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ABSTRACT 

This work investigates the efficacy of L-band and C-band Synthetic Aperture Radar (SAR) sensors onboard  

ALOS-2 and Sentinel-1 satellites, as compared to optical sensors onboard Sentinel-2 satellite, for mapping open water 

of the Tri An reservoir, one of the largest artificial reservoirs in South Vietnam, during the 2016-2023 period. The 

Google Earth Engine (GEE) was the primary computing platform to pre-process all satellite observations. The Otsu 

threshold algorithm was employed to generate water/non-water maps derived from the VH- and HH-polarized 

backscatter coefficient data acquired by Sentinel-1 and ALOS-2 satellites and from the Modified Normalized 

Difference Water Index (MNDWI) data acquired by Sentinel-2 satellite, respectively. The findings reveal the stability 

of Tri An reservoir’s surface water extent from 2017 to 2022, followed by a significant decline of nearly 70% during 

the dry season of 2023 to approximately 100 km2. This substantial decrease can be explained by the impact of a robust 

El Niño phase occurring in the region simultaneously. Overall, there is a high consistency between results derived from 

SAR and optical sensors, but the correlation between Sentinel-1 and Sentinel-2 (R = 0.9774) was higher than that 

between ALOS-2 and Sentinel-2 (R = 0.9145). During the drought period, both C-band and L-band SAR sensors 

overestimate the reservoir’s surface water extent due to the similarity in their backscatter coefficient between water and 

dry flat soil surfaces. This misclassification is more pronounced in ALOS-2 data than Sentinel-1 data, suggesting that 

the C-band sensor is more suitable than the L-band sensor for mapping the lake’s open water areas.  

Keywords: Lake monitoring; ALOS-2; Sentinel-1; Sentinel-2; Tri An reservoir.  
 
1. Introduction1 

The Earth's surface is estimated to contain 
more than 117 million lakes and inland water 
bodies (Verpoorter et al., 2014) that cover 
approximately 3% of its land surface (J.A. 

Downing et al., 2006). Despite their limited 
spatial coverage, these water bodies have a 
significant influence on global-scale processes 
through their impacts on many aspects of the 
biosphere, such as carbon dioxide and methane 
emissions (Johnson et al., 2022; Williamson et 

al., 2009; Zhuang et al., 2023), regulating the 
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balance of regional and global water (Ji et al., 
2018), as well as Earth’s climate (J. Downing, 
2010; Raymond et al., 2013; Tranvik et al., 
2009). Furthermore, freshwater from these 
sources is vital in supporting human health and 
ecosystem services by providing essentials like 

drinking water, food, and transportation 
(Palmer et al., 2015). Under the increasing 
pressures of climate change and human 
activities, rapid spatial and temporal 
transformations of inland water bodies can be 
witnessed globally (Li, Wang et al., 2022; 

Woolway et al., 2020; Yao et al., 2023; Zan et 
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al., 2022). Given this changing context, 
accurate, effective, and timely mapping and 
monitoring of the transformations of regional 
and global inland water bodies becomes 
crucial, especially for environmental 

monitoring and water management in 
developing countries (Zhang et al., 2016).  

While traditional approaches like conducting 

field surveys and collecting observations using 

hydrological monitoring stations provide highly 

accurate results, they are incredibly time-

consuming, challenging in remote areas, and 

less suitable for long-term monitoring (Li, Ma, 

et al., 2022). To address these challenges, 

satellite remote sensing techniques have 

emerged as a powerful and effective tool for 

capturing the fast variations of regional and 

global inland water bodies in near-real time. 

