landslide (Fatemi Aghda,
Bagheri, & Razifard, 2018).

The soil type is another important factor in
assessing the susceptibility because it is
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directly related to compaction. Areas
containing high-density soils often experience
fewer landslides than areas containing low-
density soils (Lee & Min, 2001).

Rainfall is considered a factor triggering
landslides in a region. Heavy precipitation
causes the soil to become saturated, making it
easier for the land to move. In addition, heavy
precipitation can lead to increased runoff,
eroding the soil. Additionally, precipitation
can penetrate areas of weak soil, lubricating
potential sliding surfaces and increasing the
likelihood of landslides (Dahal et al., 2008).

The road distance is a driver for the
landslide  susceptibility = model.  Road
construction must cut or excavate slopes,
influencing the natural features of the slope
and causing the probability of landslide
occurrence to increase (Tien Bui, Ho,
Revhaug, Pradhan, & Nguyen, 2014).

The distance from the river plays an
essential role in assessing landslide
susceptibility, as the river is an important
factor in the movement of slope masses
causing landslides (X. Sun et al., 2020).

Lithology plays a wvital role in the
probability of landslide occurrence as it is
directly linked to rocks' hardness and weather
resistance. More complicated rock areas have
less risk of landslides than softer rock areas
(Vakhshoori & Zare, 2016).

3. Methodology

The methodology used to identify the
region with the probability of landslide
occurrence in our research had four main
steps: (i) preparing the input data of the
machine learning model; (ii) establishing the
machine learning model; (iii) evaluating the
accuracy of the model and (iv) analyzing the
landslide susceptibility map (Fig. 3).

(1) The input data of the machine learning
model includes the landslide inventory map
and its drivers. This study used 252 landslide
and 252 non-landslide points and 13 drivers as
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input data for the model. It must be stressed
that drivers were measured with unit
differences; therefore, we normalized them to
a range from O to 1 before using them. In this
study, we used the max-min normalization.

(i) Establishing the machine learning
model: in this research, four models, namely
Xgb, LightGBM, KNN, and BA, were used to
construct the landslide susceptibility map.
Their accuracy depends on optimizing the
parameters. In this research, the trial-and-error
method was utilized to adjust the parameters.
The results showed that the parameters were:
for the XGB model, n_estimators = 100,
max_depth = 3, learning rate = 0.05,
subsample = 0.8, colsample bytree = 0.8; for
LightGBM, random_state = None, max_depth
= 5, learning rate =0.05, subsample=0.8,
colsample bytree=0.8; for  LightGBM,
random_state=None, max_depth=5,

Conditiong factors Landslide Inventory |

Condictioning factor
assessment

learning_rate=0.02, feature fraction=0.8; for
KNN, n_neighbors=4, weights="uniform,"
algorithm="kd_tree"; and for BA,
n_estimators=100, max_depth=2,
learning_rate=0.01, random_state=None. The
process of constructing the machine learning
model was implemented in the Python
platform.

(iii) Evaluating the precision of the
machine learning model was based on several
statistical indices, i.e., AUC, RMSE, MAE,
and R2.

(iv) After evaluating the models, these
models were utilized to construct the landslide
susceptibility map. The output value of the
model is the landslide susceptibility index,
ranging from 0 to 1. These indices were
assigned to five classes (ranging from very
low to very high) through the natural break

method.
S T 3

‘ Training dataset ‘ | Validation
| dataset (30%)

DEM
Lythology
NDB

NDM!

—

NOV

Figure 3. Methodology used for the landslide susceptibility in the Da Lat city

3.1. Bagging

Bagging is considered a method of
assembly using the Bootstrap technique, first
presented in (Breiman, 1996). The bootstrap
approach randomly selects a replaced sample
to generate many samples, creating the
training data set. Each generated subset is
utilized to build decision trees, which are

merged into the final model. This model
reduces the classification accuracy by
decreasing the variance of classification error
(Hong et al., 2018; T. Zhang et al., 2022).
Bagging functions require four main steps: i)
construction of the original algorithms and
training data set; ii) the precision of original
algorithms is lows; iii) original algorithms are
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repeated several times to obtain a prediction
sequence; iv) final model accuracies are
improved by using results from multiple
models (Wu et al.,, 2020). Details of the
LighGBM equation are in (Pham, Tien Bui, &
Prakash, 2018). In our research, the bagging
model was utilized to build the landslide
susceptibility model for Da Lat City.

