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ABSTRACT

Rainfall is a triggering factor that causes landslides, especially in the regions where landslides often occur after
consecutive days of heavy rainfall. Most previous studies only used a specific rainfall map for landslide susceptibility
assessment. However, this approach was unreasonable because rainfall is a time-variant data. This study uses the time
series data of 1-day, 3-day, 5-day, and 7-day maximum precipitation from 2016 to 2020 in the mountainous area of
Quang Ngai province for landslide susceptibility assessment. These data and other influencing factors were used to
develop landslide spatial prediction models using the Extreme Gradient Boosting method. The prediction model's
performance was assessed using the statistical index and receiver operating characteristic curve methods. The testing
results of 4 cases using consecutive days of maximum rainfall data demonstrated excellent performance. Of these, the
model with a 3-day maximum rainfall with ACC = 0.813, kappa = 0.625, SST = 0.872, SPF = 0.754, and
AUC = 0.895 had the best performance. In addition, these results were compared to the previous approach that used
average annual rainfall. The validation result indicates that the cases using a time series of maximum precipitation
(with AUC of approximately 0.9) outperform the cases with average annual rainfall (AUC=0.838). Finally, the model
using 3-day maximum rainfall is then used for landslide spatial prediction mapping. These maps provide spatial

prediction and assess landslide susceptibility corresponding to rainfall frequencies.

Keywords: Time-variant rainfall, landslide susceptibility, XGBoost, Boruta, ROC.

1. Introduction continents, especially in Asia, causing severe
Landslides are one of the most dangerous damage. to causa.htles, 1nfrastru.cture, and
properties. In Vietnam, landslides occur

disasters in the world. The study (2018) yearly in the Northern, Central, and Central

indicates that landslides occur on all five Highland mountainous  provinces. In

particular, the major landslide events in

*Corresponding author, Email: dvlong@dut.udn.vn October 2020 in the mountainous area of
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central provinces caused significant damage
(111 people dead and missing). To reduce
damage, a landslide susceptibility map can
help prevent this natural disaster (Liu et al.,
2023). The approaches and methods for
generating landslide susceptibility can be

divided into geomorphological mapping,
landslide  inventory  analysis, heuristic
approaches, process-based methods, and

statistical-based methods (Reichenbach et al.,
2018). For statistical-based methods, the
spatial prediction of landslides is calculated
by analyzing the spatial relationship between
past landslide occurrences and a set of
influence factors (Guzzetti et al., 2005). The
affecting factors can be classified into two
groups: (i) geo-environment factors such as
geomorphological factors, geological factors,
hydrological factors, land use/land cover, and
(i1) triggering factors such as earthquakes,
rainfall, human activities, etc. Out of these
factors, rainfall is one of the external factors
that causes landslides because it increases the
pore water pressure, leading to a decreased
shear strength of soil and rocks in slope-
forming materials (Varnes, 1984; Dao et al.,
2023; Pham et al., 2023). Under the impact of
climate change, extreme rainfall is rising,
significantly affecting landslides (Tran &
Neefjes, 2015; Hoang et al., 2022; Ngo-Duc,
2023).

Two types of rainfall data are widely
landslide susceptibility
assessment: the first one is the average annual
rainfall data, and the second one is the
cumulative rainfall data. Almost all studies
used average annual rainfall data for landslide

utilized for

susceptibility assessment because this data is
often available for all regions (Dahal et al.,
2008; Reichenbach et al., 2018). However,
this approach is less reasonable because this

rainfall type cannot represent a triggering
factor that landslide occurrences,
especially in regions such as Vietnam, where
slope failures occur in the rainy season.

