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ABSTRACT

Forest fires present a significant threat to the tropical forest ecosystem in the northwestern region of Vietnam.
Our study aimed to assess the impacts of environmental factors on forest fire occurrence and to map forest fire
probability for the whole region. The forest fire occurrence data over the period 2003-2016, environmental factors
(climate, fuel condition, topography, and human activity), and the MaxEnt approach were used for this study. The
MaxEnt model performed better than the random model (AUC>0.88). Climatic factors (especially climatic
seasonality: annual temperature range (bio 07), isothermality (bio 03), and precipitation of warmest quarter
(bio_18)) had the highest contribution to the model, followed by population density and elevation. In contrast, fuel
condition (Land cover type) had a small contribution to the model. While medium, high, and very high probabilities
of forest fire occurred at medium to high elevations (e.g., Dien Bien, Son La, and Lai Chau provinces) throughout
southern to northern and western areas, very low and low probability concentrated southeastern areas at lower
elevations (mainly in Hoa Binh province). Our results may be helpful references for fire managers and policymakers
to establish more effective fire management strategies for the region's forest.
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1. Introduction ecosystems. This trend represents a growing
threat to the remaining tropical forests in
Southeast Asia (SEA) (Langner and Siegert,
2009; Syaufina and Ainuddin, 2011). Fire is
projected to increase in SEA as climate
changes and the human population continues
to grow in the future (Juarez-Orozco et al.,
2017, Robinne and Secretariat, 2021).
Conservationists are increasingly concerned
that the impacts of fire in continental SEA
degradation  of these tropical forest |equce the forest area and biodiversity, alter

forest structure and composition, increase soil
*Corresponding author, Email: phamtrang.botanydep@gmail.com erosion and greenhouse gas emissions, and

Fires represent one of the main types of
disturbance in terrestrial ecosystems globally
(Flannigan et al., 2013). While fires have
rarely occurred in wet tropical forests
(Cochrane 2003; Enright 2011), over the past
few decades, increased fire occurrence (a
likely ongoing consequence of global
environmental change drivers) has caused the
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result in a net loss of species diversity as a
consequence of ecosystem simplification
(Cochrane, 2003; Syaufina and Ainuddin,
2011; Verma and Jayakumar, 2012). In
addition to its devastating effects on tropical
forest systems, forest fires result in significant
economic losses (Silviana et al., 2019). The
cost of damages by the fires in SEA has
exceeded $4.5. billion (Cotton, 1999).

Forest fire occurrence results from complex
human-environment interactions among forest
fuels, climate conditions, ignition agents,
topography, and human activities (Goldammer
and Seibert, 1990; Herawati and Santoso,
2011). Fire occurrence is strongly affected by
weather conditions, both antecedent
(conditions conducive to fuel drying) and
ambient (conditions conducive to ignition,
combustion, and spread) (Bradstock, 2010).
Generally, the hotter, drier, and windier
weather conditions increase the possibility of
wildfires because of reduced fuel moisture and
lower energy requirements for pre-heating,
especially when these conditions coincide with
ignitions (Parisien and Moritz, 2009). Fuel
conditions are also a significant factor
influencing the occurrence of fire (Bradstock,
2010). Fire occurrence is regulated by fuel's
load, moisture content, and flammability
(including both live and dead) (Pausas and
Keeley, 2009). Topographic variables such as
elevation, slope, and aspect strongly impact fire
occurrence by influencing the micro weather
patterns, moisture, and availability of fuel
(Fang et al., 2015). The slope also influences
fire spread (Cruz and Alexander, 2017), with
slower progression on lower slopes than on
upper slopes (Viegas and Pita, 2004). Elevation
impacts forest fire via its relationship to
temperature, precipitation, and wind, affecting
fuel characteristics (Bennett et al., 2010; Camp
et al., 1997). Aspect affects forest fire through
its effect on fuel moisture (Nyman et al., 2015).
Aspects receiving higher solar radiation are
warmer; thus, fuels dry faster, support ignition,
and spread more readily than on more

astonishing aspects (Bennett et al, 2010;
Skinner, 2002). Fire occurrence is also affected
by human factors such as population density
and road distance. High population densities
and short distances from roads are related to a
high possibility of wildfire occurrence (Knorr
et al., 2014; Matin et al., 2017). These previous
studies showed that forest fires are complex
and non-linear processes influenced by
physical and climatic factors. Therefore,
modeling and predicting forest fire occurrence
remains a challenging task.