Optical remote sensing utilizing water indices, 

such as the Normalized Difference Water Index 

(NDWI) (Gao, 1996; McFeeters, 1996), the 

Modified NDWI (MNDWI) (Xu, 2006), or the 

Automated Water Extraction Index (AWEI) 

(Feyisa et al., 2014), is widely used for this 

purpose. Observations acquired from Landsat 

series, MODIS, and Sentinel-2 satellites are 

among the most popular free-of-charge data 

(Asfaw et al., 2020). Several global water 

distribution datasets have been created using 

data acquired from these satellites, for instance, 

the Global Land 30-water 2000 & 2010 (Liao et 

al., 2014), the Global Surface Wate dataset 

(Pekel et al., 2016), the ASTER Global Water 

Body dataset (Abrams et al., 2020), or the 

Global Inland Water Dynamics (Pickens et al., 

2020). However, these datasets (at maximum 30 

m spatial resolution) are not always suitable for 

regional monitoring applications, which require 

high spatial resolution observations to capture 

small-scale changes in water bodies. In addition, 

optical remote sensing is limited in some 

regions, particularly in the tropics, where the 

cloud cover usually is very high, especially 

during rainy seasons. In contrast, radar remote 

sensing offers an effective solution for 

monitoring inland water bodies in cloudy 

regions because their Synthetic Aperture Radar 

(SAR) sensors emit microwave signals that can 

penetrate clouds and operate day and night in all 

weather conditions (Pham-Duc, 2023). 

Observations acquired by the SAR Sentinel-1A 

satellite (launched in 2014) were the first radar 

dataset provided freely to end-users. Since then, 

SAR data has been used intensively for 

monitoring inland water bodies (Huth et al., 

2020).  
Traditionally, users must face the heavy 

task of downloading satellite observations 
from space agencies’ data hubs and then 

utilizing specialized software, such as ENVI, 
ArcGIS, or SNAP to process these 
observations. This process is time-consuming 
and demanding, requiring a stable internet 
connection and high-performance computers, 
resources often lacking in scholars from 

numerous developing countries. Thanks to 
recent technological advancements, cloud 
computing platforms with supercomputing 
capabilities offer a significantly faster 
alternative for processing satellite observations 
(Pham-Duc, Nguyen, et al., 2023). Among 

various cloud platforms, Google Earth Engine 
(GEE), established by Google, stands out as the 
most popular due to its powerful processing 
capacity and free accessibility (Gorelick et al., 
2017). While Sentinel-1 had long been the 
unique SAR satellite dataset available in GEE, 

recently, the Japan Aerospace Exploration 
Agency (JAXA) decided to release freely the 
ALOS-2 PALSAR-2 ScanSAR Level 2.2 
dataset (Small, 2011), at 25 m pixel spacing, to 
the community through GEE. This marks the 
first time two distinct SAR datasets are 

concurrently available in GEE, providing users 
with a broader range of options for data 
selection. This study represents one of the first 
work focusing on comparing the performance 
of SAR Sentinel-1 and ALOS-2 observations 
in mapping inland water bodies. Utilizing 

cloud-free Sentinel-2 and a few commercial 
PlanetScope observations as the reference 
datasets, this study selects the Tri An reservoir, 
located in South Vietnam as the test side. The 
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author chose the 2016-2023 period for this 
study because all satellite observations are 
accessible during this period.  

Details of the study area and all satellite 

datasets are presented in Section 2. Section 3 

focuses on the explanation of the methodology. 

Results and discussions are presented in 

Section 4 and Section 5, while Section 6 

concludes this study.   

2. Study Area and Datasets 

2.1. Study Area 

Tri An Reservoir (Fig. 1) is one of 

Vietnam's most significant artificial reservoirs, 

located in Dong Nai province in South 

Vietnam (11.152°N and 107.135°E). 

Commencing its construction in 1984 and 

finishing in 1987, this water reservoir was 

designed for multiple purposes, such as flood 

and drought control, provision of drinking and 

industrial water, support for agriculture and 

fisheries activities, and supplying water to the 

Tri An Hydropower Plant (Nguyen et al., 

2020). Under normal conditions, the reservoir 

has an average depth of 8 m, encompassing an 

average surface water area of approximately 

323 km2, which allows a total volume of 

around 2.7×106 m3. Situated in the tropical 

monsoon climate in South Vietnam, the region 

experiences an annual mean temperature and 

precipitation of approximately 33°C and 2400 

mm, respectively (Hoang-Cong et al., 2022). 

