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ABSTRACT

In this work, the main aim is to map the potential zones of groundwater in Central Highlands (Vietnam) using a
novel ensemble machine learning model, namely CG-LMT, which is a combination of two advanced techniques,
namely Cascade Generalization (CG) and Logistics Model Trees (LMT). For this, a total of 501 wells data and a set
of twelve affecting factors were gathered and selected to generate training and testing datasets used for building and
validating the model. Validation of the models was implemented utilizing various quantitative indices, including
ROC curve. Results of the present study indicated that the novel ensemble model performed well for groundwater
potential mapping and modeling (AUC = 0.742), and its predictive capability is even better than a single LMT model
(AUC = 0.727). Thus, the CG-LMT is a promising tool for accurately predicting potential groundwater areas. In
addition, the potential map of groundwater generated from the CG-LMT model is a helpful tool for better-studying
water resource management in the area.

Keywords: Machine learning, groundwater potential mapping, Logistics Model Trees, cascade generalization,
Vietnam.

1. Introduction remains an essential alternative (Li et al.,
2021). Identifying areas with rich groundwater
potential ensures sustainable water resource
management and aids in efficiently planning
drilling wells and water esource infrastructure.

Groundwater is a significant source of
freshwater in many regions, supporting
agriculture, domestic consumption, and
industrial uses. Given the rising water demands Groundwater potential mapping is a critical
worldwide and the ever-decreasing availability aspect of hydrogeology that aids in identifying
of surface water resources, groundwater greas with potential for  groundwater
accumulation and extraction (Goswami and

*Corresponding author, Email: binhpt@utt.edu.vn Ghosal, 2022). Groundwater potential mapping
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involves evaluating several factors and using
various tools to determine the locations most
suitable for groundwater extraction.

In recent decades, machine learning (ML)
has been considered a powerful tool in
hydrogeology, particularly in mapping
groundwater potential (Hai et al., 2022; Lee et
al., 2020). Its powerfulness lies in the
computational algorithms, which can learn
and discover patterns effectively, draw
insights, and improve predictions or decisions
through experience and data analysis. Many
ML-based models were potentially applied to
map groundwater in various regions of the
world (Mosavi et al., 2021; Prasad et al.,
2020). Popular ML models used for
groundwater potential mapping are Random
Forests (Naghibi et al., 2017), Support Vector
Machine (Lee et al., 2018), Artificial Neural
Networks (Lee et al., 2012), Decision Trees
(Sachdeva and Kumar, 2021), and K-Nearest
Neighbors (Naghibi et al., 2018). Dey et al.
(2023) applied and compared various ML
models (decision tree, random forest, K-
nearest neighbors, XGBoost, and support
vector machine) for the potential zoning of
groundwater. Anh et al. (2023) combined a
Support vector machine with random search
and Bayesian optimization methods to
improve the effectiveness of potential
groundwater mapping. Morgan et al. (2023)
used random forests for zoning potential
groundwater areas. In general, the ML models
indicate potential tools with high accuracy for
mapping groundwater potential.

In recent years, hybrid ML models have
been known as more advanced for
constructing better groundwater potential
maps (Arabameri et al., 2021; Yariyan et al.,
2022). Therefore, the main aim of the present
study is to develop a novel hybrid ML model,
CG-LMT, which is a hybridization of CG
optimization and a single LMT classifier for
improving the performance of potential
groundwater mapping at the Central
Highlands (Vietnam). The main difference
between the present and published works is

that first-time CG optimization and a single
LMT classifier were combined to develop a
novel CG-LMT for groundwater study in
Vietnam. Various validation metrics, such as
the receiver operating characteristic (ROC)
curve, were utilized to validate the models.
ArcGIS software was wused for data
preparation and generation while Weka
software was used for groundwater modeling.

2. Material and methods
2.1. Data utilized
2.1.1. Description of the study area

This study focuses on Vietnam's Central
Highlands area, located in the southern segment
of Vietnam's central territories
(Fig. 1). Covering approximately 54,700 square
kilometers, the region is inhabited by nearly 4.6
million people (Bien et al., 2023). It features
various elevated plateaus with elevations
ranging from 500 meters to 1500 meters.