In recent years, various approaches have
been suggested for spatial pattern modeling of
forest fire occurrence globally such as linear
and multiple regressions (Oliveira et al.,
2012), logistic regression (Guo et al., 2016a),
geographically weighted regression (Koutsias
et al, 2010), Random forest algorithm
(Massada et al, 2012), support vector
machines (Thach et al., 2018), kernel logistic
regression (Dieu et al., 2016), neural fuzzy
(Dieu et al., 2017), convolutional neural
network (Zhang et al., 2019), Maximum
Entropy (Mishra et al., 2023). These studies
showed that machine-learning models have
delivered more accurate results than statistical
models (Massada et al., 2012).

Among existing modeling approaches,
Maximum Entropy (MaxEnt) has been widely
used to model the spatial distribution of
species in ecological studies (Phillips et al.,
2006). The MaxEnt is consistently among the
best-performing analytical approaches for this
application (Elith et al., 2006) by utilizing the
rule of maximum entropy on present data-
related environmental variables and habitat
suitability (Andrew and Fox, 2020; Phillips et
al., 2006). In recent decades, MaxEnt has
been used to assess the shape and the
importance of the relationships between fire
and environmental factors. This is based on
the environmental conditions at the fire
occurrence points relative to those at a set of
background points (Renard et al.,, 2012).
These studies indicated that MaxEnt
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performed reliable predictions of forest fire
distribution and assessments of relationships
between forest fire and environmental factors.
The Northwestern (N.W.) region of
Vietnam has been ranked the fourth highest in
forest coverage within the country (Ministry
of Agriculture and Rural Development,
2022a). This region has also experienced the
highest number of forest fires (Le et al., 2014;
Ministry of  Agriculture and  Rural
Development, 2022b) and is prone to an
increasing number of fires, with fire
occurrence facilitated by strong Foehn winds
(Mau et al., 2018; Nguyen and Reiter, 2014).
Most forest fire incidents occur in the dry
season, especially between November and
April (Le et al., 2014; Trang et al., 2022).
Approximately 10,000ha of forest area was
burned within the northwestern region in
2005-2020 (Forest Protection Department,
2020). Besides, forest fires caused economic
and environmental issues (Le et al., 2014).
However, current studies on forest fire
drivers and modeling in this region focused on
some specific areas (local scale) and years
(Thach et al., 2018; Thanh-Van et al., 2020).
For example, (Thach et al., 2018) applied
machine learning algorithms based on weather
conditions, fuel conditions, topography, and
distance to the road to analyze the spatial
pattern of fire danger in Thuan Chau district,
Son La province, in 2016. In recent years,
Trang et al. (2022) utilized the MaxEnt
approach to assess the importance of some
key drivers of forest fire occurrence in Lao
Cai, Dien Bien, and Son La provinces and
model spatial distribution of forest fire
occurrence in these provinces on days with
low, medium, and high Modified Nesterov
indexes. In general, the results of these studies
are not entirely similar. This may be because
of differences in topography, climatic and fuel
conditions, and other socioeconomic factors.
The results of these studies are localized and
limited, remaining insufficient to provide
adequate information for effective forest fire
management on a regional scale. This
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limitation may pose challenges in generalizing
within this region. Therefore, assessing the
relationship between forest fire occurrence
and environmental factors and modeling the
fire distribution for the entire northwestern
region is necessary for the forest management
authorities and policymakers to develop
effective forest fire prevention plans. The
study, therefore, was conducted to analyze the
effects of environmental and socioeconomic
factors on forest fire occurrence and model
the potential spatial distribution of forest fire
during the 2003-2016 period in N.W. of
Vietnam.