3.2. K-Nearest Neighbors

KNN is a non-parametric supervised
learning discriminant that utilizes proximity to
make classifications or predictions on the
clustering of an individual data point. This
algorithm can solve the classification and
regression problem (Abu El-Magd, Ali, &
Pham, 2021). KNN presumes that similar
points can be found next to each other with
four main steps (Liu, 2023):

(i) Construction of the set of already
classified data (called dataset), a distance d
and an integer k.

(i1) KNN computes the distance between
all already classified and newly entered data.

(iii) KNN then extracts the k already
classified data "closest" to the new data
entered; that is to say, the data already
classified has the minor distance d with the
new data entered.

(iv) The algorithm finally chooses which
family the new data belongs to by searching
for the majority family among the k-identified
data.

Details of the LighGBM equation are in
(Abu El-Magd et al., 2021).

3.3. LighGBM

LightGBM is an ensemble gradient
optimization method relying on gradient
boosting and decision trees. LightGBM can be
utilized to solve the classification and
regression problem. It builds decision trees
(D. Sun, Wu, Wen, & Gu, 2023). Subsequent
trees were constructed by adjusting the
residuals from the previous tree to improve
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the model. The last added tree aggregates the
results of each step, producing a robust model.
Decision trees in LightGBM use leaf growth
strategies, which means that given a specific
condition, a single leaf is split, depending on
the gain. By identifying leaves containing
considerable  decomposition  information
throughout all  current leaves, the
classification accuracy of the approach is
increased by decomposition. Leaf-aware trees
can sometimes cause overfitting, especially
with smaller datasets. Limiting shaft depth
can help prevent overfitting (Iban &
Bilgilioglu, 2023; Zeng et al., 2024).

The LightGBM algorithm utilizes a
histogram-based method that splits data into
groups using their histogram. Instead of each
data point, these groups are used to iterate,
calculate the gain, and split the data. Another
distinctive feature of the LightGBM algorithm
is the clustering of exclusive entities. This
technique combines exclusive features to
perform dimensional reduction, making the
algorithm faster and more efficient (Saber et
al., 2022; Ye, Yu, Chen, Liu, & Ye, 2022).
Details of the LighGBM equation are in (D.
Sun, D. Chen, et al., 2023).

3.4. XgBoost

XGBoost is a supervised machine training
method for classification and regression. This
method relies on decision trees and improves
the gradient-boosting algorithm (Sahin, 2020).
In the activity procedure, XGBoost is an
assembly of decision trees (weak learners),
which predicts residuals and corrects the
errors of previous decision trees. Like the
gradient boosting and adaptive models,
XGBoost uses this " pruning " method
(Nguyen, Van, et al., 2023). More precisely,
weak learners are corrected until they entirely
play their role. When these trees do not
perform well, they are deleted. Details of the
LighGBM equation are in (Al-Najjar et al.,
2021).
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3.5. Model assessment

In our research, several statistical indices
were utilized to evaluate the accuracy of
prediction models, i.e., RMSE, MAE, ROC,
and AUC. These indices have been used in
many previous studies (Luu et al., 2022;
Nguyen et al., 2024; Yang, Liu, Huang,
Huang, & Wang, 2023).

ROC was computed by the actual positive
rate on the Y axis and the false positive rate
on the X axis. The areas under the ROC curve
represent the model accuracy of the AUC
value, ranging from 0 to 1.

TP+ TN

P+N

TP and TN are the rates of pixels correctly
classified as landslide/non-landslide, while P
and N are the pixel rates of landslide/non-
landslide.

RMSE and MAE are the errors between
the model prediction value and the
observation one.

n
1
RMSE = \/;Z(Ypredicted - Yobserved)2
i=1
n

1
MAE = ;2 | Ypreaictea = Yobserveal
i=1

AUC =

4. Results
4.1. Landslide conditioning factor assessment

To increase the accuracy of the landslide
susceptibility model, it is crucial to identify
landslide points and their causes accurately. In
our research, a few field missions collected
and verified landslide points. While the
conditioning factors were similar to previous
studies, we used Random Forest to find the
critical factors and eliminate non-useful ones.
Given that the model is exposed to redundant
data, models can modify its parameters in
ways that are too specific for individual

examples instead of generalizing from the
underlying samples. Additionally, redundancy
data does not provide information for the
model, which can reduce diversity in the data
set. A good model must be able to generalize
from several different situations, and data
redundancy can reduce this ability. The Fig. 4
shows the importance of drivers. It can be
seen that all drivers help identify the region
with the probability of landslide occurrence.
Among them, the most critical factors are
distance to the road, slope, soil type, and
rainfall. In recent years, urban expansion has
taken place more and more rapidly in the
province of Dat Lat, which has led to the
construction of several infrastructures, e.g.,
The construction of roads leads to
cutting and evacuating the slope, causing
modification of the state and

roads.