The region is characterized by two distinct 

seasons: the dry season, which accounts for 10-

15% of the annual rainfall (December to April), 

and the rainy season, which accounts for 85-

90% of the annual rainfall (May to November) 

(Pham-Duc et al., 2022).

 

 

Figure 1. Location of Tri An Reservoir in South Vietnam  
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2.2. Datasets 

The temporal distribution of radar Sentinel-

1 and ALOS-2, along with cloud-free Sentinel-

2 observations during the 2016-2023 period, 

which serves as the three satellite datasets for 

this study, is shown in Fig. 2. The availability 

of cloud-free observations was limited in 2016, 

2017, and 2019; however, in other years, the 

author could identify between three to six 

distinct time windows where data from the 

three satellites were all available. It is worth 

mentioning that most satellite observations 

utilized in this study were acquired during the 

dry season, from December to May, when the 

prevalence of cloud cover in the region tends to 

be minimal. In this work, cloud-free Sentinel-2 

imagery was utilized as the primary reference 

dataset to compare the performance and 

accuracy of radar ALOS-2 and Sentinel-1 

imagery for mapping open water areas of lakes.

 

Figure 2. Temporal distribution of all SAR ALOS-2, Sentinel-1, and cloud-free Sentinel-2 satellite 

observations during 2016-2023, used in this study

2.1.1. SAR Sentinel-1 satellite observations 

Sentinel-1 is a radar satellite mission 

funded by the European Union (EU) and 

implemented by the European Space Agency 

(ESA). The mission includes two identical 

SAR satellites, Sentinel-1A (launched in April 

2014) and Sentinel-1-1B (launched in April 

2016). Unfortunately, in 2022, ESA had to 

announce the termination of the Sentinel-1B 

satellite due to an unexpected anomaly 

associated with the power supply unit, which is 

necessary for powering the radar electronics 

(ESA, 2022). Consequently, only the Sentinel-

1A satellite is orbiting the Earth, and efforts are 

underway to launch the next Sentinel-1C 

satellite at the earliest opportunity. The two 

Sentinel-1 satellites orbit in near-polar sun-

synchronous orbits at an altitude of 693 km 

above sea level, with an incidence angle 

ranging from 29° to 46°. Sentinel-1 sensors 

operate at C-band (5.405 GHz), providing day-

and-night imagery for land and ocean surface 

applications, with a revisit time of 12 days. 

This study used 5 m × 20 m spatial resolution 

VH-polarized Sentinel-1 Ground Range 

Detected (GRD) L1 imagery acquired in the 

Interferometric Wide (IW) mode. This satellite 

product is available on the GEE platform; 

therefore, all fundamental pre-processing steps 

of Sentinel-1 data have already been carried 

out on the cloud platform. Details of these pre-

processing steps, including applying orbit files, 
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thermal noise removal, border noise removal, 

calibration, and terrain correction, can be found 

in previous publications (ESA, 2016; Pham 

Duc & Tong Si, 2021).  

2.1.2. Optical Sentinel-2 satellite observations 

Sentinel-2 is an optical satellite mission 

funded by the EU and implemented by the 

ESA. The mission involves two sun-

synchronous satellites orbiting at 786 km 

above sea level, known as Sentinel-2A 

(launched in June 2015) and Sentinel-2B 

(launched in March 2017). The revisit time for 

each single Sentinel-2 satellite is 10 days, 

which reduces to 5 days with the combined 

constellation. The primary instrument of the 

two satellites is the Multispectral Instrument 

sensor (MSI), which includes 13 different 

wavelengths, varying from blue at 500 nm to 

short wave infrared (SWIR) at 2200 nm. The 

spatial resolutions provided by Sentinel-2 

satellites vary at 10, 20, and 60 m, depending 

on the wavelengths. Like Sentinel-1, all 

Sentinel-2 imagery is also accessible in GEE, 

and all pre-processing steps were conducted in 

the cloud platform for time-saving. This study 

utilized Level-2A Bottom-Of-Atmosphere 

(BOA) reflectance of green and SWIR 

wavelengths (band 3 and 11, respectively) to 

calculate the MNDWI. This water index is used 

later to monitor the variations in the reservoir’s 

water extent.  