2. Materials and methods
2.1. Study area

The northwestern region of Vietnam,
including Hoa Binh, Son La, Dien Bien, and
Lai Chau provinces, is located at 20°00'-
23°23'N and 102°8'-106°00'E, with an area of
approximately 37,324 km? (General statistics
office of Vietnam, 2011; Ministry of
Agriculture and Rural Development, 2022a)
(Fig. 1). This region bordered by the
Northeast and Red-river regions to the east,
Laos to the west, Central region to the south,
and China to the north. A monsoon tropical
climate characterizes the region. Annual
average temperature is 20-23°C. Annual
precipitation is 1,100-2,400 mm, mainly
concentrated in Jun-August. This region has
experienced decreased annual rainfall (Ngo-
Duc, 2023). The drought period in this region
is from November to March. Winter is cold
and dry, with mean temperatures from 12 to
17°C, and the minimal temperature may fall to
4°C. Summer is the warm rainy season with
temperatures between 25 and 27°C;
sometimes, the temperature reaches 42°C.
Total hours of sunshine per year are 1,700—
2,100. The region experiences 40 days of dry
and hot winds from the west (Foehn winds)
annually (Van, 2015). Some parts of the
region have a montane monsoon tropical
climate associated with areas above 1,400 m
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elevation spread along the Hoang Lien Son, Si
Lung, Den Dinh, and Sam Sao ranges with
higher rainfall, lower temperature, and cold,
cloudy mists (Averyanov et al., 2003; Van,
2015). Vegetation cover is mainly rainforests
with four natural sub-forest types, including
evergreen broad-leaved forests on alkaline
soils; evergreen and semi-deciduous broad-
leaved, mixed and coniferous limestone
mountain forests; evergreen lowland forests
on silicate rocks; evergreen lowland forests on
silicate rocks; and evergreen montane and
highland forests on silicate rocks (Averyanov
et al, 2003). However, decades of
disturbances by human activities have created
large expanses of degraded land in northern
Vietnam (Cochard et al., 2016; Thai et al.,
2010). Therefore, most primary forests have
been replaced by secondary forests
characterized by more open canopy, lower

relative humidity, and higher fuel load - thus
more susceptible to fire (Phuong et al., 2012).

2.2. Dependent variable: active fire

A total of 18,811 fire occurrence data
during the 2003-2016 period, each with a
minimum size of 2lha, were downloaded
from the Moderate Resolution Imaging
Spectroradiometer (MODIS) - Collection 6
MCD64A1 burned area product at 500 m
resolution (Andela et al., 2019). We used
Vietnam's land use and land cover map from
2003 to 2016 (Phan et al., 2021) to determine
whether the fires were forest or non-forest
fires. A total of 13,153 forest fires were
chosen after removing non-forest fire points
and fire points with missing data in one of the
environmental predictor variables in the study
area. We chose the minimum distance of 2 km
between the nearest neighbor fire to limit the
potential influence of spatial autocorrelation
effects of adjacency of fire points. This
distance was thoughtfully selected to align
with the resolutions of the MODIS data and
environmental variables. Finally, 3,053 points
were used in the analysis (Fig. 1).
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Figure 1. The study area and forest fire occurrence (red dots) over the period 2003-2016 inclusive
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2.3. Independent variables

Environmental variables used in this study
are shown in Table 1. Nineteen bioclimatic
variables were obtained from the Worldclim
dataset (version 2.1;
http://www.worldclim.org) at approximately 1
km spatial resolution (Fick and Hijmans,
2017). The elevation layer was extracted from
the Global Digital Elevation Map (GDEM)
generated from the Consultative Group on
International ~ Agricultural ~ Research -
Consortium for Spatial Information (CGIAR-
CSI) with a resolution of approx.90m (Jarvis et
al., 2008). Slope and aspect were generated
from the elevation layer by using the Surface
Analysis toolbox in ArcGIS Pro (ESRI, 2019).
The MODIS 500-m Land Cover Type Product
(MCD12Q1) in 2016 was downloaded from the
Land Processes Distributed Active Archive

Center (LPDAAC) of the United States
Geological Survey (USGS) and the National
Aeronautics and Space  Administration
(NASA)

(https://Ipdaac.usgs.gov/products/mcd12q1v0
06/). This product was used as a source of fuel
condition, which was identified into 12
classes by Sulla-Menashe and Friedl (2018).
Population density data at 30 arc-second
resolution (approximately lkm) during the
period 2000-2020 was obtained from the
Socioeconomic Data and Applications Center
(SEDAC) (https://sedac.ciesin.columbia.edu)
(Center for International Earth Science
Information Network Columbia University,
2018). Finally, all variables were resampled to
the preferred resolution (90 x 90 m) using the
nearest neighbor method by the Resample tool

in ArcGIS Pro (ESRI, 2019).

