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ABSTRACT

Hotspots in Kalimantan are significantly correlated with local and global climatic conditions. These hotspots have
been represented in previous explorations using copula-based mean regression technique. However, this study
focused on advancing hotspots model through the use of copula-based quantile regression. Probabilistic method was
also introduced to depict the characteristics of hotspots in Kalimantan. To achieve this objective, the technique of the
inference of functions for margins was applied. Several copula functions, including Gumbel, Clayton, Frank, Joe,
Galambos, BB1, BB6, BB7, and BB8, were meticulously chosen. The selection of the most suitable copula was based
on the results of the Anderson-Darling and Cramer-von Mises hypothesis tests. The results showed that the
combination of quantile and mean regression yielded satisfactory results. Moreover, an uncertainty range was
established by assessing the outermost quantile, which aided the assessment of the reliability of estimated hotspots.
Probabilistic model introduced a fresh viewpoint to modeling process. Instead of forecasting an exact value, model
estimated the probability of hotspots occurrences based on specific climatic conditions. Among the three scenarios
examined, precipitation-based model showed an average accuracy of 89.7%, while dry spells-based outperformed the
value with a score of 90.3%. After evaluating the results from both regression and probabilistic model, dry spells-
based method outperformed precipitation-based. On the other hand, precipitation-based performed better in capturing
certain minor details compared to dry spells-based model.

Keywords: Copula-based quantile regression, El Nino-Southern Oscillation (ENSO), hotspots, probabilistic
model, rotated copula.

1. Introduction contribute to climate change, primarily due to
the emission of greenhouse gases resulting

Indonesia is known to have experienced i i .
from  biomass burning (Enriquez-de-

continuous forest and land fires for the space N
of three decades (Thoha et al., 2023). These Salamanca, 2020). The majority of the
fires are climatological disasters that extensive forest fires in Indonesia took place

on peatlands. The country boasts the largest
*Corresponding author, Email: nurdiati@apps.ipb.ac.id expanse of tropical peatlands in the world and
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ranks fourth globally in terms of entire
peatland coverage, which extends across
Kalimantan, Sumatra, and Papua (Page et al.,
2011). In 1997 and 2015, severe fire incidents
occurred in tropical peatland regions across
Southeast Asia, including Indonesia. These
events led to the emission of a significant
amount of CO; into the atmosphere, ranging
from 0.8 to 9.43 Gt, during a single fire
season. This emission is equivalent to
approximately 30% of the total global fossil
fuel emissions observed in 2020 (Horton et
al., 2022).

Repeated forest and land fires lead to
substantial post-fire expenses in Indonesia.
The country experienced losses of
approximately IDR 221 trillion and IDR 75
trillion during the extreme fires of 2015 and
2019, respectively (Thoha et al., 2023).
Beyond causing economic losses, these fires
also exert a negative influence on public
health due to air pollution (Marlier et al.,
2019) and disrupt the balance of flora and
fauna ecosystems (Harrison et al., 2009).
Furthermore, fires pose significant threats to
various aspects of society, including the
physical environment, economy, agriculture,
and social structure. Peatland fires trigger
social and livelihood changes, intensifying the
vulnerability of local populations through
recurrent damage to infrastructure and
agriculture. This situation raises tensions and

necessitates a shift from subsistence
livelihoods to innovative practices that
transform degraded peatlands into
economically productive landscapes

(Medrilzam et al., 2014; Goldstein, 2020;
Lounela, 2021).

The phenomenon of ocean-atmosphere
interaction known as El-Nino and Southern
Oscillation (ENSO) profoundly impacts
climatic conditions, including those in
Indonesia, specifically in the Pacific Ocean
(Nicholls, 1984; Amirudin et al., 2020). The
warm phase of ENSO, commonly referred to

as El Nino, results in cooler sea temperatures
around maritime regions of the country.
Consequently, evaporation rates decrease and
condensation is hindered. Reduced cloud
cover leads to diminished precipitation on the
Indonesian mainland and an increased
frequency of dry days (Philander, 1983;
Iskandar et al.,, 2019). This conditions
culminates in reduced water availability
across several parts of the nation, including
Kalimantan, where vegetation becomes
parched, and the risk of forest and land fires
escalates (Salafsky, 1994; Jim 1999; Khan et
al., 2020). Previous study shows that the El
Nino phase has a significant influence on
forest and land fires in Kalimantan, the island
facing the most severe forest fires (Nurdiati et
al., 2022a). For example, the well-known
forest fires in 1997 and 2015 occurred
concurrently with extreme El Nino conditions
(Huijnen et al., 2016; Fanin and van der Werf,
2017). This shows the need for model capable
of establishing the connection between ENSO
phase variations and climate indicators, such
as precipitation levels and the frequency of
rainless days (dry spells). It should be noted
that these indicators are closely associated
with forest fires in Kalimantan (Nurdiati et al.,

2021).
Numerous study analysts have developed
model to predict forest fire indicators

(including hotspots and burnt areas) using
various methods, such as artificial neural
networks  (Nikonovas et al, 2022;
Mezbahuddin et al., 2023), Bayesian model
(Ardiyani et al., 2023; Charizanos and
Demirhan, 2023; Koh et al., 2023), machine
learning (Grari et al., 2022; Shao et al., 2022),
polynomial and generalized logistic functions
(Nurdiati et al., 2022c), and copula regression
(Najib et al., 2022b). Copula regression model
computes the mean value of conditional
distribution (known as copula mean
regression) of hotspots with respect to climate
indicators (e.g., total precipitation and dry
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spells) in the three distinct ENSO phases. By
computing the mean value of conditional
distribution, a higher hotspots value
significantly contributes to the average. As a
result, an alternative method is essential for
calculating the median value or other quantile
values of conditional distribution of hotspots
generated through copula function. This
method is often referred to as copula-based
quantile regression (El Adlouni, 2018; Li et
al., 2021; Zabhiri et al., 2022).