causes

Therefore, rainfall does not accurately reflect
its influence on landslide spatial prediction in
previous studies (Adnan Ikram et al., 2023; Le
et al., 2023; Moayedi & Dehrashid, 2023).
There are only a few studies using
cumulative precipitation for landslide spatial
prediction. This is mainly due to the limited
availability of landslide inventory data, such
as the time occurrence of landslides, as well
as detailed rainfall data. However, there are
some problems
rainfall data in these previous studies. Bui et

when using cumulative
al. (2012) used the rainfall map constructed
from an eight-day maximum of precipitation
conditioning factor for landslide
susceptibility assessment. However, this study

as a

did not explain why this rainfall data was
used. Su et al. (2015) utilized two triggering
factors of daily and cumulative rainfall data as
the input data for the landslide susceptibility
model. Nevertheless, this study did not
mention the relationship between the landslide
inventories, such as the date of landslide
occurrence and rainfall data. Zhang et al.
(2022) used 5 cumulative rainfall maps from
I-day to 5-day to assess the susceptibility of
landslides in the Shenzhen region, China.

The results indicated that the model of
4-day cumulative has the best
performance compared to other
However, it was unsuitable because this study
only uses specific rainfall data related to a
landslide event to represent a series of
inventory data (from 2008 to 2018). Using
detailed cumulative rainfall data of a landslide
event, Dou et al. (2019) have provided a
spatial prediction of the rainfall-induced

rainfall
cases.
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landslide. The 32-hour cumulative rainfall has
been used for analysis, and the result indicated
that rainfall was found to have the highest
influence on slope failure
However, this approach only used a specific
landslide event, so it is unsuitable for large

occurrence.

scale and cannot make long-term predictions.
There are many problems in assessing the
impact of cumulative rainfall on landslide
susceptibility, especially for areas with limited
detailed data.

The mountainous region of Quang Ngai
affected by

rainfall s

province is  significantly
landslides,
considered the leading cause of this disaster
(Phuoc et al., 2019). To provide a suitable

landslide
with data

time-variant

and cumulative

approach for rainfall-triggered
assessment in the
limitations, this study uses
data for landslide

mapping in the mountainous area of Quang

regions

rainfall susceptibility
Ngai Province, Vietnam. First, the time series
of landslide events from 2016 to 2020 are
collected based on project surveys and remote
sensing techniques. Next, the daily rainfall
data from 18 rain gauge stations in this area
generates the maximum cumulative rainfall
maps corresponding to 1 day, 3 days, 5 days,
and 7 days. Then, these rainfall maps, along
with the inventory data and other conditioning
factors (slope, aspect, elevation, land use,
topographic wetness index (TWI), curvature,
soil type, land use, distance to stream, road
distance), are utilized to build the landslide
susceptibility models. The machine learning
of the Extreme Gradient Boosting (XGBoost)
model with good predictive ability (Can et al.,
2021; Rabby et al., 2022; Sahin, 2020) is
in this After that, the

proposed study.
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statistical index method and the receiver
operating characteristic (ROC) curve method
are used to evaluate the performance of
landslide susceptibility models. This study
also compares the predictive capability of
these models to the model using average
annual rainfall data that was widely used in
previous studies. Finally, the best model fit is
used for landslide spatial prediction mapping.

2. Study area

The study area covers an area of about
3,237 km® in five mountainous districts of
Quang Ngai province, central Vietnam,
between 14°32' to 15°25" N and 108°06’ to
109°04" E) (Fig. 1). The province's highest
peak is at 1,598 m in the west of the province
near the Central Highland provinces and the
Truong Son Mountain range. The East of this
area is adjacent to the coastal delta. Annually,
the area is hit by an average of 3 to 17 tropical
storms and heavy rainfall from September to
December. More than 70% of the region's
annual rainfall (about 2,500 mm) is accounted
for by rainfall from tropical storms and
tropical monsoons. The long rainfall duration
is more likely to significantly impact landslide
occurrences in this area (Phuoc et al., 2019).
According to the report by The Vietnam
Institutes
Resources (2020), the mountainous area of

of Geosciences and Mineral
Quang Ngai is one of the regions with the
highest landslide density in Vietnam
(landslide density = 0.167 event/km?). And
most landslides occurred after consecutive
days of heavy rainfall. That is the reason
while this area is selected for evaluating the
effects of rainfall on landslide susceptibility.
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Figure 1. The study area of Quang Ngai mountainous region (Vietnam)

3. Data and Method

The methodology of this study is
illustrated in Fig. 2, followed by the main
steps (Pham et al., 2017):

Step 1: Develop time series of consecutive
days of maximum rainfall data from 2016 to
2020 based on time series landslide
inventories and daily rainfall data.