The climatic conditions of the Central
Highlands are varied and can be divided into
three unique sub-areas: the Northern Central
Highlands, which includes Kon Tum and Gia
Lai; the core Central Highlands, made up of
Dak Lak and Dak Nong; and the Southern
Central Highlands, consisting solely of Lam
Dong Province. The core Central Highlands
experiences the warmest temperatures and sits
at the lowest elevations. The area generally
has two primary weather seasons: a wet
period from May through October and a dry
spell that lasts from November to April, with
March and April being notably hot and arid.

2.1.2. Groundwater wells and affecting factors

This study gathered data from 501 wells
through the Vietnamese National Center for
Water Resources Planning and Investigation.
The yields varied among these wells, with 287
producing under 2 1/s, while 214 produced
over 2 1/s (Bien et al., 2023). We divided the
well records into two segments: 70% was
used for constructing and training the model,
and the remaining 30% served for its
validation.
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Figure 1. Location map of the study area and testing wells

In addition, a set of the affecting factors was
selected for groundwater potential mapping in
this study area, namely altitude, altitude
difference, slope, curvature, aspect, land
use/cover (LULC), flow accumulation, fault
density, river density, rainfall, topographic
wetness index (TWI), and geology. The main
reason for selecting these affecting factors is
based on the literature survey of the relevant
published works (Bien et al., 2023; Ngo-Duc,
2023; Nguyen et al., 2024; Van Phong and
Pham, 2023). Out of these, the factors: altitude,
altitude difference, slope, curvature, aspect,
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river density, flow accumulation, and TWI
were extracted from the SRTM Digital
Elevation Model (DEM) with 90 m spatial
resolution downloaded  from  USGS
(https://earthexplorer.usgs.gov/). Geology and
fault density maps were collected and
generated from the General Department of
Geology and Minerals of Vietnam (1:200.000).
LULC map was extracted from ESA Sentinel-2
imagery at 10 m resolution. Maps of the
affecting factors were constructed and shown
in Fig. 2. The published work also shows data
from the present study (Bien et al., 2023).
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Figure 2. Maps of groundwater potential affecting factors (Bien et al., 2023)

15°N

14°N

13N

12'N

15°N

14°N

15°N

14N

13N

12°N

275



Vietnam Journal of Earth Sciences, 46(2), 272-281

109°E 108°E
T

109°E 108°E 109°E
T

Well locations
4 Yield > 2ls

-
(J) Quéng Nam
* Yield <2lis z
7 Province boundaries| 2

15° N

CAMBODIA

East Vietnam's Sea
13°N

12°N
&

110

BinaT
ok Kilometers

Well locations
4 Yield > 2lis (l)
* Yield <2lis

7 Province boundaries

Well locations K
4 Yield > 2l/s ( )
* Yield < 2lis Z

27 Province boundaries| 2

B quing Nam

Curvature

| & oy’ |__Concave [|%
4 s - ®co0s) =
\ 2 Flat (-0.05

-0.05)
Convex
9 50.05)

CAMBODIA

13°N

East Vietnam's Sea
East Vietnam's Sea
' 0

12°

s
108°E 109°E

GEOLOGY
15O 13 17 21 . 25 0 29 . 33
I 2 [ 6 10 N 14 [ 18 N 22 N 26 N 30 N 34
3 7 11 15 19 I 23 27 .3
I 4 B 12 16 W 20 N 24 N 28 . 32

Figure 2. Cont.

2.2. Methods used
2.2.1. Logistics Model Trees (LMT)

LMT represents an innovative fusion of
two powerful machine-learning techniques:
decision trees and logistic regression
(Landwehr et al., 2005). Each technique, in
isolation, has its strengths; however, when
combined, they present a unique and
synergistic approach to predictive modeling.
Logistic regression, at its core, is a statistical
method designed to forecast the probability of
a categorical outcome based on one or more
predictor variables. Its strength lies in its
ability to provide a continuous probability
score for observations in a dataset based on a
linear combination of the input features. In
contrast, decision trees segment data into
subsets through a series of decisions made at
each node based on the values of input
features. The ultimate goal of a decision tree
is to make the data within each final subset as
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homogenous as possible regarding the
outcome variable.

In the training process of LMT, the tree-
building process begins with a single leaf,
which represents a logistic regression model
built using all available training data. As the
tree evolves, it assesses potential binary splits
rooted in the predictor variables. When a split
substantially enhances the fit typically gauged
using metrics like the likelihood-ratio tests it's
accepted. This recursive segmentation
continues until a predetermined stopping
criterion is achieved, after which a logistic
regression model is precisely fitted to the data
within each of the final regions.