Copula function in multivariate analysis
offers several key advantages (1) flexibility in
selecting arbitrary marginal distribution
functions and their dependence structure,
(2) scalability to involve more than two
variables, and (3) capability to separately
analyze the marginal distribution function and
its dependence structure (Salvadori et al.,
2005; Tahroudi et al., 2020). Although copula
theory is not novel, the volume of literature
discussing the functions in diverse contexts
has significantly increased in the past decade
(Wahl et al., 2012; Tootoonchi et al., 2022).
Copula-based quantile regression uses copula
function to unveil relationships between
variables,  thereby  constructing  joint
probabilities  between them.  Quantile
regression, which is an extension of linear
regression, facilitates regression across the
entire time series of data, accommodating
values exceeding the chosen quantile.
Consequently, when high (low) quantiles are
under consideration, its regression allows
exploration of the upper (lower) tail of the
probability distribution function (Treppiedi et
al., 2021). One advantage of quantile
regression compared to ordinary least squares
is the heightened robustness against outliers in
the response measurements (Koenker, 2005).
Copula-based quantile regression offers
flexibility for general time-to-event datasets
(El Adlouni, 2018; Pan and Joe, 2022) and
finds application in drought and flood
monitoring (Zhang et al., 2023).
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Numerous journals explore the application
of copula quantile regression model across
various scientific domains. Abdallah et al.
(2022) advocated copula-based quantile
regression as a promising alternative
technique for estimating daily ETo under
hyper-arid climate conditions worldwide.
Zhang et al. (2023) wused polarimetric
decomposition and copula quantile regression
to probabilistically estimate surface soil
moisture (SSM). In the study, copula quantile
regression established an uncertainty range for
the SSM estimate, facilitating an assessment
of its reliability. Wu et al. (2022) proposed an
agricultural  drought prediction = model
grounded in D-vine copula quantile
regression, taking into account diverse factors
related to agricultural drought mechanisms in
China.

This study aims to model hotspots in
Kalimantan using copula-based mean and
quantile regression, ultimately predicting the
likelihood of its occurrence under specific
climatic conditions. The organization of this
article includes, Section 2 providing a detailed
overview of the study area and dataset.
Section 3 elucidates the methodologies
consisting of copula functions, parameter
estimation, copula-based joint probability,
regression,  quantile  regression, and
probabilistic model. The discussion and
presentation of results are encapsulated in
Section 4, while Section 5 concludes the
article. The results are expected to
significantly contribute to the development of
an early warning system for forest fires in
Indonesia.

2. Study area and datasets

Indonesia is the largest tropical peatland in
the world, spanning a total area of 13.43
million hectares across three primary islands,
namely Sumatera, Kalimantan, and Papua.
This study specifically centers on Kalimantan,
including 33.8% of peatlands, distributed
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among five provinces, including West, East,
Central, South, and North Kalimantan
(Yuwati et al.,, 2021). In the 2019 fire
incident, Central and West Kalimantan were
known as the provinces with the highest count
of hotspots, closely trailed by Jambi, Riau,
and South Sumatra provinces on Sumatra
Island (Thoha et al., 2023).

Hotspots constitute a common method to
rapidly monitor forest fires across expansive
regions. These hotspots denote areas with
relatively elevated surface temperatures
compared to their surroundings, established
based on specific thresholds observed through

Table 1. Source and summary of data

remote sensing satellites (Coutts et al., 2016;
Vatresia et al., 2022). Hotspots are identified
by detecting instances of forest and land fires
within certain pixel dimensions. Detection
occurs when the satellite directly observes
hotspots ~ under  relatively  cloud-free
conditions, using a designated algorithm
(Nainggolan et al., 2020). Precipitation and
dry spells (defined as days with daily
precipitation below one millimeter) serve as
predictors  within three distinct ENSO
conditions (La Nina, neutral, and El Nino).
Table 1 shows the source and summary of the
data.

Datasets Spatial resolution Periods

Source

Precipitation 0.25 2001-2020

Monthly CMORPH-CRT
(https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMOR
PH CRT/DATA/)

Dry spells 0.25 2001-2020

Processed using daily CMORPH-CRT
(https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMOR
PH CRT/DATA/)

Hotspots 0.25 2001-2020

Agency for Meteorology, Climatology, and Geophysics
(BMKG) Indonesia

ENSO index - 2001-2020

Climate Prediction Center, NCEP, NOAA processed using
ERSSTvVS data
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitori
ng/ensostuff/ONI_v5.php)

The used data has been processed within
fire-prone regions of Kalimantan (Najib et al.,
2021). Kalimantan predominantly experiences
two seasonal rainfall patterns: equatorial and
monsoonal. Using clustering, hotspots data in
this region is categorized into clusters,
revealing areas susceptible to forest fires.
Many of these regions lie in central, western,
and southern Kalimantan, which adhere to a
monsoonal rainfall pattern. In these selected
zones, data is aggregated to capture general
characteristics of rainfall, dry spells, and
hotspots occurrences in fire-prone Kalimantan
regions. Dependency analysis was then
conducted on the monthly hotspots data,
revealing that the two-month average of total
precipitation and the three-month cumulative
dry spells exerted the most substantial

influence on monthly hotspots. Concurrently,
ONI data divides the monthly dataset based
on three ENSO phases, including La Nina
(ONI <£-0.5), EI Nino (ONI > 0.5), and neutral
for other instances. The data are grouped into
four categories, consisting of monthly
hotspots counts in Kalimantan, a two-month
average of total precipitation, a three-month
cumulative of dry spells, and the Oceanic
Nino Index (ONI) as ENSO conditions
indicator. All data were collected between
July and November from 2001 to 2020.