Step 2: Database preparation for landslide
landslide

inventory and landslide influencing factors of

susceptibility model, including
slope, aspect, elevation, land use, topographic
wetness index, curvature, soil type, land use,
distance to stream, distance to road, and the

rainfall maps. There are 5 cases of the dataset,

including:
Case 1: using 1l-day maximum
precipitation.

Case 2: using 3-day maximum
precipitation.
Case 3: using 5-day maximum
precipitation.
Case 4: using 7-day maximum
precipitation.

Case 5: using average annual rainfall.

Step 3: Feature selection and importance
evaluation using the Boruta method.

Step 4: Develop a landslide susceptibility
model based on the XGBoost algorithm using
70% of the data.

Step 5: Validate and compare the models
using the ROC curve, accuracy, sensitivity,
and specificity values using 30% of the
landslide data.

Step 6:
mapping.

Landslide spatial prediction
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Figure 2. Flowchart of the methodology

3.1. Landslide inventory mapping

A landslide inventory map has been
developed using a total of 1,279 landslide
events that were identified by remote sensing
and project survey. Among them, the project
survey conducted by The Vietnam Institutes
of Geosciences and Mineral Resources (2020)
determined 549 landslide events in 5
mountainous districts of Quang Ngai province

on Sentinel-2 satellite images from 2016 to
2020 (Table 2 and Fig. 1). This data then has
been divided into two groups: (i) training
dataset (70% landslide inventory) and
(i) validation dataset (30% remaining
landslide inventory) (Bui et al., 2014; Pham et
al., 2019).

Table 1. Time collection of Sentinel-2 images for
landslide detection

(Table 2). Additionally, the remote sensing Year of landslide
. . . Pre-event Post-event
technique using Google Earth images and occurrences
Sentinel-2 satellite images (Table 1) has 2016 10/09/2016 08/04/2017
. i i 2017 05/09/2017 03/04/2018
identified 730 landslide events (Table 2). The 2018 05/09/2018 09/03/2019
time series of landslide inventory data was 2019 07/07/2019 08/03/2020
created by change detection technique based 2020 06/07/2020 28/03/2021
Table 2. Time series landslide events from 2016 to 2020
Year 2016 2017 2018 2019 2020 Total
INumber of landslides from Project survey 113 306 127 3 NA 549
INumber of landslides from Remote sensing 117 204 60 2 347 730
Total 230 510 187 5 347 1,279
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3.2. Landslide conditioning factors

3.2.1. Time series rainfall data

This study uses the daily rainfall of 18 rain
gauge stations in Quang Ngai province and
two adjacent Quang Nam and Binh Dinh
provinces to map the consecutive days of
maximum rainfall (Fig. 3). A total of 20
consecutive days of maximum rainfall maps
are built by IDW interpolation in the period of

5 years from 2016 to 2020, corresponding to
1-day, 3-day, 5-day, and 7-day periods. These
rainfall maps are then used to generate the
time series rainfall data based on the time
series of landslide inventories. In addition, the
average annual rainfall map is also developed

from the yearly rainfall of 18 rain gauge

stations above.
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3.2.2. Other conditioning factors

In addition to the rainfall factor, other
conditioning factors are selected as the input
dataset. They are slope, aspect, elevation,

Topographic Wetness Index (TWI), curvature,
distance to stream, distance to road, soil type,
and land use. The detailed information of these
influence factors is illustrated in Table 3.