0 50000 O 3000 O 500 0 250 70 200 5 20 5 20 16 26 20 35 30 55 10 25
Ll L L L L LIl L1l 1111 L L1l L 1111
; - [ o o™ - = = = =] = e T S T e S e e s e B e E
Lo - am | e co8 - - - - - - - - - - - - - - - ©
= e 02% s o e onh | e - P B0 o Er Y e o34 - B2 P
& auor—, o 0% | -046 | 047 02" -044"| -058"| -0.64']-0.98| -0.671-0.97| 01¢"]-0.811-0.92 =
o et e A ———A———1————F ©
° w [0.95] <™ -055710.991 o 038 w | 0aT] o™ 038" ol o M 033" 043" -0827] -048"| o o
P .. 0.831 057 <2 10.76710.78] 02" o] 02" 038" ] 046 | 041" ] ei| - el N 3
- O 1w T-08670.95] = [ o] [ 05 =" 047 o] ] 0357] 055 -064] 05| ] o
0017067 = ]0.98]0.97] 0.64 | 045 | 0.63] o4s"| 064] 067 | 046 | v&'| v ] <= | 060 E B
S PR [070] 064 045 048] - | 04b" 071 08| - |-073]062] &' oa°|
I~ OTHT o™ o™ =™ o™ =" 0™ 038" =" 02 0.66™] -0637 -04 B °
S O3 [0.947] 0667 042 ] 0.657] 03] -067] 0687 03] 047 0" 060 o
¥ 7210641 05570657 053] 08 0.77] 050 <& "1 «2"] 065 §
& 0.6810.98] 0.661-06310.94]0.75]-0631 036" ~ [0.94
" 0.7770.99] +"10.8210.96] "] ~#] 0550.89F w»
- 0687]-05910.93]0.78] 08| o] ~"[0.94] ~
< ]0.8070.94] o™ %] 0521087 F o
© 0667 =] 0.697 -038 orf | -047
= 0.81] «4™ 1 «3"0.97E o
5] - | == 04710.92
-0.907 -0571 -0 8
3 084] — | ¥
(32
©
w
0 6 0 50 0 300 500 500 0 60 1000 15 30 15 0 15 300 6 12

Figure A.1. Correlation matrix of variables. r values and *, **, and *** indicate p < 0.05, p <0.01,
and p <0.001, respectively, in cells. The full names for variables are provided in Table 1

To avoid autocorrelation  between
environmental variable pairs, we randomly
created 17,000 points with a minimum distance
of 2 km between these points in the region,
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which found a balance between the resolution
of environmental variables. Then, each point
was assigned environmental variable values.
The Pearson correlation coefficient was used to
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calculate the correlation between pairs of in the same model (Fig. A.1). As a result, 12
variables. We did not include variables with a  variables were eventually selected for this
high correlation coefficient of greater than 0.8  study (Table 1).

Table 1. Environmental predictors used for forest fire occurrence modelling

Variable Unit Code Source/Reference

\Annual mean temperature °C bio 01

énnual mean d.1urna1 range (Mean of monthly| oC bio 02

Fmax temp - min temp) -

Isothermality (B102/BI107) (* 100) - bio 03

Ifgg;erature seasonality (standard deviation| CofV bio_ 04

Max temperature of warmest month °C bio 05

Min temperature of coldest month °C bio 06

\Unnual temperature range (B105-B106) °C bio 07

IMean temperature of wettest quarter °C bio 08

IMean temperature of driest quarter °C bio 09 . ) .

IMean temperature of warmest quarter °C bio 10 Worldclim (http://www.worldclim.org)

\Mean temperature of coldest quarter °C bio 11

nnual precipitation mm bio 12

IPrecipitation of wettest month mm bio 13

Precipitation of driest month mm bio 14

Prefzzp‘ttatmn seasonality  (Coefficient of mm bio 15

variation) -

IPrecipitation of wettest quarter mm bio 16

\Precipitation of driest quarter mm bio 17

\Precipitation of warmest quarter mm bio 18

Precipitation of coldest quarter mm bio 19

[Topography
The CGIAR Consortium for Spatial

[Elevation m elevation \|Information (CGIAR-CSI) (Jarvis et al.,
2008); https://srtm.csi.cgiar.org

\Slope degree slope Calculated from digital elevation model

Uspect degree aspect  |Calculated from digital elevation model

Fuel variables
\Land Cover Type Product

. (Sulla-Menashe and Friedl, 2018,

Land cover type lype lai (https://lpdaac.usgs.gov/products/)mcdl 2
iq1v006/).