3. Methods
3.1. Copula function

The multivariate normal distribution
function served as the most basic method for
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crafting a joint distribution among two or
more variables. However, this method relied
on assumptions that were rarely encountered
in actual data, particularly climate-related
data. A crucial assumption was the
requirement for every linear combination of
individual component variables to adhere to a
normal distribution (Yan, 2006; Danaher and
Smith, 2011). Consequently, flexibility for the
marginal variables was lacking.

Copula function presented an alternative
avenue to construct a joint distribution in
cases where the normality assumption was
unmet (Sartika et al., 2019; Masseran and
Hussain, 2020; Pambabay-Calero et al.,
2021). When faced with non-normally
distributed marginal variables, copula
function facilitated the creation of a joint
distribution (Vuolo, 2017). Remarkably, this
construction remained feasible even when
each variable exhibited a distinct distribution
(Salvadori and De Michele, 2007; Tahroudi et
al., 2022). Copula, functioning as a connector,

constructed a  multivariate  distribution
function through its univariate marginal
distribution function (Scholzel and
Friederichs, 2008; Amini et al., 2022).

Another perspective defined copula function
as a multivariate distribution function, where
the marginal function was uniformly
distributed over the interval [0,1] (Nelsen,
2006). In the bivariate context, copula
function C: I? - I, with I € [0,1], mapped the
univariate marginal distribution functions of
variables X and Y denoted as Fy and Fy,
respectively to the multivariate distribution
function Fyy, illustrated as follows (Sklar
1959):

Fyy(X,Y) = C(FX(X)'FY(Y)) (D

where X represents the climate indicators
(e.g., precipitation or dry spells) and Y
represents hotspots data (Najib et al., 2022a).
In contrast to the multivariate normal
distribution, copula function could tailor the
joint shape of the distribution based on the
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presence or absence of tail dependencies
between variables. Copula exhibited greater
flexibility than the multivariate normal
distribution because each copula function
captured distinct tail dependencies (Babi¢ et
al., 2019; Li et al., 2020). For example, the
Gumbel Copula characterized upper tail
dependencies, while the Clayton Copula
handled lower tail dependencies.

3.2. Parameter estimation

This study used a two-step methodology to
estimate copula parameters, specifically the
Inference of Function for Margins (IFM) (Joe,
1997; 2005). The first step involved
estimating the univariate marginal distribution
for each variable pair. Various univariate
distribution functions were fitted to the data,
involving Extreme Value, Logistic, Weibull,
Normal, Log-normal, Log-logistic, Gamma,
Inverse-Gaussian, and Generalized Extreme
Value for climate indicators, and Negative
Binomial for hotspots data. The suitable
distribution function was chosen through the
Anderson-Darling hypothesis test (Anderson,
2011).

The second step of the IFM method
included estimating copula parameters using
transformed variables in line with the
corresponding marginal distributions,
ensuring the transformed variables adhered to
a uniform distribution within the [0,1]
interval. This transformation, often referred to
as the probability integral transformation (Yan
2007; Brechmann, 2014), underpinned the
analysis. This study used diverse copula
functions, including Gumbel, Clayton, Frank,
Joe, Galambos, BB1, BB6, BB7, and BBS.
Determining the most suitable copula function
involved the Cramer-von Mises (CvM)
hypothesis test (Berg, 2009) and used criteria
such as RMSE and AIC for final selection.
Comprehensive details regarding the steps for
fitting copula parameters were outlined in
Najib et al. (2022b).
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3.3. Copula-based joint probability

If Fy and Fy were continuous cumulative
distribution functions (CDFs), the unique
copula function C (Eq. 1) could be expressed
as follows:

C(u,v) = fou fov c(u,v) du dv ()

where u and v represented the transformed
random variables, expressed as u = Fy(x)
and v = Fy(y) (Scholzel and Friederichs
2008). The function ¢ was known as copula
density function or dependence function
(Mirabbasi et al., 2012; Ly et al., 2019;
Mukhopadhyay and Parzen, 2020), as it
revealed the dependencies between random
variables. This dependency function had
originally been introduced by Hoeffding in
1940 and was defined as the quotient of the
joint density and the product of its marginal
densities. A fundamental implication of Sklar
theorem (1959) was that any joint probability
between two variables could be represented as
the product of the marginal probability density
and copula density, given by:

fir(ay) = fx(x) - fy () - C(Fx(x). FY()’)) (3)

The joint probability distribution of X; and
X, could be uniquely determined when F; and
F, were continuous CDFs. This method could
be extended to incorporate a combination of
continuous and discrete random variables. If
Fy and F, entailed both continuous and
discrete CDFs, then copula would exclusively
ascertain the joint probability distribution
across the scope of Fy X Fy (Pleis, 2018).

3.4. Copula-based regression

Copula-based regression (also known as
copula regression) offered an alternative to the
conventional regression method, providing the
significant advantage of independently
modeling the marginal distribution and the
dependency structure (Joe, 2014; Li et al,
2022). This method removed restrictions on
the distribution function of the data used

(Thevaraja and Rahman, 2019). Copula
regression leveraged conditional probability
function obtained from copula function and
then estimated the expected value (mean) of
conditional probability function as follows:

EXIX=x)=["y fix@lx)dy (4

where
(x,y)

i) =22

= C(Fx(x),Fy(J/)) K () (5)
is conditional probability function of a
variable Y given a set of variables X. Copula
regression is also called copula mean
regression.