In this study, LMT was utilized as a
classifier for predicting and assessing
potential mapping and modeling of
groundwater. In addition, it was also utilized
as a base classifier in the ensemble framework
of the hybrid model (CG-LMT), described in

the following section.
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2.2.2. Cascade
(CG-LMT)

CG-LMT hybridizes LMT and Cascade
Generalization (CG) ensemble techniques. CG
is an optimization technique used to optimize
the training dataset utilized for training the
LMT classifier. The main principle of CG is
the idea of efficiency through staged filtering
or decision-making (Gama and Brazdil,
2000). Having simpler models or processes
that filter out easy-to-classify instances or data
points reduces the computational burden on
subsequent stages. Each stage is a gatekeeper,
ensuring only the most challenging or relevant
instances pass through, warranting more
intricate analysis or processing. In essence,
CG is a strategy of hierarchical decision-
making. By generalizing and making
decisions at multiple levels, it's possible to
balance speed and accuracy. This multi-level
approach is particularly beneficial in real-
world scenarios where time or computational
resources are constrained, yet high accuracy is
essential.

In this study, CG-LMT was used to predict
and assess potential mapping and modeling of

Generalization based LMT

groundwater. The model was built utilizing
Weka software with default hyperparameter
values.

2.2.3. Validation metrics

In this study, we have used famous
validation metrics, namely accuracy (ACC),
negative predictive value (NPV), positive
predictive value (PPV), root mean square
error (RMSE), specificity (SPF), sensitivity
(SST), Kappa statistic, the area under the
ROC curve (AUC) for validation of the
models. These metrics are detailed in the
published works (Bien et al., 2023; Costache
et al., 2022; Nguyen et al., 2023; Nhu et al.,
2022). In general, smaller RMSE values
indicate better landslide models' performance

and vice versa. In contrast, more excellent
ACC, NPV, PPV, SPF, SST, Kappa, and
AUC values show better performance of the
landslide models and vice versa (Chen et al.,
2022; Doan et al., 2024; Hai et al., 2022;
Kumar et al., 2021).

3. Results and discussion
3.1. Evaluation of the models

The models were evaluated on both
training and testing datasets, as shown in
Table 1 and Fig. 3. With the training dataset,
the PPV value of CG-LMT (89%) is higher
than those of the LMT model (87.5%), the
NPV value of the CG-LMT model (82.31%)
is higher than those of LMT (81.63%), the
SST value of CG-LMT (87.25%) is higher
than those of LMT (86.63%), the SPF value of
CG-LMT (84.62%) is higher than those of
LMT (86.63%), the ACC value of CG-LMT
(86.17%) 1is higher than those of LMT
(85.01%), the K value of CG-LMT (0.720) is
higher than those of LMT (0.690), and the
RMSE value of CG-LMT (0.320) is slightly
lower than those of LMT (0.330). In testing
dataset, similarly, the PPV value of CG-LMT
(79.07%) is higher than those of LMT model
(76.74%), the NPV value of CG-LMT model
(57.81%) 1is higher than those of LMT
(56.25%), the SST value of CG-LMT
(71.58%) 1is higher than those of LMT
(70.21%), the SPF value of CG-LMT
(67.27%) is higher than those of LMT
(64.29%), the ACC value of CG-LMT
(70.00%) 1is higher than those of LMT
(68.00%), the K value of CG-LMT (0.37) is
higher than those of LMT (0.33), and the
RMSE value of CG-LMT (0.47) is equal to
those of LMT (0.47). Regarding AUC values,
it can be observed that the AUC values of
CG-LMT for training (0.92) and testing
(0.742) datasets are higher than those of LMT
for training (0.91) and testing (0.727) datasets.
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Table 1. Values of validation metrics used to
validate the models

Models
No|Parameters | Training dataset | Validation dataset
CG-LMT |LMT | CG-LMT | LMT
1| PPV (%) 89.00 |87.50 79.07 76.74
2 | NPV (%) 8231 |81.63 57.81 56.25
3| SST (%) 87.25 186.63 71.58 70.21
4| SPF (%) 84.62 |82.76 67.27 64.29
5| ACC (%) 86.17 [85.01 70.00 68.00
6 K 0.720  10.690 0.37 0.33
7|1 RMSE 0.320 ]0.330 0.47 0.47