2.1.3. ALOS-2 satellite observations 

The Advanced Land Observing Satellite-2 

(ALOS-2), launched in May 2014, is a satellite 

mission funded by JAXA. ALOS-2 satellite is 

the follow-on mission of the ALOS satellite 

(launched in January 2006), with the primary 

objectives focusing on regional observation, 

disaster monitoring, land cover classification, 

and global tropical rainforest monitoring 

(JAXA, 2023b). ALOS-2 satellite orbits 628 

km above the equator in a sun-synchronous 

sub-recurrent orbit, with an incidence angle of 

97.9°. ALOS-2 PALSAR-2 radar sensor 

operates at L-band (1.2 GHz), with a revisit 

cycle of 14 days. In this study, HH-polarized 

PALSAR-2 ScanSAR Level 2.2 product at  

25 m pixel spacing, recently added to GEE, 

was utilized to monitor the reservoir variations. 

ALOS-2 PALSAR-2 ScanSAR Level 2.2 data 

was ortho-rectified and radiometrically terrain-

corrected before being distributed to GEE; 

therefore, users only have to conduct a few 

simple pre-processing steps such as speckle 

filter and digital-number-to-gamma-naught 

conversion before moving to the post-

processing part (JAXA, 2023a).  

2.1.4. In situ data of water level and estimated 

surface of Tri An Reservoir 

Daily in situ measurements of water level 

and a corresponding table illustrating the 

relationship between water level and surface 

water of the reservoir are collected for 

validation purposes. These datasets are 

provided by Tri An Hydropower Company 

(https://trianhpc.vn/). However, it is essential 

to note that the provided surface water data for 

Tri An Reservoir was based on statistical 

estimates dating back to the reservoir’s 

construction and may not perfectly capture the 

actual dynamics of the reservoir after several 

decades of deposition within the lake.  

3. Methodology 

The flowchart of the methodology applied 

to all radar and optical satellite observations is 

shown in Fig. 3, which is adapted from 

previous work (Pham-Duc, 2023; Pham-Duc, 

Tran Anh, et al., 2023). The VH-polarized 

Sentinel-1 and HH-polarized ALOS-2 data are 

selected because these two polarizations are 

more sensitive than other polarizations in 

mapping surface water (Gulácsi & Kovács, 

2020; Henry et al., 2006). For the Sentinel-1 

dataset, each single VH-polarized imagery is 

spatially subset using a predefined shapefile 

(.shp), which fully covers the Tri An Reservoir. 

https://trianhpc.vn/
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Next, the Refined Lee filter is called to reduce 