3.5. Copula-based quantile regression

Quantile regression extended the classical
regression  method by  incorporating
comprehensive information about conditional
distribution of the response variable (Koenker
and Hallock 2001; Herawati 2020). In
quantile regression, the focus was on
approximating conditional functions of the
response variable Y given a set of variables X.
The method used conditional distribution
function of the response variable Y, which
was given by:

Frx(Y <ylX =x) = [ fyx(ylx) dx (6)

The function fyx represented conditional
probability function, while Fy|x represented
conditional distribution function. The g-th
quantile of conditional distribution function
Fy|x was calculated as follows

¥ = Frx(@ ()
where g € [0,1]. The value of g served as the
hyper-parameter or tuning parameter that
needed to be determined. In this study, the
chosen g was the one that minimized the root
mean squared error (RMSE) between ¥ and y,
given by:
lyn

E Gy = F3,0-y2  ®

where n represented the size of the data.
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3.6. Copula-based probabilistic model

Probabilistic model referred to a method
used to determine the likelihood of a random
variable taking on specific values or sets of
values. Instead of focusing on estimating
exact values, probabilistic model aimed to
assess the probability of random events. This
model used probability theory to account for
uncertainties in the data.

To estimate the probability of hotspots
being lower than a specific value, notated by

Defining study area and

Fyx(Y < y|X = x), the formula presented in

Eq. 6 could be used. Similarly, the formula for
determining the probability of hotspots ex-
ceeding a specific value Fyx(Y = y|X = x)
was provided as
Frx(Y 2ylX =x) =1 - Fx(Y <y|lX =x)
=1- [ frxI)dx  (9)
This formula was referred to as conditional

survival function. The flowchart of this study
was shown in Fig. 1.
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Figure 1. Flowchart of this study

4. Results and Discussion
4.1. Data description

A brief description of the data used in this
study was shown in Fig. 2. A total of 100 data
points were used, comprising 51 points during
normal ENSO conditions, as well as 21 and
28 data points under La Nina and El Nino
conditions, respectively. As shown in Fig. 2b,
precipitation distribution was lower during El
Nino conditions and higher during La Nina
conditions. However, dry spells distribution
shown in Fig. 2c¢ and the count of hotspots in
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Fig. 2d, were more substantial during El Nino
conditions.

Figure 2e showed the relationship between
precipitation and the number of dry spells,
indicating a negative correlation. This implied
that minimal precipitation led to an increase in
hotspots in Kalimantan. The correlation
between these variables was relatively strong,
and according to Pearson linear correlation
coefficient, the most pronounced correlation
occurred during La Nina ENSO conditions,
followed by El Nino, and Normal conditions.
Furthermore, alternative correlation
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coefficients such as Spearman and Kendall,
specifically designed to capture non-linear
relationships, showed the strongest correlation
during El Nino, followed by La Nina and
Normal phases. Figure 2g showed a positive
correlation between dry spells and the count
of hotspots, suggesting that longer dry spells

corresponded to a higher number of hotspots
in Kalimantan. Similar to the correlation
observed between precipitation and hotspots,
the link between dry spells and hotspots was
quite robust. Strong correlations between
variables provided a solid foundation for an
analysis using copula method.
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Figure 2. Description of the data: a) the number of data, b-d) distribution of precipitation, dry spells, and
the number of hotspots, e-f) scatter plot and correlation between precipitation and the number of hotspots,
and g-h) scatter plot and correlation between dry spells and the number of hotspots

4.2. Parameter estimation and goodness-of-
fit test of marginal distributions

The parameters of the
distribution were estimated through the
maximum likelihood method, and the
outcomes were shown in Table 2. The
suitability of attaching these distributions to
the data namely, precipitation, dry spells, and
the number of hotspots was assessed using the

marginal

Anderson-Darling test.

Table 2 showed the most suitable marginal
distribution for data under distinct conditions.
The numbers alongside distribution names
represented the Anderson-Darling statistics,
while the values in parentheses indicated their
corresponding p-values. With a significance
level of 5%, all selected distributions passed
the Anderson-Darling hypothesis test, evident
from p-values exceeding 5%.

Table 2. Fitting results of marginal distributions with Anderson-Darling statistics and its p-value

Datasets La Nina Normal El Nino
Precipitation Extreme Value Gamma Log-normal
0.3256 (0.9169) 0.3361 (0.9084) 0.2394 (0.9757)
Dry spells Gen. Extreme Value Normal Gen. Extreme Value
0.1966 (0.9915) 0.1523 (0.9985) 0.1794 (0.9951)
Hotspots Negative Binomial Negative Binomial Negative Binomial
0.5286 (0.7158) 0.1987 (0.9908) 0.4793 (0.7666)
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For precipitation data, the most fitting
distributions varied across different ENSO
conditions. Extreme value distribution was
suitable during La Nina, while Gamma and
Log-Normal distributions was consistent with
normal and El Nino conditions, respectively.
However, the generalized extreme value
distribution was the best match for dry spells
during La Nina and El Nino phases. Under
normal ENSO conditions, the Normal
distribution served as the appropriate marginal
for dry spells data. Lastly, the negative
binomial distribution was deemed suitable for
modeling the count of hotspots.

