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ABSTRACT

Flood models based on traditional hydrodynamic modeling encounter significant difficulties with real-time
predictions, require enormous computational resources, and perform poorly in data-limited regions. The difficulties
are compounded as flooding worldwide worsens due to the increasing frequency of short-term torrential rain events,
making it more challenging to predict floods over the long term. This study aims to address these challenges by
developing a rapid flood forecasting model combining machine learning algorithms (support vector regression,
XGBoost regression, CatBoost regression, and decision tree regression) with hydrodynamic modeling in Quang Tri
province in Vietnam. 560 flood depth locations were obtained by hydrodynamic modeling, and several locations
measured in the field were used as input data for the machine learning models to build a flood depth map for the
study area. The statistical indices used to evaluate the performance of the four proposed models were the receiver
operating characteristic (ROC) curve, area under the ROC curve, root mean square error, mean absolute error, and
coefficient of determination (R?). The results showed that all four models successfully constructed a flood depth map
for the study area. Among the four proposed models, CatBoost regression performed best, with an R? value of 0.86.
This was followed by XGBoost regression (R?=0.84), decision tree regression (R>=0.72), and then support vector
regression (R?=0.7). This integration of hydrodynamic modeling and machine learning complements the framework
in much of the existing literature. It can provide decision-makers and local authorities with an advanced flood
warning tool and contribute to improving sustainable development strategies in this and similar regions.

Keywords: Flood depth, machine learning, hydrodynamics, Quang Tri, Vietnam.

1. Introduction damage to economies, injury, and loss of life
(Hens et al., 2018; Shafizadeh-Moghadam et
al., 2018; Nguyen, 2022). According to
EM-DAT data, approximately 175,000 people
*Corresponding author, Email: nguyenhuuduy@hus.edu.vn have died, and 2.2 billion have been affected

Flood is one of the most common natural
disasters and, every year, causes significant
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by floods over the past 27 years (Nevo et al.,
2021). Due to both urban growth and climate
change, extreme  precipitation events
occurring over a short period have become
more frequent over recent years, increasing
the flood risk (Chakrabortty et al., 2021; Luu
et al.,, 2022; Nguyen et al., 2022). This
particularly impacts developing countries,
where mitigation measures are often
inadequate or low-quality. Knowledge of
flood depth is essential in reducing the
damage caused by floods.

Although most parts of the world are
affected by floods, Asian countries are
particularly vulnerable due to the high
population density in flood-prone areas
(Doocy et al., 2013; Luu et al, 2021).
Vietnam is most affected due to its location in
a humid, tropical climate zone. Vietnam's
central plains are particularly high-risk due to
heavy rainfall and high population density
(Luu et al., 2021; Nguyen, 2022). Engineering
measures to reduce the problem is a
significant challenge, with many mitigation
measures prohibitively expensive (Hall et al.,
2003; Johnson and Priest, 2008; Nguyen et al.,
2022). Therefore, efforts are being made to
determine flood depth to help decision-makers
in the sustainable management of land use.

The literature shows that researchers
determining flood depth encounter several
challenges. For example, although
hydrodynamic models such as MIKE FLOOD
(Kadam and Sen, 2012; Mani et al., 2014;
Tran et al., 2019), SWAT (Vilaysane et al.,
2015; Farooq et al., 2019), and HEC-RAS
(Namara et al., 2022) have been proven to be
effective, their application is limited to large
areas, due to the demand for detailed
meteorological, hydrological, and
topographical data. Hydrodynamic models are
also not appropriate for application in urgent
situations or for repetitive tasks because of the
time and cost of calculation. Van den Honert
and McAneney (2011) claimed that the failure
of the hydrodynamic model to determine

flood levels has been one of the causes of
significant floods in Queensland, Australia.
Most researchers have recently used remote
sensing to assess the flood. Although this
rapidly developing method can effectively
identify floodplains, it cannot determine the
causes and flood level. More robust methods
are needed to determine flood levels over a
wide area.