speckle noise. The Otsu thresholding algorithm 

(Otsu, 1979) is applied to the histogram of the 

processed backscatter coefficient to identify a 

threshold value to separate each pixel in the 

Sentinel-1 imagery into non-water (0) or water 

cluster (1). The binary water/non-water map is 

then exported to Google Drive and downloaded 

to a local computer for post-processing. For the 

ALOS-2 satellite, the pre-processing flowchart 

is similar to those of Sentinel-1, except that the 

HH-polarized imagery has been used to 

generate the binary surface water map of the 

reservoir. For Sentinel-2 satellite, it is 

important to remind that only cloud-free 

observations are used. In the first step, the same 

predefined shapefile, as for Sentinel-1 and 

ALOS-2, is utilized to spatially subset the 

original imagery. Next, the MNDWI map is 

generated using surface reflectance data of 

band 3 (green wavelength) and band 11 (SWIR 

wavelength), then the Otsu method is applied 

to the MNDWI histogram to classify each pixel 

into non-water and water clusters. The surface 

water map is then exported to Google Drive 

and downloaded to a local computer. For post-

processing part, a predefined reservoir’s water 

mask is applied to the resulting binary 

water/non-water maps, derived from the three 

satellites during the pre-processing part, to 

eliminate water bodies not linked to Tri An 

Reservoir. Finally, the final surface water maps 

derived from Sentinel-1 (10 m) and ALOS-2 

(25 m) satellites are compared to results 

derived from Sentinel-2 satellites (10 m) to 

estimate the consistency and accuracy of radar 

to optical satellite observations in mapping and 

monitoring Tri An Reservoir’s surface water.

 

Figure 3. The flowchart utilized in this study is adapted from (Pham-Duc, 2023;  

Pham-Duc, Tran Anh et al., 2023) 
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4. Results 

4.1. Temporal comparison of surface water 

maps derived from radar and optical satellites 

The temporal dynamics of surface water in 

Tri An Reservoir during the 2016-2023 period, 

as derived from the three satellite platforms, 

along with the estimated surface water areas 

(derived from in situ water level data), 

provided by the Tri An Hydropower Company, 

are shown in Fig. 4. Analysis of results derived 

from the reference Sentinel-2 data reveals a 

rapid expansion of the reservoir’s water extent, 

escalating from around 240 km2 in April 2016 

to around 305 km2 by December 2016. This 

increase, surpassing 25%, marked the region's 

termination of the robust 2015/2016 El Niño 

(Lakshmi et al., 2023). Subsequently,  

from 2017 to 2022, the reservoir’s water 

exhibited relative stability, oscillating between  

280-300 km2. However, with the onset of 

another robust El Niño in summer 2023, the 

reservoir’s water extent dropped dramatically 

by almost 70%, decreasing to approximately 

100 km2 in April/May 2023. This dynamics is 

validated by comparing its variations with the 

estimated surface water areas of the reservoir 

provided by Tri An Hydropower Company 

(black bars). Although the trend is highly 

correlated (R = 0.988), the absolute values do 

not always completely match. As explained 

above, the reservoir’s surface water data was 

based on statistical estimates dating back to the 

reservoir’s construction nearly four decades 

ago. By that time, the topography of the 

reservoir’s bottom had changed significantly 

due to deposition. This explains the difference 

between results derived from Sentinel-2 

observations and values provided by the Tri An 

Hydropower Company.  

  

 

Figure 4. Tri An Reservoir's surface water variations from 2016-2023, derived from the three satellite 

platforms. Black bars indicate estimated surface water areas derived from in situ water levels provided by 

Tri An Hydropower Company 

 

Analysis of results derived from radar 

Sentinel-1 observations shows similar 

variations of the reservoir dynamics, except in 

the dry season 2023. During this period, the 

Sentinel-1 sensor detected a substantially 

larger water extent of the reservoir than the 
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reference Sentinel-2 sensor. Conversely, 

results from the ALOS-2 sensor did not 

observe a decrease in the reservoir’s water 

extent in summer 2023. This is unexpected as 

the reservoir’s water level in the summer  

of 2023 hit a 12-year low, as the Tri  

An Hydropower Company reported. 

Consequently, the author decided to exclude 

satellite observations acquired in June 2022, 

April, and May 2023 from the current analysis 

due to disparities exceeding 20% of their 

results. A deeper analysis of satellite 

observations acquired during these periods is 

presented in the following subsection to 

understand why their disparities are abnormal. 

The correlations among the remaining 21 

pairs of Sentinel-1/Sentinel-2 and ALOS-

2/Sentinel-2 are shown in Fig. 5, providing 

insights into the comparative performance of 

results derived from these satellite datasets. 