4.3. Parameter estimation and goodness-of-
fit test of copula functions

Different copula functions exhibited
unique requirements regarding the correlation
of their variables. For example, the Gumbel
and Clayton copula demanded pairs of
random variables with positive correlations,
while the Frank copula could be applied to
random variables displaying both positive and
negative correlations. According to Fig. 2, the
correlation between precipitation and hotspots
was negative, but the correlation between dry
spells and hotspots was positive. Most copula
functions mentioned in the methods section
were suited exclusively for pairs of variables
with positive correlations. Consequently,
implementing the rotation technique for
copula function became essential to handle

pairs of variables with negative dependencies
as well (Tan et al., 2022; Wang et al., 2022).

Parameters of copula function were
estimated using the maximum likelihood
method, and the outcomes were shown in
Table 3. Furthermore, the Cramer-von Mises
test was used to evaluate the appropriateness
of copula function for the data. The numerical
values following copula names represented
the Cramer-von Mises statistics, with the
figures within parentheses indicating the
corresponding p-values. With a significance
level of 5%, all selected copula functions
successfully cleared the Cramer-von Mises
hypothesis test, as evidenced by p-values
surpassing 5%.

Counterclockwise rotations of 90, 180, and
270 degrees were applied to copula function
(Kosmidis and Karlis, 2016). Mathematical
formulas for these rotations were provided by
Brechmann and Schepsmeier (2013). Using a
rotation of 90 or 270 degrees enabled
modeling of negative dependencies, which the
standard non-rotated version could not
address. The results in Table 3 for
precipitation and hotspots showed that the
suitable copula functions during La Nina and
El Nino were the Joe and BB7 copula with a
90-degree rotation, respectively. Meanwhile,
the Galambos copula with a rotation of 270
degrees arose as the most appropriate choice
for normal ENSO conditions.

Table 3. Fitting results of copula functions with Cramer-von Mises statistics and its p-value

Datasets La Nina Normal El Nino
Precipitation - Hotspots Joe-90° Galambos-270° BB7-90°
0.04358 (0.6918) 0.03027 (0.7087) 0.03334 (0.7197)
Dry spells - Hotspots Clayton-180° BB7 Galambos-180°
0.06694 (0.5973) 0.02393 (0.7367) 0.02546 (0.7558)

Copula function subjected to a 180-degree
rotation was referred to as the survival copula
function. The survival copula function
exhibited characteristics contrary to those of
the standard copula function (Liu et al., 2018;
Nurdiati et al., 2022b). For example, the
survival Clayton copula was well-suited for

20

modeling dry spells and hotspots in La Nina.
Given the lower tail dependence of the
Clayton copula, its survival version showed
upper tail dependence. Moreover, the most
suitable copula functions under normal ENSO
and El Nino conditions were the standard BB7
and survival Galambos copula, respectively.
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4.4. Copula-based quantile regression

The bivariate joint distribution between the
two variables was obtained based on the
selected bivariate copula function under
specific ENSO conditions. With detailed
information about ENSO conditions and the
monthly amounts of precipitation or the count
of dry spells, it was possible to estimate the
number of hotspots using the joint
distribution. This estimation method was
referred to as copula-based quantile
regression.

The choice of quantile value for estimation
was determined by seeking the value that
yielded the best RMSE and R? values between
the estimated and actual numbers of hotspots.

also called the hyperparameter or tuning
parameter. Various quantile values (multiples
of 0.02) were experimented with for hotspots
estimation, and the results for RMSE and R?
were shown in Fig. 3. Variations in pairs of
variables and ENSO conditions led to
differences in the optimal quantile value
points selected. For conditional probability
given a specific amount of precipitation
(Fig. 3a-c), the optimal quantile values varied
for different conditions: 0.32, 0.66, and 0.56
for La Nina, normal, and El Nino phases of
ENSO conditions, respectively. Meanwhile,
for conditional probability given a specific
count of dry spells (Fig. 3d-f), the optimal
quantile values were around 0.6 for each
ENSO conditions, specifically 0.62, 0.58, and

This process, known as hyperparameter (.56 during La Nina, normal, and El Nino
tuning, involved the use of quantile value (q), phases, respectively.
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Figure 3. Hyperparameter tuning for quantile value of conditions probability given a specific value of a-
¢) precipitation and d-f) dry spells during La Nina, Normal, and El Nino, respectively

Apart from estimating the number of
hotspots using quantile value of hotspots
conditional probability, the number of
hotspots was also estimated using the
expected value (mean) of hotspots conditional
probability (Eq. 4). Table 4 showed a

comparison of RMSE and R? values for
copula-based mean regression and quantile
regression. Since none of the methods
dominated the other, this study used a
combination of mean and quantile regression
for the estimation.
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In the La Nina phase, quantile regression
showed superiority over mean regression
due to lower RMSE and higher R? values.
Mean regression was observed to be more
suitable during El Nino conditions, showing
better fit. Under normal ENSO conditions,
quantile regression was better suited for

estimating hotspots given specific amounts
of precipi-tation. On the other hand, mean
regression was more fitting for hotspots
estimation given a specific count of dry
spells. In Table 4, bold numbers indicated
the chosen method for hotspots estimation
under each condition.

Table 4. Comparison of RMSE and R? for copula mean and quantile regression for each condition

Pair-Variables Phases QuantileQuantllS\/IRSel? fesson R Rll\\/l/lesa]g Regress;i?
La Nina 0.32 204 88.44% 223 84.87%
Precipitation-Hotspot Normal 0.66 1099 45.35% 1118 43.43%
El Nino 0.56 1680 67.11% 1653 68.13%
La Nina 0.62 278 78.58% 297 75.48%
Dry spells-Hotspot Normal 0.58 864 66.25% 855 66.92%
El Nino 0.56 1768 63.54% 1732 65.00%
During La Nina and El Nino, goodness-of- involving all other greater data points.

fit for hotspots estimation based on specific
amounts of precipitation yielded superior
results compared to using specific counts of
dry spells, as indicated by better RMSE and R?
values. In these conditions, hotspots estimation
proved reasonably accurate, with R2 values
exceeding 60%. Conversely, under normal
ENSO conditions, estimating hotspots based on
specific amounts of precipitation resulted in
lower accuracy, with an R? value of less than
50%. More favorable outcomes were observed
when using the count of dry spells as
conditions, leading to values exceeding 60%.
Therefore, opting for dry spells as conditions
for hotspots probability allowed for good
accuracy across all conditions.