Human activity
\Socioeconomic Data and Applications
Center (SEDAC)

\Population density persons/km? pop ;5;:::;5:;I]'\’,ZZZ;Z’OZZ;SWM Science
(https://sedac.ciesin.columbia.edu/data/s
et/gpw-v4-population-density-revl 1)

Note: The highlighted variables (in bold and italic), selected through multi-collinearity test, were used in modelling

2.4. MaxEnt modelling _source/maxent/) (Phillips et al., 2022) was
used for this study. The dataset of forest fire
occurrence was described in section 2.2. 75%
(downloaded from  of the data were selected for training and the
https://biodiversityinformatics.amnh.org/open  remaining (25%) for testing. The dataset was

The MaxEnt software version 3.4.4
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in Excel files in CSV format to run MaxEnt in
"samples with data" mode. The regularization
multiplier value was set at 4 to limit model
complexity. The selection was selected to
compare model performance across training
and test datasets. A reduction in AUC from
training to test indicates that the model may
be too complex and overfit the training data.
Maximum iterations were 5,000. The
maximum number of background (pseudo-
absence) points was 10,000. Thirty replicates
were kept for model building. The other
values in the model were kept as default
(Phillips, 2005).

The area under the curve (AUC) was used
to determine the accuracy of the model
(ranging from 0 to 1) (Fielding and Bell,
1997; Phillips et al., 2006). The AUC values
above 0.7 are considered reasonable
performance (Elith, 2000; Phillips et al,
2006). The jackknife procedure was used to
assess the importance of variables.

Average Sensitivity vs. 1 - Specificity for forestfire

Finally, the result of the MaxEnt models
was a map layer representing forest fire
probability values (with values ranging from 0
(no fire probability) to 1 (high fire
probability)). Then, ArcGIS 10.1 was used to
transform this map layer into a raster (.tif) file.
We used the "10" percentile training presence
logistic threshold" to determine the cut-off
value. Five classes were classified based on
the suggestion of Nhongo et al. (2019): Very
low (< 0.25), Low (0.25-0.36), Moderate
(0.36-0.47), High (0.47-0.58), and Very High
(> 0.58).

3. Results

The results of the MaxEnt model showed
that the mean training AUC was 0.8859+
0.003, and the mean testing AUC was 0.8856
+0.003, indicating good model performance.
That means that forest fire occurrence data
and environmental variable data used in the
modeling can effectively predict the potential
distribution of forest fires in this region

(Fig. 2).
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Figure 2. The AUC curves (created for the MaxEnt model) in the developing forest fire probability model
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The contribution of the 12 variables to the
model is shown in Table 2. Among these
variables, the top five variables, including
annual  temperature  range  (bio 07),
population density (pop), precipitation of
warmest quarter (bio_18), isothermally
(bio_03), and elevation, had the most

contribution to the model with 95.1% of
cumulative contribution (Table 2). Thus,
these variables had the most significant

effect on forest fire occurrence in the
northwestern ~ region. The  remaining
environmental variables had a small or

negligible effect on forest fire distribution.

Table 2. Percentage contribution and permutation importance of each variable in the final MaxEnt model.

The full names for variables are provided in Table 1

Variable Percent contribution Permutation importance

bio 07 50.1 66.1

op 15.7 13.7
bio 18 11 6.3
bio 03 9.6 8.9
elevation 8.7 0.3
bio 11 2.8 1.9
slope 1.3 1
bio 15 0.5 1.1
bio 12 0.1 0.4
lai 0.1 0.1
bio 17 0 0.2
laspect 0 0

The result of the jackknife test of variable
importance showed that the annual temperature
range (bio 07) had the most valuable and
unique information of all the variables and was
thus identified as the main factor affecting the

Jackknife of AUC for forestfire

spatial distribution of forest fires in this region,
followed by population density (pop),
precipitation of warmest quarter (bio 18),
precipitation seasonality (bio_15),
isothermality (bio_03) (Fig. 3).

T T T

aspect
bio_03
bio_07
bio_11
bio_12
bio_15
bio_17
bio_18

Environmental Variable

elevation
lai

pop
slope

1 1 1 1 1

T T

"] withoutvariable =
With only variable ®
7 With all variables ®

I 1 I 1

0.50 055 0.60 0.65 0.70
AUC

0.75 0.80 0.85 0.90

Figure 3. Jackknife test of variable importance for modelling of the spatial distribution of forest fire
occurrence within the northwestern region of Vietnam. The full names for variables are provided in Table 1
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Response curves results of five variables
with more than 8% contribution to the model
were shown in Fig. 4. Forest fire probability
seemed to prefer some conditions as follows:
elevation was 800—1200 m, population density
was lower than 300 persons/km? bio 07

ranged 18-19°, bio 03 ranged 45 to 50, and
bio 18 ranged 900—-1,200 mm. The forest fire
was likely to happen in low population
density areas at medium to high elevations
with  dry and high
temperatures.
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Figure 4. Relationship between significant environmental variables - showing above-average percent
contribution > 8% in MaxEnt models - and fire occurrence in northwestern region of Vietnam