Table 3. The information on landslide conditioning factors

No. | Landslide conditioning factors Source Scale/Resolution
1 [Slope NASA DEM 30x30 m
2 |Aspect NASA DEM 30x30 m
3 |[Elevation NASA DEM 30x30 m
4 [TWI NASA DEM 30x30 m
5 |Curvature NASA DEM 30x30 m
6 [Soil type Departments of Natural Resource and Environment of 1/100,000
Quang Ngai Province

7 |Land use https://landcovermapping.org 30x30 m

8 |Distance to road (m) Departments of Natural Resource and Environment of 1/25,000
Quang Ngai Province

9 |Distance to drainage (m) Departments of Natural Resource and Environment of 1/25,000
Quang Ngai Province

The effect of each factor on landslide
occurrences is evaluated through the
Frequency Ratio value (Binh Thai Pham et
al., 2015). Specifically, landslides are more
frequent in areas with slope angles from 20-
30 degrees and less frequent in shallow
(<10 degrees) or high slope angles (>50
degrees) (Fig. 4a). Regarding the aspect,
landslides are more frequent on the
southern-facing slope (Fig. 4b). For the
elevation factor, most slope failures occurred
at an elevation ranging from 400-600 m
(Fig. 4c). According to the frequency
analysis results of the land use factor, the
highest FR value is found in the bush class.
On the other hand, landslides did not occur
in the classes of Water Body (WB), Urban
and Built-up (UB), and wetland (Fig. 4d). In
the case of curvature, Fig. 4e shows that
slope failures are more frequent in the
classes of concave and convex. Turning to
the TWI factor, it can be observed that the
landslides focus more on the lower TWI
value (Fig. 4f). For soil type factor (Fig. 4g),
the frequency analysis shows that most
landslides occurred in the class of Epi Lithi
Ferralic Acrisols (ELFA), followed by Epi

208

Lithi Humic Acrisols (ELHA), Hapli
Ferralic Acrisols (HFA), and Hapli Humic
Acrisols (HHA). According to the distance
to drainage factor, the FR value does not
significantly change across classes (Fig. 4h).
According to the frequency analysis of the
road map, landslides are more frequent in
the areas near the road, especially in the
regions ranging from 0-50 m (Fig. 41).

3.3. Feature selection

This study utilizes the Boruta method for
evaluating the importance of conditioning
factors and factor selection. The Boruta
algorithm is a wrapper method that uses the
random forest classification algorithm. This
method has been implemented in the R
package "Boruta" (Kursa & Rudnicki, 2010).
The Boruta algorithm includes the following
steps: (i) First, extend the information system
by adding copies of all variables and shuffle
the added attributes to remove their
correlations with the response; (ii) Second, the
random forest classifier calculates the Z score
values on the extended information system
and find out the maximum Z score among
shadow attributes (MZSA). Lastly, the
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influence factors with a Z score value better factors in the landslide susceptibility model
than MZSA were selected as the critical (Prasad et al., 2022).
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3.4. XGBoost method

XGBoost is a scalable machine-learning
system for tree boosting (Chen & Guestrin,
2016). XGBoost creates many classification
and regression trees (CART) and integrates
them using the gradient boosting algorithm.
XGBoost has three crucial aspects:
regularized objective function for better
generalization, gradient tree boosting for
additive training, and shrinkage and column
subsampling for preventing overfitting. The
goal of the XGBoost algorithm is to minimize
the following regularized objective function
(Chen & Guestrin, 2016):

L(®) =22il(371ryi) + 2 Qfi); Q) =T +
~Alwl| (1)
where ¥, and y; are the predicted value and
observed value, respectively; Q(f) is the
penalty term that helps to smooth the final
learnt weights to avoid overfitting; y, A are the
regularization degrees, respectively; w is the
score of each leaf.

The main parameters of the XGBoost
algorithm applied in landslide susceptibility
assessment are grounds, max_depth, beta,
gamma, colsample bytree, min_child weight,
and subsample. The detailed information on
these hyperparameters is shown in Table 4.

Table 4. The main parameters of the XGBoost algorithm

Parameter

Description

Grounds INumber of rounds

Max_depth

Maximum depth of a tree. Default: 6

IEta ILearning rate, 0<eta<l, default: 0.3. Low eta value means the model is more robust to
overfitting but slower to compute.