4.5. Regression model of hotspots with lower
and upper bound

One of the advantages of quantile
regression was its ability to calculate quantile
values used as the lower and upper bounds of a
deterministic model, ensuring all data points
fell within these bounds. Figure 4 showed the
hyperparameter tuning process for quantile
values used as lower and upper bounds.
Quantile value for the lower bound was
selected based on the highest quantile value
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However, quantile value for the upper bound
was chosen based on the smallest quantile
value covering all other smaller data points.
Figure 4a showed the results of tuning the
lower bound hyperparameter for model under
La Nina, Normal, and El Nino conditions,
using a specific amount of precipitation. The
highest quantile values covering all data points
during La Nina, Normal, and El Nino were
8.2%, 2.0%, and 7.6%, respectively. Any
quantile value exceeding these values
contained at least one data point smaller than
the predicted lower bound, signifying data
lying outside the lower bound. Meanwhile,
Fig. 4b showed the tuning outcomes for the
upper bound of model associated with a
specific amount of precipitation under La Nina,
Normal, and El Nino conditions. The
application of quantile values for the lower and
upper bounds offered greater flexibility
compared to a 95% confidence interval. Even
within El Nino conditions, when using a 95%
confidence interval, there still existed at least
one point beyond the upper bound interval,
specifically at the 97.5% quantile. However, by
extending the upper bound to 99.0%, all data
points fell within the bound as seen in Fig. 4b.
Figs. 4c and 4d also showed the results of
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tuning the lower and upper bounds for model under La Nina, Normal, and El Nino
concerning a specific number of dry spells conditions.
A B C D
La Nina La Nina La Nina La Nina
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Figure 4. Hyperparameter tuning process for quantile values used as the (a) lower and (b) upper bounds
of model given a specific amount of precipitation, and the (c) lower and (d) upper bounds of model given
a specific number of dry spells

After the derivation of regression line for
hotspots using either mean or quantile
regression methods, along with the lower and
upper bounds of regression line, Fig. 5
showed regression outcomes for each
condition. The first row revealed regression
outcomes when the specific amount of
precipitation was known, yielding R? values

of 88.44%, 45.35%, and 68.13% under
La Nina, Normal, and El Nino conditions,
respectively. Meanwhile, if the specific count

of dry spells was known, the second row
showed R? values of 78.58%, 66.92%, and
65.00% under La Nina, Normal, and EI Nino
conditions, respectively.
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Figure 5. Copula mean and quantile regression results for hotspots with lower and upper bounds given a
specific amount of precipitation (first row) and a specific number of dry spells (second row) for each
ENSO conditions
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Based on Fig. 5, changes in climate
indicators influenced by La Nina, Normal, and
El Nino conditions became evident when a
specific count of dry spells was known.
Despite the interval being almost the same
during La Nina and normal conditions around
20 to 60 days the interval for dry spells shifted
significantly to about 40 to 70 days during El
Nino conditions. While an increase in
hotspots was observable during El Nino, the
alteration in precipitation amounts was
relatively subtle, remaining within the range
of 2 to 12 mm/day. These results reinforced
the notion that dry spells provided better
characterization of hotspots compared to
precipitation amounts.

The time series of copula regression model
shown in Fig. 6 was obtained by evaluating all
data points within regression model in Fig. 5.

copula mean regression alone, significant
enhancement was discernible in the resulting
uncertainty range. The wuse of quantile
regression in the method improved the
previously modeled lower and upper bounds,
which were based on copula mean regression
(Najib et al., 2022b). In the earlier model, the
95% confidence interval failed to include
certain points. By modifying the lower and
upper bounds using suitable quantile values of
conditional probability, model developed in
this study (Fig. 6) effectively covered all points
along the boundary of regression model. In
regression model for hotspots, given a specific
amount of precipitation (referred to as
precipitation-based model), the R? and RMSE
values were 69.55% and 1179, respectively.
Meanwhile, in regression model for hotspots,
with a specific number of dry spells known as

Although regression outcomes did not dry spells-based model, the R* and RMSE were
drastically differ from those obtained through  73.07% and 1109, respectively.
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Figure 6. Time series of copula mean and quantile regression model for hotspots given the specific
amount of precipitation (top) and the specific number of dry spells (bottom) for each ENSO conditions

4.6. Probabilistic model of hotspots

This
representation model

section discussed an alternative
achievable through
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copula-based conditional probability. Instead
of extracting regression line from the derived
conditional probability, probabilistic model
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could be fashioned by estimating the
probability of hotspots occurrences being
below or above a specific value (Equations 6
and 9). Figure 7 showed a visualization of
hotspots probabilities for values below a
specific threshold, for each ENSO conditions,
given the knowledge of either the amount of
precipitation (top row) or the count of dry
spells (bottom row).