Notable, the correlation between results 

derived from Sentinel-1 and the reference 

Sentinel-2 data (R = 0.9774) is higher than 

ALOS-2 and Sentinel-2 (R = 0.9145). During 

this analysis period, the average surface area of 

the reservoir, as derived from the reference 

dataset, is around 281.50 km2, which is 3.83% 

higher than the number obtained from Sentinel-

1 data (270.10 km2), and only 0.26% higher 

than that derived from ALOS-2 data  

(280.80 km2). It is worth noting that results 

derived from the Sentinel-1 sensor are 

consistently lower than results derived from the 

reference Sentinel-2 sensor. In contrast, results 

derived from the ALOS-2 sensor fluctuated, 

being higher in half of the time and lower in the 

remaining half compared to the reference 

dataset. This observation suggests that 

outcomes from the Sentinel-1 sensor exhibit 

more excellent stability and consistency with 

the reference Sentinel-2 sensor, emphasizing 

its reliability in monitoring the dynamics of the 

reservoir’s surface water area compared to the 

ALOS-2 sensor.

 

Figure 5. Comparison of Tri An reservoir’s surface water, derived from SAR Sentinel-1 and ALOS-2 

observations and cloud-free Sentinel-2 observations 
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4.2. Spatial comparison of surface water 
maps derived from radar and optical 
satellites 

Figure 6 shows the MNDWI map derived 

from Sentinel-2, the backscatter coefficient 

maps derived from Sentinel-1 and ALOS-2 

(first column), the resulting surface water 

extent maps extracted from the three datasets 

(second column), and the delineation of the 

reservoir’s land/water border derived from the 

three datasets (third column). All satellite 

observations were acquired in March 2020 

when the disparities between their resulting 

surface water maps were minimal. Three 

subfigures in the first column capture the 

strong contrast between signals reflected from 

the reservoir and those from the surrounding 

land. In the MNDWI map, values over water 

bodies are notably high, typically exceeding 

0.6, while values over land surfaces are 

consistently low, predominantly below -0.5. 

Examining the backscatter coefficient maps 

signals over the reservoir range from -28 to -33 

dB for Sentinel-1 imagery and -19 to -26 dB for 

ALOS-2 imagery. 

In contrast, signals over land surfaces 

exhibit considerably higher values, surpassing 

-18 dB for Sentinel-1 and -16 dB for ALOS-2 

imagery, respectively. These distinct lay a 

favorable foundation for employing the Otsu 

method in detecting the reservoir’s water and 

land surfaces. The estimated water surface, 

derived from the reference Sentinel-2 imagery, 

stands at 279.97 km2, while estimates from 

SAR Sentinel-1 and ALOS-2 imagery yield 

272.85 and 280.85 km2, respectively. The 

differences between results obtained from the 

reference satellite and the two SAR satellites 

are only 2.8% and 0.31%, suggesting a 

remarkable consistency in their results. These 

discrepancies occur primarily at the east side of 

the reservoir, where optical Sentinel-2 sensors 

can detect small branches of the reservoir, but 

SAR sensors fail to capture them. The 

land/water border in other reservoir parts is 

similar to that derived from the three datasets.

 

Figure 6. Spatial comparison between surface water maps of Tri An Reservoir, extracted from the three 

satellite platforms. Sentinel-2 observations were acquired on March 13, 2020, while Sentinel-1 and 

ALOS-2 observations were acquired on March 15, 2020 
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5. Discussions on limitations of SAR 

compared to optical satellite sensors for lake 

monitoring   

The inherent advantages of SAR satellites 

over optical ones, related to cloud penetration 

and day-and-night operation, are widely 

acknowledged in the literature (Xiong et al., 

2023). However, this section aims to 

investigate and discuss a fundamental 

limitation associated with SAR Sentinel-1 and 

ALOS-2 satellites compared to optical 

Sentinel-2 satellites for lake mapping. 

Specifically, the focus lies on understanding 

the challenge these SAR sensors face in 

accurately distinguishing between water 

surfaces and dry, flat soil surfaces at the bottom 

of Tri An Reservoir. 