original
instability of slopes. The slope was second
because, as mentioned in the study area
section, the city of Da Lat is situated in the
south of Vietnam's central highlands, so the
slope is very high. This is considered an
essential cause for producing the landslide. In
addition, the landslide frequency also depends
on the compactness of the soil.

The ferralit soil group accounts for over
90% of the Da Lat city area. This group of
soils often has poor drainage capacity. The
ground cannot absorb water in heavy rain,
which easily causes landslides and floods.
Additionally,
structure, so it becomes unstable and easily
eroded in direct contact with water. In the

feralite soil has a weak

study region, the average precipitation in Da
Lat city is approximately 1,800 mm/year,
combined with its geographical location in
high mountains and hilly areas. The hilly
terrain is often less drained than flat terrain,
and in the event of heavy rain, the ground can
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quickly become saturated with water,
increasing the landslide risk. Additionally, in
recent years, cutting virgin forests to make
room for urban development resulted in the
soil losing its inherent compactness and
becoming, in heavy rains, less stable and
susceptible to landslides.

0.15
0.1
0.05 A
0
X <
& 5 &
AalN 0>@ Q:@
&
’b(\
&
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In this study, land wuse, aspect, and
curvature are less critical in the probability of
a landslide occurrence. This r uses machine
learning, so the statistical relationship is
essential. Landslide occurrence in Dat Lat
town depends more on the distance to the
road, slope, soil type, and rainfall and less on
aspect, land use, and curvature (Fig. 4).

Conditioning factor

Figure 4. Importance of landslide conditioning factor using Random forest

4.2. Assessment and comparison of model
performance

Landslide susceptibility model
performance was evaluated using the ROC
curve on all training and validation data (Fig.
5). It can be seen that all proposed models are
performing well in evaluating landslides in Da
Lat city. Among them, the XGB model was
better than other models with the AUC value
of 0.99, followed by lightGBM with 0.97, BA
with 0.94, and KNN with 0.92, respectively,
for training data. The XGB model performed
even better for validation data, with an AUC
value of 0.94, followed by LightGBM with
0.91, KNN with A0.87, and BA with 0.81.

The XGB model was generally better than
the other models in terms of training and
validation data.
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Apart from the ROC index, this study used
the MAE and RMSE indices to assess the
performance of the landslide susceptibility
model. For the RMSE index and training
dataset, the XGB model is better than other
models, with RMSE=0.25, followed by BA
(0.29), LighGBM (0.3), and KNN (0.32). For
the validation dataset, the XGB is the best,
with  RMSE=0.32, followed by LighGBM
(0.35), KNN (0.37), and BA (0.43). For the
MAE index, the XGB model was the most
accurate, with MAE=0.2 for the training
dataset and 0.27 for the wvalidation one,
followed by LightGBM (MAE=0.26 for the
training data and 0.31 for the validation data),
BA (MAE=0.27 for training data and 0.35 for
validation data), KNN (MAE=0.32 for
training data, and 0.36) (Table 1).
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Figure 5. Performance of the models proposed for landslide susceptibility for training dataset (top) and
validation dataset (dow) using AUC

Table 1. Performance and comparison of XGB,
LightGBM, KNN, and BA models

Training dataset Validating dataset

RMSE| MAE | AUC |[RMSE| MAE | AUC
XGB | 0.25 [ 0.208 | 0.991 | 0.325]0.272| 0.943
LighGBM| 0.3 | 0.26 | 0.977 | 0.355] 0.311 | 0.911
KNN | 0.32 |0.329|0.925 | 0.37 | 0.364 | 0.873
BA 029 | 027 | 094 | 0.43 | 035 | 0.81

4.3. Landslide susceptibility map

After validation, the four models generated
the landslide susceptibility map in Da Lat
City. The landslide susceptibility map
construction process provided the models with
pixels covering the entire study area. Each
pixel was associated with 14 drivers. The
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output corresponds to the landslide
susceptibility index, varying from O to 1. The
value of landslide susceptibility was divided
into five classes (shallow, low, moderate,
high, and very high) via the natural break
method. Figure 6 and Table 2 present the
landslide susceptibility map produced by
Xgboost, LightGBM, Bagging, and KNN.