For example, if it was established that the
average amount of precipitation over 2
months was 4 mm/day, the probability of
hotspots occurrence being below 1000 under
La Nina conditions was 3.1% as indicated by
the blue dot in Fig. 7. This suggested that the
probability of hotspots occurrence being

above 1000 was 96.9%. This implied that
even during La Nina, if precipitation was low
(less than 4 mm), the probability of hotspots
occurrence exceeding 1000 was significantly
high. However, the probability of hotspots
surpassing 2500 was very low, at only 3.6%,
according to the black dot. Consequently, the
peak probability for hotspots, assuming an
average precipitation of 4 mm/day over 2
months during La Nina, lay between 1000 and
2500 hotspots. Even when precipitation was
less than 4 mm, the probability of hotspots
count exceeding 5000 was practically non-
existent during La Nina conditions, as
depicted by the absence of contour levels for
5000 hotspots at the top left corner in Fig. 7.
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Figure 7. Probabilistic model for hotspots given a specific amount of precipitation (first row) and a
specific number of dry spells (second row) for each ENSO conditions

Regarding Normal and El Nino conditions,
when the average precipitation for 2 months
was 4 mm/day, the probability of hotspots
occurrence exceeding 2500 rose to 21.8% and
67.1%. This was denoted by the blue and
black stars, respectively, demonstrating an
increase compared to La Nina conditions. In a
situation where the average precipitation is
less than 4 mm/day over 2 months, the

probability of hotspots occurrence falling
below 2500 hotspots per month decreased, or
conversely, the likelihood of hotspots count
surpassing 2500 increased. When compared to
La Nina conditions, where contour levels for
probabilities exceeding 5000 hotspots were
absent, these contours were present under
ENSO Normal and El Nino conditions.
Moreover, even contours for probabilities
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surpassing 10,000 hotspots existed in the red
area under Normal and El Nino conditions.

During ENSO Normal conditions, the
probability of hotspots occurrence exceeding
10,000 was recorded when the average
precipitation over 2 months was 3 mm/day.
Meanwhile, the probability of more than
10,000 hotspots materializing under El Nino
conditions became significant when the
average precipitation fell below 2 mm/day
over 2 months. This illustrated that El Nino
conditions could trigger more severe hotspots
despite less severe average precipitation
compared to Normal or La Nina conditions.
Additionally, the peak probability of hotspots
occurrence exceeding 10000 under ENSO
Normal conditions was 10.6%, occurring
when the average precipitation over 2 months
was 1 mm/day. Under El Nino conditions, the
probability of hotspots occurrence surpassing
10000 reached 100% when the average
precipitation was below 2 mm/day over 2
months.

A similar interpretation could be applied to
probabilistic model using the number of dry
spells (dry spells-based model). If it was
known that the average number of dry spells
within 3 months was 70 days, the probability
of hotspots occurrences exceeding 2500
hotspots was 67.8%, 88.2%, and 93.3% for La
Nina, Normal, and El Nino conditions,
indicated by red, blue, and black squares in

Fig. 7, respectively. Based on these
probabilities, there was a substantial
likelihood of hotspots number surpassing

2500 for each ENSO conditions when the
average amount of dry spells was 70 days or
more over 3 months. As opposed to
precipitation-based model, dry spells-based
model allowed for the occurrence of hotspots
exceeding 5000 even in La Nina conditions,
albeit with a low probability. This likelihood
started evolving when the average number of
dry spells exceeded 78 days over 3 months.
However, the probability of hotspots
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exceeding 10,000 still did not appear in
La Nina conditions.

Under ENSO Normal and El Nino
conditions, the probability of hotspots
occurrence exceeding 10,000 hotspots arose
when the average number of dry spells was 70
and 59 days over 3 months, respectively. As
previously observed, El Nino conditions
triggered more severe hotspots despite the
average number of dry spells being less
intense than the Normal or La Nina
conditions. Fortunately, this model managed
to capture more extreme hotspots events under
ENSO Normal conditions than precipitation-
based model did. This was evident from the
highest probability of hotspots occurrence
exceeding 10,000 hotspots, reaching 95.5%
when dry spells spanned 85 days over 3
months. Additionally, during El Nino
conditions, the peak probability of hotspots
occurrence  surpassed 10,000  hotspots,
reaching 94.1%.

In dry spells-based model, the propagation
of the probability of hotspots occurrence
exceeding 10,000 appeared to be more
gradual compared to model based on given
precipitation under El Nino conditions. Even

slight changes in precipitation led to
significant shifts in hotspots probability
exceeding 10,000. On the other hand,

probabilistic model based on the average
number of dry spells exhibited more resilience
and insensitivity.

The time series of probabilistic model in
Fig. 8 showed the probability of having more
than 1,000, 5,000, and 10,000 hotspots in
Kalimantan. This probability was derived by
evaluating all data points within model shown
in Fig. 7. This study was classified into three
scenarios, namely the classification of
hotspots in Kalimantan as exceeding 1,000,
5,000, and 10,000 hotspots or not.
Precipitation-based model yielded the highest
probability of hotspots occurrence exceeding
10,000 hotspots in September 2015, at
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63.41%. The actual number of hotspots in that
month was 8,448, hence, the obtained
probability was excessively high, surpassing
the 50% threshold. Precipitation-based model
achieved an unrealistically low probability for
September 2019, a month with 8,497 hotspots.
The probability of hotspots occurrence
exceeding 5,000 hotspots in that month was a
mere 19.51%.