The inundation frequency of Tri An 

Reservoir, derived from all satellite 

observations acquired from the three platforms 

during the 2016-2023 period (refer to Fig. 2), 

is shown in Fig. 7. Results derived from 

Sentinel-2 observations, considered as the 

reference dataset, reveal a permanent water 

area of Tri An Reservoir at approximately  

90.45 km2, accounting for only 32.13% of its 

mean surface water area. However, results 

extracted from Sentinel-1 and ALOS-2 

observations indicate contrasting figures of 

107.90 km2 and 192.60 km2, representing a 

notable 20% and 113% increase compared to 

the reference dataset. The significant reduction 

of the permanent surface water of Tri An 

Reservoir, as observed from Sentinel-2 

observations, can be mainly explained by the 

impact of the robust El Niño occurring in the 

region during the summer of 2023, which 

caused a lack of rainfall and a higher 

temperature (Ngo-Duc, 2023). To validate the 

accuracy of the reference Sentinel-2 dataset, 

high-resolution cloud-free observations from 

commercial PlanetScope SuperDove satellites 

acquired in April and May 2023 were 

employed. Figure 8 and Fig. 9 compare the 

resulting surface water maps of Tri An 

Reservoir, generated from optical PlanetScope 

and Sentinel-2, as well as SAR Sentinel-1 and 

ALOS-2 satellites. In April 2023, due to the 

effects of drought, the reservoir’s surface water 

was shallow, approximately 93-95 km2, as 

estimated from optical satellite observations. 

 

Figure 7. The inundation frequency of the Tri An 

Reservoir, which was derived from 24 satellite 

observations acquired from the three platforms 

during the period 2016-2023
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Figure 8. Comparison of surface water extent of Tri An Reservoir, extracted from radar and optical 

satellite sensors. All satellite observations were acquired in April 2023 

In contrast, the Sentinel-1 sensor detected a 

surface water area of about 224.5 km2, and 

ALOS-2 observed nearly 260 km2. May 2023 

continued to show a reduced surface water area 

as observed from optical satellite imagery 

(being around 97-99 km2), while Sentinel-1 and 

ALOS-2 imagery estimated surface water of 

approximately 112.60 km2 and 265.20 km2, 
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marking a 15% and 170% higher compared to 

the two reference datasets, respectively. The 

misclassification in mapping the reservoir’s 

surface water by SAR sensors can be explained 

by the similarity in the SAR backscatter 

coefficient over water and dry, flat soil surface, 

as discussed in other publications (Pham-Duc, 

2023). The elevation of the reservoir and its 

surroundings is shallow and flat; therefore, 

during the drought period, when the water 

recedes, the dry and flat lake bottom mimics 

water surfaces in reflecting incoming signals 

from SAR sensors to the specular direction, 

leading to misclassifications when employing 

the Otsu method as their backscatter coefficient 

are highly similar in both VH- and HH-

polarized imagery. On the other hand, the clarity 

of contrast between the reservoir’s water surface 

and its surroundings, as observed in the NDWI 

and MNDWI maps derived from the reference 

PlanetScope and Sentinel-2 satellites, enhances 

the accuracy of their resulting water maps.

 

Figure 9. Similar to Fig. 8. All observations were acquired in May 2023 
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Between April and May 2023, the surface 

water of Tri An reservoir, estimated using 

optical satellite observations, slightly changed, 

but the results estimated using Sentinel-1 

observations have reduced by 50%. This 

problem might be explained by the sensitivity 

of C-band wavelength with the soil moisture 

content, which optical remote sensing does not 

have to face (Shanker Srivastava & Patel, 

2022). When water started to withdraw in April 

due to the drought, the soil was still wet, but it 

was much drier in May 2023. The difference in 

soil moisture content affects the interaction of 

C-band wavelength with the land surfaces, 

causing significant variations in the retrieved 

results between the two Sentinel-1 

acquisitions. 