Table 2. Distribution of landslide susceptibility
class in Da Lat City, Vietnam

Very low| Low [Moderate] High | Very
(Km?) | (Km?) | (Km?) | (Km? | high
(Km?)

XGB 137.6675[47.3962| 36.2654{115.4446/55.7419
ILightGBM| 90.7016/87.0316] 59.2656{127.961527.5518
BA 47.5067/48.0201{136.8979]138.6492121.4417,
IKNN 69.3972/74.0694] 92.5696| 93.7374] 62.742

For the Xgboost model, approximately
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137 km? were found in the shallow category,
47 km? in the low, 36 km? in the moderate,
115 km? in the high, and 55 km? in the very
high. For the LightGBM  model,
approximately 90 km? of the study area was
found in the shallow landslide susceptibility
zone, 87 km? in the low landslide one, 59 km?
in the moderate one, 127 km? in the high one,
and 27 km? in the very high one. For the
Bagging model, 47 km? of the surface of the
study area were found in the shallow landslide
susceptibility zone, 48 km? in the low one,
136 km? in the moderate one, 138 km? in the
high one, and 21 km? in the very high one. For
the KNN model, approximately 39 km? of the
study area lies in the shallow landslide
susceptibility zone, 74 km? in the low, 92 km?
in the moderate, 93 km? in the high, and
62 km? in the very high.
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Figure 6. Landslide susceptibility in the Da Lat city product by XGB, LightGBM, BA, and KNN
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4.4. Urban planning in the landslide area

Among all the models proposed in this
research, the XGB model exhibited higher
accuracy than others. Therefore, this model
was utilized to assess the urban development
in the landslide-prone area. The results
revealed that approximately 25 km? of the

urban area was found in the very high
landslide zone in 2017, increasing to 30 km?
in 2022. An essential part of the forest has
been replaced by urban areas for developing
tourism, leading to slope instability and
significant landslides in the city of Da Lat

(Fig. 7).
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Figure 7. Urban land in the very high area of Landslide susceptibility

5. Discussions

Landslides are among the most dangerous
natural disasters, causing significant damage
to human life and property. Thus, appropriate
measures must be immediately proposed to
decrease the damage (Hong, 2024; Nhu, Bui,
My, Vuong, & Duc, 2022; D. Sun, Q. Gu, et
al., 2023). Therefore, applying practical
methods to identify areas of the probability of
landslide occurrence is a crucial factor for

landslide risk assessment and management
(Ghasemain et al., 2020; N. Sharma et al.,
2024). Through spatial mapping, regions of
high and very high landslide occurrence can
be identified, and appropriate measures can be
applied to reduce or prevent damage caused
by landslides. Various models and methods
were developed to predict landslides' local and
regional spatial distribution. Constructing the

landslide susceptibility map with accuracy has
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received attention from researchers. Recently,
few studies have utilized machine learning to
construct the landslide susceptibility map.
Therefore, this study aimed to develop a
machine learning-based approach using XGB,
LightGBM, BA, and KNN to construct the
landslide map in Da Lat City. Our research
findings are considered an important tool to
help planners or decision-makers determine
the appropriate regions for sustainable land
development.

Machine learning has several advantages
for building the landslide susceptibility map.
Machine learning algorithms can solve
geospatial issues and integrate information on
topography, geology, and land wuse. In
addition, the ability of machine learning
models to detect complex and nonlinear
connections between different causes can
increase the model's performance. The
flexibility of machine learning allows the
model to be adjusted and improved when new
data is added, ensuring the ability to adapt to
environmental changes (Chang, Huang, et al.,
2023; N. Sharma et al., 2024). To build the
landslide susceptibility map, our research used
four machine learning models, i.e., Xgb,
LightGBM, KNN, and BA. These models are
popular algorithms that are widely used in
different fields. Among them, the XGB model
performed better than others because it
combines several weak learners using the
sequential method to improve the observation
ability repetitively. This method helps reduce
high biases.