It should be noted that dry spells-based
model provided improved results compared to
others. The probability of hotspots occurrence

exceeding 10,000 hotspots in September 2015
was 38.31%. Although this value was relatively
high, it remained below 50%. The probability
of hotspots occurrence exceeding 5,000
hotspots in September 2019 reached 72.10%,
surpassing the 50% threshold. Additionally, dry
spells-based model better captured the pattern
observed in 2004, which was characterized by
two peaks of hotspots. The results from dry
spells-based more accurately reflected the
mentioned hotspots occurrences compared to
precipitation-based model.
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Figure 8. Time series of probabilistic model for hotspots given the specific amount of precipitation (top)
and the specific number of dry spells (bottom) for each ENSO conditions

Table 5 showed the accuracy of
probabilistic model based on copula function
across the three classification scenarios.
Accuracy was computed by binary assessment
of the generated probability values within
probabilistic model. When the probability
value exceeded 50%, model predicted that
hotspots would exceed a specific threshold
value (in this case, 1,000, 5,000, and 10,000
hotspots). Accuracy was determined by
summing the true positives and true negatives
and dividing by the total number of data.
While both models exhibited the same
accuracy at the 1,000 hotspots threshold,
dry  spells-based model outperformed

precipitation-based in the other two cases. On
average, precipitation-based model achieved
an accuracy of 89.7% across the three
classification scenarios, and dry spells-based
reached an accuracy of 90.3%.

Table 5. Accuracy of probabilistic model in the
three classification cases

Precipitation- | Dry spells-
Class based model |based model
More than 1000 or not 76.0% 76.0%
More than 5000 or not 94.0% 95.0%
More than 10000 or not 99.0% 100.0%
Average 89.7% 90.3%
The pronounced misclassification

originating from precipitation-based model
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was very pronounced even though the entire
accuracy percentages indicated close values
between precipitation-based and dry spells-
based model. This was exemplified by the
misclassification observed in the estimated
hotspots probabilities for 2015 and 2019, as
previously explained. It was concluded that
dry  spells-based model outperformed
precipitation-based model, even though some
minor details were better captured by
precipitation-based model than dry spells-
based.

4.7. Discussions

This article explored a novel method to
modeling hotspots in Kalimantan through the
integration of copula regression and copula
quantile regression. As proposed by Hoang
(2018) in his dissertation, copula regression
(both quantile and mean regression) showed
greater robustness compared to non-
parametric regression trees and traditional
linear regression methods. Koenker (2005)
also elucidated that quantile regression
offered enhanced resilience when handling
outliers in the response variable. However,
this study found that quantile and mean
regression yielded nearly identical outcomes
as seen in Table 4. Quantile regression proved
more suitable for estimating hotspots numbers
in wet conditions (La Nina), whereas mean
regression was more appropriate for dry
conditions (EI Nino).

One significant advantage of copula
regression lay in its capacity to establish an
uncertainty range (Zhang et al., 2023).
Accessing the outermost quantile of
conditional distribution function generated
through copula function, granted flexibility in
determining the lower and upper bounds of
the uncertainty interval for the resulting
hotspots estimation (Fig. 4). This interval
served as a means to evaluate the reliability of
hotspots estimates derived from copula
quantile regression.
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Beyond the use of quantile regression, this
study introduced an alternative method, i.e.,
probabilistic model of hotspots through
copula-based joint distributions. A similar
study endeavor proposing probabilistic
strategy was presented by Nikonovas et al.
(2022), which used a multilayer perceptron to
formulate an artificial neural network model
for  estimating  hotspots  probabilities
surpassing a certain threshold. As opposed to
Nikonovas et al. (2022), who estimated
hotspots probabilities for each grid cell across
Indonesia, including Kalimantan, this study
provided estimations of hotspots probabilities
in a more general sense. The current study
specifically calculates the likelihood of the
total number of hotspots in Kalimantan as a
whole for a given month. This method
eliminated the need to consider various
location-specific  factors, such as land
management practices, policy decisions, and
fire suppression efforts (Page and Hooijer,
2016; Tacconi, 2016). However, it was
entirely  feasible to conduct further
investigation using copula function to predict
hotspots probabilities for individual grid cells.

There  remained  scenarios  where
precipitation  could  complement  the
information provided solely by dry spells as
predictors, although the results showed that
precipitation-based model did not outperform
dry spells-based model. This implied that the
potential application of multidimensional
copula functions (Liu and Li, 2022; Wu et al.,
2022; Zhao et al., 2022) was anticipated to be
developed for enhancing this probabilistic
prediction model in the future. Incorporating
the temporal variability of both global and
local climatic conditions could also be more
effectively modeled using a time-varying
copula (Lee and Kim, 2021; Maposa et al.,
2021; Xu et al.,, 2021). Consequently, the
prospects for refining and expanding upon this
model remained intriguing avenues for further
exploration.
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5. Conclusions

In conclusion, this article explored
hotspots modeling in Kalimantan based on
ENSO conditions using two types of
predictors, including the amount of
precipitation and the number of dry spells.
Model construction used copula function, with
two methods being used, namely copula
regression and probabilistic modeling.

The constructed copula model included
regression created through copula-based mean
and quantile regression, yielding hotspots
predictions. The main advantage of copula-
based quantile regression model was that the
lower and upper bounds of regression model
could cover all the data. This inclusivity arose
from the use of quantile, which was consistent
with the data obtained. However, the
significant contribution of this article lay in
probabilistic model formed based on copula-

based conditions distribution function.
Through this method, the estimation of
extreme hotspots event probabilities in

Kalimantan became feasible, diverging from
obtaining a definite predictive value from
regression model. Among the three scenarios
examined, precipitation-based model attained
an average accuracy of 89.7%, while dry
spells-based was  90.3%. Despite the
proximity of total accuracy percentages
between precipitation-based and dry spells-
based model, the pronounced
misclassification stemming from
precipitation-based method was distinguished.
Based on the outcomes derived from
regression and probabilistic model, it can be
concluded that dry spells-based model
surpassed precipitation-based model. On the
other hand, certain minor details were more
effectively captured by precipitation-based
model than by dry spells-based model.
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