Gamma

IRegularization degree. The larger the gamma, the more conservative the algorithm.

Colsample bytree

subsample ratio of columns when constructing each tree, default: 1

Min_child weight

minimum sum of instance weight (hessian) needed in a child, default: 1.

Subsample

subsample ratio of the training instance, default: 1

3.5. Evaluation and comparison methods

This study uses several popular methods,
such as statistical indexing and ROC, to
evaluate landslide susceptibility (Frattini et al.,
2010).

3.5.1. Statistical indexed methods

Four statistical indexes are chosen to
evaluate the performance of the landslide
susceptibility model: accuracy, sensitivity,
specificity, and Kappa (Table 5).

Where TP is the value that indicates the
number of pixels that have been predicted
correctly as landslide; FP is the value that
indicates the number of pixels that have been
mispredicted as landslide; TN is the value that
illustrates the number of pixels that have been
predicted correctly as non-landslide; FN is a
value indicating the number of pixels that
have been mispredicted as non-landslide;
Pobs is the proportion of number of pixels that
have been classified correctly as landslide or
non-landslide pixels; P.,, means the expected
agreements.

Table 5. Some of the statistical indexes for landslide susceptibility assessment (Frattini et al., 2010)

Statistical indexes Equation Definition
Accuracy (ACC) ACC = TP+TN The proportion of landslide and non-landslide pixels that the
" TP +TN + FP + FN [resulting models correctly classified.
Sensitivity (SST) SST = TP The proportion of landslide pixels that are classified correctly
TP + FN as "landslide."
Specificity (SPF) SPF = TN The proportion of non-landslide pixels classified correctly as|
" TN + FP "no landslide."
Kappa (k) Pobs = Pexp The reliability of the landslide models.
1- Py
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3.5.2. ROC method

ROC method is usually used to assess the
quality of landslide susceptibility models
(Jones & Athanasiou, 2005). ROC curve
represents the sensitivity value on the y-axis
and (1-specificity) value on the x-axis. The
Area Under the ROC Curve (AUC) can be
used as an index to evaluate the overall
performance of a model. The larger the area,
the better the performance of the model. The
AUC value can be divided into many intervals
with the model quality respectively, including
0.6-0.7 (poor), 0.7-0.8 (fair), 0.8-0.9 (good),
and 0.9-1.0 (very good) (Kantardzic, 2011)

4. Results

4.1. Effect of time series rainfall on landslide
occurrences

This study uses four types of maximum
rainfall, namely, 1 day, 3 days, 5 days, and 7
days, to evaluate the effect of rainfall on time
series landslides from 2016 to 2020. Figure 5
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shows the relationship between the consecutive
days of maximum rainfall and the number of
yearly landslide occurrences. These graphs
illustrate the significant effect of consecutive
days of maximum rainfall on the time series of
landslide events in 5 years. For the case of 1-
day maximum rainfall (Fig. 5a), a strong
relationship between the rainfall and the
landslides has been recognized. Landslide
events are generally more frequent in the year
with higher rainfall. Specifically, the highest
number of landslide events (540 landslides) was
found in 2017, along with the highest 1-day
maximum rainfall this year (up to 600 mm).

On the other hand, the lowest number of
landslide events (5 landslides) was in 2019,
corresponding to the lowest 1-day maximum
rainfall. Similar results appear in the cases of
3-day, 5-day, and 7-day maximum rainfall
(Figs. 5b, ¢, d). The consecutive days of
maximum rainfall can be seen as the leading

cause of landslides in this region.
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Figure 5. The relationship between the consecutive days of maximum rainfall and landslide events: a. 1-day
maximum rainfall, b. 3-day maximum rainfall, c. 5-day maximum rainfall, and d. 7-day maximum rainfall