The forest fire probability map is shown in
Fig. 5. Overall, there is a very low probability
of forest fire concentrated in the southeastern
areas of the region (Hoa Binh province and
southeastern portions of Son La province). In
contrast, a very high probability of forest fire
was widespread throughout the southwest and
northwest (Dien Bien and Lai Chau provinces
and the remaining areas of Son La province).
Areas with a moderate probability of forest
fire contracted to the east and southeast and
were more restricted topographically. The
results showed that the total forest fire area
with high and very high probabilities in this
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region was 15,374 km? (~65%), followed by
the forest fire area with medium probability
(3,034 km?; ~13%), and the total forest fire
arca with low and very low probabilities
(5,209 km?; ~22%) (Table A.1).

Table A.1. The areas, and mean and standard
deviation (S.D.) of elevation of each category of
forest fire probability in the northwestern region of
Vietnam

Category Areas (km?) Elevation (m)
IVery low 3,821 376 (+248)
Low 1,388 720 (£ 272)
Medium 3,034 1,002 (£ 624)
High 11,433 1,005 (£ 409)
[Very high 3,941 972 (£ 209)
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Figure 5. Forest fire probability for the northwestern region of Vietnam

4. Discussions

4.1. Environmental determinants of forest
fire in the N.W. region of Vietnam

Our study has shown that reasonable
predictions about the spatial distribution of
forest fire occurrence in N.W. of Vietnam
were created by considering a combination of
variables representing the fire environment
triangle (i.e., climate, topography, fuel
condition, and human activities). However, it
is not straightforward to understand the
relationships between these factors and forest
fire occurrence because the fire-environment
relationships are complex and multicollinear
(Renard et al., 2012). The importance of each
factor in explaining forest fire occurrence
varies significantly across regions, such as in
the Xishuangbanna and Leizhou Peninsula
regions in China (Su et al., 2021), Western

and
and

Ghats of India (Renard et al., 2012),
California, the United States (Parisien
Moritz, 2009).

Unsurprisingly, climatic factors are the
most potent predictor of forest fire probability
in the N.W. Vietnam (~74% of contribution
and ~85% of permutation importance to
model variation), whereas the remaining
factors (topography, human activities, and
vegetation) are less important (Table 2).
Temperature and precipitation are essential
factors influencing the occurrence of forest
fires. Low rainfall and high temperatures can
impact fuel conditions by causing tree
mortality and reducing fuel moisture, rapidly
promoting fire ignition and spread (Chang et
al., 2013; Holsinger et al., 2016).

The MaxEnt results showed that regional
temperature and  precipitation  patterns
significantly influenced forest fire probability
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in the N.W. region, in particular, the annual
temperature range (bio 07), isothermality
(bio_03), and precipitation of the warmest
quarter (bio_18). Temperature and
precipitation affect the distribution and
growth of plants by maintaining plant
physiological and biochemical activities and
ecological processes (Barker et al., 2006;
Walther et al., 2005), thereby influencing fuel
conditions. Our results are consistent with
previous studies that found climatic factors
were more important than other factors in
modeling forest fire on a regional scale (Guo
et al., 2016b; Mishra et al., 2023; Renard et
al., 2012; Su et al., 2021). For instance, forest
fires were more likely to occur in areas
associated with annual temperature range
(bio_07) from 18 to 19°C and isothermality
(bio 03) from 45 to 50, indicating an

increased forest fire probability in areas with a
moderate and high annual temperature range
and an increasing isothermality (Fig. 4 &
A.3), which agrees with previous studies in
other regions (Hoyos et al., 2017; Verma et
al., 2018). In terms of precipitation, forest fire
seemed to prefer to occur in areas with low to
moderate precipitation in the warmest quarter,
low precipitation in driest quarter and
precipitation seasonality (Fig. 4, A.2 & A.3).
Accordingly, forest fire occurrence was higher
in seasonally dry areas, which is consistent
with previous studies that showed increasing
fire probability with increase in precipitation
seasonality (Chuvieco et al., 2008; van der
Werf et al, 2006). The influence of
temperature and precipitation on forest fires is
a hint of the effect of climate change on forest
fires in the future.
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Figure A.2. Relationship between environmental variables with average percent contribution < 8% in
MaxEnt models and fire occurrence in northwestern region of Vietnam. Land cover type: 0: Water
bodies; 1: Grassland; 3: Broadleaf croplands; 4: Savannas; 5: Evergreen broadleaf forests; 6: Deciduous
broadleaf forests; 7: Evergreen needleleaf forests; 9: Non-Vegetated lands; 10: Urban and build-up lands
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northwestern region of Vietnam