Another essential point to be discussed is 

that the overestimation of Tri An reservoir’s 

surface water during the summer of 2023, 

derived from the ALOS-2 L-band sensor, is 

much higher than the estimates from the 

Sentinel-1 C-band sensor. Operating at a 

wavelength of 23.6 cm, the ALOS-2 sensor 

exhibits enhanced penetration capabilities, 

making its observations particularly well-

suited for mapping flooded forests. 

Additionally, the reservoir’s bottom is flatter, 

as observed from the L-band's longer 

wavelength than the C-band's shorter 

wavelength, which increases the visual 

resemblance between the water and flat soil 

surfaces. This finding aligns with results 

reported in prior publications, emphasizing the 

superiority of C-band SAR data over L-band 

SAR data in the context of lake monitoring  

(Chen et al., 2020; Ramsey III et al., 2013; 

Wakabayashi & Nishito, 2015). 

6. Conclusions 

This study compares the performance of L-

band and C-band SAR sensors onboard ALOS-

2 and Sentinel-1 satellites to optical sensors 

onboard Sentinel-2 satellite for mapping open 

water bodies of Tri An Reservoir, one of the 

most significant artificial reservoirs in South 

Vietnam, during the 2016-2023 period. All pre-

processing steps of imagery derived from the 

three satellites were conducted on the GEE 

cloud computing platform for time-saving. The 

retrieval water/non-water maps were generated 

by applying the Otsu threshold algorithm to the 

VH- and HH-polarized backscatter coefficient 

maps derived from Sentinel-1 and ALOS-2 

data, and MNDWI maps derived from 

Sentinel-2 data. Findings indicated a consistent 

surface water of Tri An reservoir from 2017 to 

2022, followed by a significant decline of 

almost 70% of its area, reaching approximately 

100 km2 during the dry season 2023. This 

decline was partly attributed to a robust El 

Niño phase occurring concurrently in the 

region, causing a lack of rainfall and a higher 

temperature. Overall, a high degree of 

consistency was observed between SAR and 

optical data results. However, the correlation 

between the two Sentinel platforms (R = 

0.9774) exceeded that between ALOS-2 and 

Sentinen-2 (R = 0.9145). During the drought 

period, both C-band and L-band SAR sensors 

experience an overestimation of the reservoir’s 

surface water extent due to the resemblances in 

backscatter coefficients of the water surface, 

and dry and flat soil surface. More importantly, 

ALOS-2 data displayed a greater tendency for 

misclassification than Sentinel-1 data, 

underscoring the suitability of C-band SAR 

sensors over L-band SAR sensors for 

accurately mapping open lake areas, especially 

during drought periods.  

This study is subject to several limitations. 

First, the lack of a more precise ground truth 

dataset for comparative analysis against the 

satellite-derived results poses a challenge. 

While results extracted from cloud-free 

Sentinel-2 and PlanetScope observations can 

serve as the reference datasets, the lack of a 

more precise ground truth dataset makes it 

difficult to achieve accurate assessments of 

accuracy for each satellite sensor, as in situ 
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data provided by the Tri An Hydropower 

Company can only validate the temporal 

dynamics of the reservoir’s surface water. 

Secondly, there is a temporal bias in the 

acquisition time of satellite imagery. The 

prevalence of cloud contamination led to over 

80% of the satellite observations in this study 

being acquired during the dry season (between 

December and April). Consequently, a greater 

number of imagery acquired during the rainy 

season is essential to establish a robust 

conclusion regarding the accuracy and 

performance of various satellite products. 

However, accuracy is expected to increase 

during the rainy season because when the 

reservoir is fully inundated, it creates a 

maximal contrast between open water bodies 

and the surroundings in both SAR and optical 

satellite observations. Third, Planet Labs 

granted the author a free account, limiting 

downloads to less than 5000 km2 per month. 

This limitation does not allow the author to use 

PlanetScope observations as the primary 

reference dataset in this study.  
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