4.2. Important landslide variables

The Boruta method uses an importance
index to evaluate the importance of the
landslide conditioning factor. The higher the
importance index, the more critical factor.
Fig. 7 shows the results of Boruta assessment
in five cases. Generally, no attributes are
deemed unimportant, so all landslide

conditioning factors are selected for landslide
susceptibility modeling. Regarding the
rainfall factor, the first position of 1-day,
3-day, 5-day, and 7-day maximum rainfall
was found in s 6a with an importance value
greater than 60. In contrast, the average
annual rainfall was the third most influential
variable (Fig. 7¢), with an importance value
under 30.
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Figure 6. The importance of conditioning factors using the Boruta method in 5 cases of rainfall data:

a. Case 1, b. Case 2, c. Case 3, d. Case 4, and e. Case 5
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Figure 7. Analysis of ROC curves of the
prediction model in 5 cases

validation. The result of statistical indexes and
AUC wvalue utilized for evaluating the
predictive capability of five cases are shown
in Table 7 and Fig. 8. Overall, the outcomes
from ACC, k, SST, SPF, and AUC indicate
that the cases using consecutive days of
maximum rainfall data have moderately
higher values than those utilizing average
annual rainfall data. Specifically, results in
Table 7 show that Case 2 with 3-day
maximum precipitation has the highest value
in all of ACC, k, SST, and SPF (0.813, 0.625,
0.872, and 0.754, respectively). The lowest
ACC, k, SST, and SPF values belong to Case
5 with average annual rainfall (0.748, 0.497,
0.791, and 0.705, respectively).

Table 6. The optimized hyperparameters of the

4.3. Landslide susceptibility models XGBoost model
Parameter Values The best value
This study wused 70% of landslide [Grounds 100/250/500 100
inventories for training models. The fine- [Max_depth 2/4/6 6
tuning technique was utilized to find the [Eta 0.01/0.025/0.05/0.3 0.05
optimized hyperparameters of the XGBoost Gamma 0/0.1/0.2 0
- Colsample bytree 0/0.5/1 0.5
model (Table 6). Additionally, 30% of |Min child weight 0/0.5/1
landslide inventories were used for model [Subsample 0.8/1 1
Table 7. The testing result of landslide susceptibility models
Statistical Index Case 1 Case 2 Case 3 Case 4 Case 5
lAccuracy (ACC) 0.806 0.813 0.806 0.806 0.748
Kappa (k) 0.612 0.625 0.612 0.612 0.497
Sensitivity (SST) 0.869 0.872 0.854 0.869 0.791
Specificity (SPF) 0.742 0.754 0.754 0.742 0.705
|Area Under the ROC Curve (AUC) 0.882 0.895 0.881 0.873 0.838
Regarding the ROC curves in Fig. 7, the been developed in two main steps:
highest AUC value is achieved by Case 2 (i) generating the landslide susceptible
(AUC = 0.895), and the lowest AUC value indexes (LSI) and (ii) reclassifying the

belongs to Case 5 (AUC = 0.838). The model
results in Case 2 show an exceptionally
reliable performance on landslide spatial
prediction because the AUC values are
approximately 0.9. Compared with Case 2, the
model in Case 5 performs well as the AUC
value ranges from 0.8 to 0.9.

4.4. Landslide spatial prediction mapping

Landslide spatial prediction maps have

landslide-susceptible indexes.

4.4.1. Generating the landslide susceptible
indexes (LSI)

In the first step, the LSI of all pixels in the
total region is generated based on the
landslide spatial prediction model of case 2
(using 3-day maximum rainfall data) and a set
of all sampling pixels of 10 conditioning

factors. For rainfall maps, this study
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recommends  using annual  maximum
precipitation maps created by the Regional
Frequency Analysis (RFA) method (Cong et
al., 2019). Four 3-day annual maximum
rainfall maps corresponding to the frequency
of 50%, 20%, 10%, and 5% are recommended
for assessment.