Regarding  anthropogenic  variables,
population density was also strongly
correlated to forest fire occurrence (Table 2).
Population density has a significant negative
relationship with forest fire occurrence
(Fig. 4). This is inconsistent with previous
studies that found that higher population
density offers a higher potential for fire
occurrence (Matin et al., 2017). The result
may be because most human activities causing
forest fires in Vietnam were caused by human
activities (e.g., slash and burn farming and
harvesting bee's honey) (Hoang, 2007). These
activities were often conducted adjacent to
and within natural forests away from towns
and villages. Our findings, indicating a higher
fire frequency in forested areas at higher
elevations and farther from villages, suggest
that ignitions are most likely related to the
range of human activities mentioned earlier,
plus natural ignitions (lightning).
Additionally, fire suppression at low
populated areas is less likely after an ignition
occurs (Fig. 5 & A.3).

In the group of topographic variables,
elevation was a more significant contributor
than aspect and slope in explaining fire
occurrence (Table 2). The result of this study's
elevation-fire occurrence relation follows
previous studies (Xuan et al., 2023; Zhang
and Lim, 2019; Zhang et al., 2016). Elevation
affects forest fires by influencing all drivers of
forest fires, such as vegetation composition
and fuel moisture (Castro and Chuvieco,
1998). Previous studies reported that the
probability of forest fire was higher at higher
elevations because high elevations have good
drainage and an increased level of solar
exposure, leading to surface fuels typically
drying quickly (Fang et al., 2015; Holden et
al., 2009; Su et al., 2021). The MaxEnt results
reported that most forest fires occurred
between 500 and 1,500m elevation in the
study area (Fig. 4 & A.3). This may be
because most natural forests with high species
diversity and greater continuous extent are
located at these elevation ranges (Averyanov
et al., 2003; Phuong et al., 2012). However,

293



Vietnam Journal of Earth Sciences, 46(2), 282-302

the forest fire probability decreased at higher
elevations due to lower temperatures, higher
rainfall, and less frequent drying fuels
(Yakubu et al., 2015).

Although aspect and slope had low
contributions to the model in explaining forest
fire occurrence in the N.W. region, forest fires
tended to occur in areas related to the
southwest and northwest aspects (Fig. A.2 &
A.4). Higher Solar radiation loading on the
south and west aspects led to more open
canopies and more rapid fuel drying.
Additionally, the Western slopes of this
region are more directly affected by Foehn

winds, leading to hotter and drier conditions
(Nguyen and Reiter, 2014). The result of the
MaxEnt model also found a positive
relationship between slope and forest fire
occurrence, which is consistent with previous
studies (Yakubu et al., 2015). In the study
region, most fires occurred in areas with slope
values from 20° to 30° (Fig. A2 & A4),
indicating the high potential for fire
occurrence due to the steep terrain. This
explains that fuel may be drier, and fires
spread faster due to heat transfer to unburned
fuel by flame radiation in steep slopes
(Yakubu et al., 2015).
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On the contrary, the fuel condition (Land
cover type) showed a minimal contribution to
the model, indicating a significant overlap
with other variables. This may be because the
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information within the vegetation layer is
already encompassed by more influential
variables (e.g., climatic variables and
topography), especially on large spatial scales
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(e.g., regional scale) (Pfeifer et al., 2018; Xu
et al., 2020). The result may be because of the
coarse spatial resolution and the relatively
simple spatial composition of N.W. forests,
leading to a failure to provide sufficient or
correct information on fuel conditions. The
results agree with Renard et al. (2012) in the
Western Ghats of India and Guo et al. (2016b)
in Fujian, China. These studies found that
vegetation variables were less important in
explaining forest fire occurrence as they
depended on climate, and it was simple
in forest type classification. Although
vegetation-related variables within the model
were not negligible, the results of MaxEnt
indicated that forest fire seemed to occur in
Savannas areas with 10-60% tree cover and
Evergreen broadleaf forests with 60% or
higher tree cover (Fig. A.2 & A.4).