The above validation analysis shows that
the hybrid model CG-LMT has better
performance than the single LMT model. It
means that CG optimization techniques
effectively improved the base classifier LMT
performance for groundwater potential
mapping and modeling. It is because CG has
several advantages in enhancing the
performance of the single ML models (Gama
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and Brazdil, 2000; Kotsiantis, 2011) such as
(1) it can train sequentially the base models,
which can lead to higher accuracy compared
to individual models, (ii) it can handle
effectively noisy or outlier data points, (iii) it
helps in learning more informative feature
representations as it focuses on different
aspects of the data, (iv) it can adapt to the
errors or challenges encountered during the
training process, and (v) it can deal with the
overfitting problem. Compared with the
previously published work in the same area

(Bien et al., 2023), it can be observed that the
CG-LMT model outperforms MLP (ROC-
AUC = 0.69), FURIA (AUC = 0.7), and
PART (AUC = 0.72) models; however, its
performance is lower than FPA (AUC = 0.76)
and DFPA (AUC = 0.77) models.
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Figure 3. ROC curve analysis of the models using (a) training dataset and (b) testing dataset

3.2. Potential maps

Using two models, CG-LMT and LMT,
groundwater potential maps of the study area
were generated, as shown in Fig. 4. These
maps were classified into five categories:
high, high, moderate, low, and low potential.
These categories were obtained by classifying
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groundwater potential indexes, which were
created from training the models for all pixels
of the study areca. The natural breaks
classification method was utilized for the
classification of the maps. Table 2 shows the
percentage of the groundwater potential areas
of the study area. In the case of the map
generated from the LMT model, it can be
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observed that the shallow class obtained the
highest percentage of the area (35.51%),
followed by very high (23.14%), low
(14.68%), high (14.45%), and moderate
(12.21%) classes, respectively. With the map
108°0'E 109°0'E
Groundwater Potential
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generated from CG-LMT, it can be seen that
shallow class obtained the highest percentage
of the area (37.54%), followed by very high
(22.99%), low (14.50%), moderate (12.52%),
and high (12.45%) classes, respectively.

Figure 4. Groundwater potential maps using the models: (a) CG-LMT and (b) LMT

Table 2. Performance of the groundwater potential

maps
Models | Potential classes | Percentage of the arca

Very low 35.51

Low 14.68

LCI\(;’T Moderate 12.21
High 14.45

Very high 23.14

Very low 37.54

Low 14.50

LMT Moderate 12.52
High 1245

Very high 22.99

108I°0'E 109I°O'E
N Groundwater Potential
Quang Nam Classes
z A [ Very low (0- 0.13) g
=3 [ Low (0.13 - 0.35) o
o) Quang [ Moderate (0.35 - 0.6) | ~
LAOE J [ High (0.6 - 0.84)
I Very high (0.84 - 1)
Well location
Training dataset -
£ - (Yield<2s) | &
£ 4 Bir . °
oy + (Yield>25s) | &
Validation dataset
< * (Yield < 2l/s)
(=) + (Yield > 2I/s)
o ‘
> [ Phu Yen L E
S o 8o
g
y o
! Khanh Hoa &
£ z
g o °
& 2.
Ninh Thuén
EG-LMT mode
70 140
nirbuiors K|
108°0'E (b) 109°0'E
In general, the potential map of
groundwater generated from this study might
be a helpful tool in water resource
management, providing valuable insights into
the availability and accessibility of

groundwater in the study area (Chatterjee and
Dutta, 2022). In addition, the mas informs
decision-making processes, guiding
sustainable management practices to ensure
the responsible utilization of groundwater
resources for various societal needs while
safeguarding long-term environmental
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integrity in the study area (Miraki et al.,
2019).

4. Conclusions

In the present work, two ML models,

including CG-LMT and LMT, were
developed and applied for potentially
mapping groundwater in the Central

Highlands (Vietnam). Out of these, CG-LMT
is a novel hybrid model that is a hybridization
of the CG optimization technique and the base
classifier LMT. Various validation metrics,
including AUC, were utilized to validate and
compare the models. Results of this study
showed that both ML models performed well
for potential modeling and mapping of
groundwater, but the hybrid model CG-LMT
(AUC = 0.742) outperforms the single model
LMT (AUC = 0.727). Thus, it can be
concluded that CG optimization is an
excellent tool for optimization of the LMT for
improving the performance of groundwater
potential mapping. In addition, potential
groundwater maps generated from this study
might be utilized for better water resource
management.
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