Additionally, the XGB model can easily be
understood and interpreted. It does not need
any preprocessing because it has built-in
routines allowing for missing data to be
processed (Hajek, Abedin, & Sivarajah, 2023;
W. Zhang, He, Wang, Liu, & Meng, 2023).
The lightGBM model was second, with an
AUC value of 0.92, because it can process
categorical data without requiring additional
preprocessing, simplifying the workflow.
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Additionally, this model performs well on the
large dataset (Qiu, Wang, & Li, 2023; T.
Zhang et al., 2023). The KNN and Bagging
model had lower performance because the
algorithm becomes slower as the number of
observations and independent variables
increases. Additionally, model accuracy
depends on data quality (Rezapour, Jamali, &
Bahmanyar, 2023; Ukey et al, 2023).
Although the BA model is straightforward, its
computing time was high. In addition, this
algorithm is difficult to interpret and improve
(Le Minh et al., 2023).

Several previous studies have highlighted
the dependence of landslide susceptibility
models on the conditioning factors utilized to
construct the model. Selecting these factors
accurately can improve model performance.
However, there are no universal guidelines for
selecting these drivers. This study's drivers
were related to environmental, hydrology,
climate, and anthropogenic activities. 12
conditioning factors were selected to use as
machine learning model input data. This
selection depends on the availability of data.
Ultimately, all these factors were rated as
necessary using the RF technique.

Our research's landslide susceptibility map
in Da Lat City aligns with previous ones.
Therefore, the landslide susceptibility map in
our research can be used to evaluate the
relationship between land use change and
flood susceptibility in Da Lat City.

Landslide susceptibility and land wuse
planning are closely tied and received
attention from researchers and local
authorities, particularly those dealing with
urban  planning and natural disaster
management. Land use planning includes the
construction of infrastructure urbanization,
which can strongly influence slope stability,
increasing the landslide probability. For
example, rapid urban growth can lead to the
transformation of forest surface agriculture to
construction surface, which weakens the
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resistance of the soil to mass movements
(Petrisor, 2015). Consequently, land use
planners must account for the risks of natural
hazard susceptibility, such as landslide
susceptibility, to ensure food security for
residents. Therefore, the theoretical
framework in this study can help decision-
makers and local authorities integrate
landslide risk into land use planning.

In a nutshell, this research highlighted that
Da Lat, particularly in the mountain region of
Vietnam, often faces significant landslide-
related challenges. However, risk
management policies and technical state-of-
the-art solutions for climate change and urban
development are lacking. Therefore, our study
can help local authorities or developers
establish effective measures to lower the
effects of severe landslides that are predicted
to occur soon.

6. Conclusions

A landslide is a natural disaster with the
highest frequency in mountain regions
worldwide, particularly in Vietnam. This
study aimed to develop a methodology based
on machine learning, i.e., Xgb, lightGBM,
KNN, and BA, to identify the region with the
probability of landslide occurrence in the city
of Da Lat in Vietnam. The following points
can summarize the results:

All models proposed in our research
performed well in building the landslide
susceptibility map. Among them, the XGB
model was the best, with an AUC value of
0.94, followed by LightGBM with 0.91, KNN
with 0.87, and Bagging with 0.81,
respectively. Our findings underline the
potential of machine learning to identify areas
with the probability of landslide occurrence in
mountain regions.

In Da Lat city, about 150-170 km? were in
the high and very high landslide susceptibility
zone. Identifying the regions of high and very
high landslide susceptibility can help

decision-makers and developers establish
effective measures to decrease damage to
human life and property.

Although  this  study  successfully
constructed the landslide susceptibility map, it
still has a few limitations. For example,
several studies have highlighted that landslide
is strongly connected to climate change and
urban expansion, so future research must
evaluate their impacts on landslide
susceptibility. Moreover, a DEM with a
resolution of 10 m was constructed utilizing
the topography map scaled 1:50,000.
However, this DEM only presents the terrain
surface, while the DEM is produced in UAV,
which can present the most surface detail,
such as vegetation and infrastructure.
However, this technique is costly, and its
application is limited to vast regions. Finally,
non-landslide points were randomly selected
from within the study region. Inaccurate
selection of points other than landslides also
affects the model performance. However,
there are currently no specific guidelines on
selecting non-landslide points.

The city of Da Lat is often affected by
landslides. This phenomenon is increasing
seriously under climate and land use change
settings.  Therefore, our findings are
significant in helping decision-makers and
planners implement effective measures for
sustainable land use planning to decrease
damage to human lives and property.
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