4.2. Spatial modeling of probability of
occurrence

The forest fire probability map in the N.W.
region of Vietnam was generated from the
final MaxEnt model by considering a
combination of four main influencing factors,
including climatic, fuel conditions,
topography, and human activities. The high
probability of forest fire mainly occurred
throughout the southwestern and northwestern
areas and constituted a total area of
15,374 km?* representing 65%. These areas
were average above 900 m of elevation (Fig.
5, Table A.1), where most natural forests with
high  species diversity were located
(Averyanov et al., 2003; Phuong et al., 2012).
The forested areas were likely to experience
an increased risk of fire because these
vegetation types were more open, which led to
a reduction of understory humidity and an
increase in the load and dryness of dead fuels
(Cochrane, 2003; Cochrane and Schulze,
1999; Enright, 2011). Additionally, these areas
were characterized by lower annual
precipitation and were more directly affected

by Foehn winds, resulting in hotter and drier
compared to other areas (Nguyen and Reiter,
2014; Van, 2015). Thus, forest fire probability
may be higher in these areas. The results are
coherent with previous studies (Le et al., 2014;
Trang et al., 2022) and agree with the MODIS
observed fires (MODIS dataset) (Fig. 1).

Nevertheless, most areas with a very low
probability of forest fires were concentrated in
southeastern areas. In the areas, most forests
(including natural, bamboo, and plantation
forests) were located at low elevations
(<800m) (Table A.1) and close to villagers
(Food and Agricultural Organization of The
United Nations, 2009; Cochard et al., 2016).
These forested areas were often actively
protected against fire by villagers through
weeding twice annually and collecting
fuelwood (Trang and Hoi, 2009; Nambiar et
al., 2015), resulting in fuel load reduction and
a low probability of forest fire. Also, the
southeastern areas may be partly affected by a
tropical cyclone from the East Sea (Schmidt-
Thomé et al., 2014), bringing heavy rains
(Pham and Vu, 2020), resulting in high fuel
moisture content, and then leading to low
probability of forest fire.

5. Limitation and further research

The high level of impact from climate
factors (especially climatic seasonality) within
the model is a hint for future impacts of
climate change on forest fire probability.
Thus, more in-depth studies on the future
impacts of climate change on forest fire
occurrence should be paid attention. Although
we used a limited set of factors influencing
forest fire occurrence at coarse resolution
because of the availability of these reliable
data, the MaxEnt model provided an
acceptable accuracy in modeling forest fire
probability within this region. However,
further studies should consider other factors
related to fuel condition (i.e., Normal
difference water index (NDWI), Enhanced
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vegetation index 2 (EVI2), Normalized
difference vegetation index (NDVI), Gross
primary productivity (GPP)), and other human
activities (i.e., distance to road, human
footprint), or satisfactory resolution of
variables using for model. Previous studies
showed that these variables were strongly
correlated to forest fire occurrence (Burapapol

and Nagasawa, 2016; Chuvieco, 2003;
Mansuy et al, 2019; Nurdiana and
Risdiyanto, 2015; Parisien et al., 2012;

Sumarga, 2017; Xuan et al., 2023). Also,
Bekar et al. (2020) demonstrated that spatial
resolution was an important factor affecting
model performance and the importance of
predictors.

The forest fire probability map provides
valuable information to forest management
activities on areas' likelihood of forest fire
occurrence. Fire management efforts should
be prioritized in middle and high mountainous
forests along with steep slopes in southwest
and northwest aspects. Additionally, the
population living in forest fire-prone areas
may be educated about the influences of their
activities on forest fire occurrence (e.g.,
illegal logging, slash and burn farming).

6. Conclusions

In this study, we used the MaxEnt
approach combined with climatic, fuel
condition, topography, and human activities to
understand better-influencing factors and
probability areas of forest fire within
northwestern Vietnam from 2003-2016.

The results from the Maxent model
showed that annual temperature range,
population density, precipitation of the
warmest quarter, isothermality, and elevation
had the highest contributions to model forest
fire in the northwestern region of Vietnam.
Forest fires were likely to occur in forested
areas at elevation of 800-1,200 m a.s.l., with
an annual temperature range of 18-19°C,
precipitation of warmest quarter ranging from
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900-1,200 mm, isothermality between 45 and
50, and low population density (less than
300 persons’/km?). High and very high
probabilities of forest fires were concentrated
in the southwest and northwest of the N.W.
region (Dien Bien and Lai Chau province, and
most areas of Son La province), while very
low and low probability of forest fire occurred
in the southeastern areas of the region (Hoa
Binh province and southeastern portions of
Son La province). The areas of high and very
high  forest fire  probabilities  were
approximately 15,374 km? (~65%), followed
by areas with medium probability (3,034 km?;
~13%) and areas with low and very low
probability (5,209km? ~22%). The study's
findings may provide valuable references for
forest fire management in this region.
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