The frequency analysis results of LSI
(Fig. 9) indicate the distribution of LSI along
with the decrease in rainfall frequency. It can
be observed that the high region of LSI rises

gradually when the rainfall frequency is down
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from 50% to 10%. These rainfall maps have
indicated a positive influence of landslides in
this frequency period. However, when the
rainfall frequency decreases from 10% to 5%,
the high region of LSI shows a slight decrease
in this period. This means that these rainfall
maps have shown a negative effect on
landslides. Therefore, the LSI value of the
cases using 3-day annual maximum rainfall
corresponding to the frequency of 50%, 20%,
and 10% are used to generate landslide spatial
prediction maps.

(b)
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Figure 8. The histogram of landslide spatial probability uses 3-day annual maximum precipitation maps
corresponding to the frequencies of 50%, 20%, 10%, and 5%

4.4.2.
prediction maps

Generating the landslide spatial

The reclassifying step generates landslide
susceptibility maps based on the LSI results.
In this
corresponding to LSI intervals have been

step, five susceptible classes

created by the Natural Breaks method: very
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low, low, moderate, high, and very high
(Basofi et al., 2015). As a result, three
landslide

developed for the case of 3-day annual

spatial  prediction maps are

maximum rainfall corresponding to the
of 50%, 20%, 10%,

respectively (Fig. 10 to Fig. 12).

frequency and
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Figure 12. The percentage of class pixels of landslide spatial prediction maps corresponding to rainfall
frequency scenarios

4.3. Evaluating the performance of landslide
spatial prediction maps

The landslide susceptibility maps in this
study provide the landslide spatial prediction
corresponding to the different rainfall
frequencies.  Generally, the areas of
susceptible level classes change along with
decreased rainfall frequencies (Fig. 13). It can
be observed that the area percent of the "very
high" class gradually expands from 7.5% to
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23.0% as the rainfall frequency declines from
50% to 10%. In the period of frequency
falling from 50% to 20%, the area of "high"
and "moderate" classes moderately rises,
whereas the area of "low" and "very low"
classes quickly drops. Turning to the
successive reduction of frequency (from 20%
to 10%), the area of "moderate" and "low"
classes slightly decreases, whereas the area of

other classes shows little change.
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This study also evaluates the prediction
abilities of landslide spatial prediction maps
by assessing landslide density (LD) value. LD
value is the ratio of the landslide pixel
percentage and the class pixel percentage

(Pham et al., 2017). In general, the result in
Fig. 13 shows that the highest LD has been
observed in the "very high" class, followed by
the "high" class, "moderate" class, "low"
class, and "very low" class, respectively.

Frequency

2
.a 6 -
c
[
°
o 41
3
8
c 21
3
04 — = -
Very low Low Moderate High Very high
Class

Figure 13. The landslide density of landslide spatial prediction maps corresponds to
rainfall frequency scenarios

5. Discussions

Rainfall is the triggering factor that causes
landslides in the mountainous area of Quang
Ngai province. Applying a time series of
consecutive days of precipitation for landslide
assessment has shown a significant effect of
rainfall on landslides (Fig. 5). The higher the
consecutive days of maximum rainfall, the
more occurrence of landslides. This approach
is more reasonable than previous studies when
only using an average annual rainfall map
(Adnan Ikram et al., 2023; Le et al., 2023;
Moayedi & Dehrashid, 2023) or a specific
cumulative rainfall map (Bui et al., 2012;
Zhang et al., 2022) for landslide assessment.

In evaluating the importance of landslide
conditioning factors, Fig. 6a to 6d results
indicate that consecutive days of maximum
rainfall data influence landslides most.
Regarding the case using average annual
rainfall (Fig. 7e), this rainfall type only ranks
in the 3™ position in terms of importance
index. The consecutive days of maximum
rainfall factor are more important than the
average annual rainfall factor and the
remaining factors. Previous studies also
showed similar results when using average

annual rainfall data on landslide susceptibility
assessment. Le et al. (2023) have used thirteen
conditioning factors for landslide spatial
prediction mapping in Trung Khanh district,
Cao Bang province, Vietnam. The critical
assessment results indicated that average
annual rainfall was the eighth most influential
variable. Another study in Mu Cang Chai
District, Yen Bai Province, Vietnam, showed
that average annual rainfall was among the
least important variables (Pham et al., 2019).
In this study, landslide susceptibility
assessment using consecutive days of
maximum rainfall data has improved the
prediction model's performance. By using a
powerful model of XGBoost and these rainfall
data, landslide spatial prediction models show
an exceptionally reliable performance as AUC
is approximately 0.9 (Table 7 and Fig. 8).
These results outperform the case using
average annual precipitation (AUC = 0.838).
This means that the approach of this study has
improved the performance of the landslide
susceptibility model when compared with the
wide use of average annual rainfall in the
previous approach. Additionally, the case
using 3-day maximum rainfall has better
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performance than others. This means that
3-day maximum rainfall  significantly
influences landslides in the mountainous area
of Quang Ngai Province. This result is similar
to the study of Phuoc et al. (2019) when
assuming that 3-day maximum rainfall
strongly correlates to landslides in this region.

By approaching the time series of 3-day
maximum rainfall data in the model-building
step, this study has generated a set of landslide
spatial maps corresponding to different rainfall
frequencies in the step of landslide
susceptibility mapping. These maps illustrate
the "where" slope failure will occur in this
region and predict "how frequently" it appears.
This is a significant improvement of this study
compared to previous studies that use a specific
rainfall map for landslide susceptibility
mapping (Adnan Ikram et al., 2023; Le et al,,
2023; Moayedi & Dehrashid, 2023). However,
the 5 years of time series rainfall data (2016-
2020) applied in this paper is not long enough
to make a long-term prediction. Therefore, this
study only provides the landslide predictions
corresponding to the rainfall frequency from
50% to 10%. The landslide spatial prediction
maps corresponding to the frequency of 50%,
20%, and 10% have highlighted the influence
of rainfall on landslide susceptibility in this
region (Fig. 10 to Fig. 12). The higher the
3-day maximum precipitation, the larger the
"very high" class in the landslide susceptibility
map (Fig. 13). In addition, most landslides are
concentrated in the "very high" class, while
very few landslides are found in the "low" and
"shallow" classes (Fig. 14). This result
indicates a reliable performance of these
landslide spatial prediction maps. According to
the very high class, the case with the frequency
of 50% is found to have the highest LD; then,
the LD has an upward trend along with the
decrease in rainfall frequency. This can be
explained by the fact that as the rainfall
increases, the number of landslides and the
"very high" class area increase. However, the
"very high" class percentage increase is higher
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than the rise in the landslides' percentage,
leading to a decrease in LD value.

6. Conclusions

This study has provided an approach to
using rainfall data on landslide susceptibility
assessment in the mountainous region of
Quang Ngai province, Vietnam. The time
series of consecutive days of maximum
rainfall data is proposed to replace the average
annual rainfall data widely used in previous
studies. Overall, the findings of this study
provide important insights into the effect of
rainfall on landslide susceptibility. The feature
selection results by Boruta method indicate
that the consecutive days of maximum
precipitation significantly influence landslide
occurrences, whereas the average annual
rainfall shows less importance. In addition,
the validation results from XGBoost model
show that the cases using consecutive days of
maximum rainfall have excellent
performance. The case with a 3-day maximum
rainfall provides the best prediction ability
among them.

On the contrary, the lowest performance
belongs to the case using average annual
rainfall data. Therefore, this study has
demonstrated that the time series of
consecutive days of maximum rainfall data
has improved the landslide susceptibility
model's prediction ability in the Quang Ngai
province case study. By applying the annual
maximum precipitation maps in calculating
landslide susceptible indexes, this study can
generate landslide spatial prediction maps
corresponding to different rainfall
frequencies. These maps indicate the strong
influence  of rainfall on  landslide
susceptibility. The higher the rainfall, the
more the area of very high susceptible class
expands. More importantly, these maps are
handy for disaster prevention and land use
management. This paper also recommends
paying more attention to data collection,
especially for detailed landslide inventories, to
improve the prediction efficiency.
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