As progress in computer science
accelerates, researchers have increasingly
employed data-driven models based on

machine learning to assess flood susceptibility
(Islam et al., 202; Nguyen et al., 2022). These
have been developed based on an analysis of
the relationships between past flood events
and conditioning factors and have several
advantages: (i) these models can better solve
nonlinear structures with high accuracy,
(ii)) these models perform better in data-
limited regions, and iii) these models can
easily integrate with traditional models such
as remote sensing and hydrodynamic
modeling (Nguyen 2022; Gharakhanlou and
Perez, 2023; Youssef et al., 2023). The
selection of the appropriate algorithm for a
given task from hundreds of possible
candidates represents an enduring challenge
for the scientific community. Some machine
learning models that have been applied to
assess flood, landslides, forest fire, and
groundwater include support vector machines
(Tehrany et al., 2014; Tehrany et al., 2015),
random forest (Nachappa et al., 2020; Abu El-
Magd 2022), bagging (Talukdar et al., 2020),
adaboost (Nguyen 2022), and artificial neural
networks (Falah et al., 2019; Costache et al.,
2020). So far, there has been no established
use of algorithms to assess flood depth. The
provision of accurate flood depth data aids
decision-makers in building appropriate
strategies in the case both of emergencies and
long-term sustainable land-use planning.
(Nguyen et al., 2022) Pointed out that
determining flood depth is considered an
important task in  developing new

infrastructure. (Hosseiny et al, 2020)
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Reported that the identification of flood area
and flood depth with high accuracy is an
essential step in flood characteristic analysis
to support decision-makers in sustainable
land-use planning. (Ghanbari et al., 2021)
Showed that knowledge of flood depth is
crucial for planning adaptation measures to
flood risks in urban areas, especially in coastal
regions vulnerable to storms and floods.

This study aims to develop novel hybrid
models by integrating machine learning with
hydrodynamic modeling to estimate flood
extent and flood depth in Quang Tri province
of Vietnam. Quang Tri province has the
general characteristics of the littoral province
in Vietnam. The terrain is lower from west to
east, with the Truong Son range to the west,
followed by hills, coastal plains, and sand
dunes. The rainy season in the region extends
mainly from September to December.

Existing hydrodynamic modeling is well-
developed and can be used as input data for
the machine learning model. The integration
between machine learning and hydrodynamic
modeling can improve the quality of
predictions. The methodology was explicitly
developed: (i) to use hydrodynamic models to
determine the flood depth in the Thach Han
River watershed and (ii)) to use machine
learning to determine the flood depth for the
entire province of Quang Tri. The framework
proposed in this study is a new approach to
describing flood characteristics that allow
large-scale, efficient, and inexpensive
assessment. This is the first these models are
developed and applied in a Vietnam province
where floods are often affected. The results of
this study can be integrated into hydrological
forecast models for real-time flood analysis
with different scenarios.

2. Materials and methods
2.1. Study area

Quang Tri province is located in the
Central region of Vietnam, at 16°45'-17°30'N,
106°10’-107°12'E. It covers an area of
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4740 km? with a population of approximately
630,000 (Fig. 1).

The topography of Quang Tri is very
complex and diverse but can be divided into
three main geographical areas: mountains,
midlands, and plains. The mountainous zone
forms part of the Truong Son range and is
located in the west of the province, and
accounts for about 50% of the province's area.
Its altitude ranges from 250 to 1700 m. The
midlands have an altitude of between 50 and
250 m, representing about 30% of the
province's area. The plains are mainly
distributed along the coast and have an
elevation between 0 and 30 m; they account
for about 20% of the study area.

Quang Tri Province has a dense river
system, with an average density of
0.8-1.0 km/km”. Ben Hai, Thach Han, and O
Lau are three central river systems.

Located in the tropical monsoon zone, the
study area experiences a climate of two
distinct seasons. The dry season begins in
March with hot and dry wind from the
southwest, causing an increase in temperature
and decreased humidity until August. The
rainy season runs from September to February
and is influenced by the northeast monsoon,
which causes a drop in temperature and is
accompanied by storms and floods. The
average annual rainfall in the province is
1900-2500 mm. The heaviest rainfall is
concentrated  between  September and
December, accounting for 65-75% of annual
precipitation. Heavy rains concentrated within
a short period have caused significant
flooding in Quang Tri province, especially in
1999, 2010, and 2020.

Quang Tri Province has reduced damage to
human life and property through flood
prevention measures such as a levee system
over 180 km long, 157 pumping stations, and
131 reservoirs.
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Figure 1. Location of Quang Tri province

2.2. Flood inventory

Preparing a flood inventory is an essential
step in evaluating the characteristics of floods
using machine learning. In this study, 150
flood marks in the flood event in 1999 and
2005 were collected on a field mission in
2022. These points were measured using a
geodimeter, including coordinates and flood
depth. We used hydrodynamic modeling to
add further flood points to consolidate the
data. Several authors have pointed out that
developing a hydrodynamic model with high
accuracy can be an excellent solution to
complete the input data for the machine
learning model. Ultimately, 380 flood depth
points were added from the hydrodynamic
model under Mike Flood.

2.2.1. Hydrodynamic model

A coupling between one-dimensional
section averaged (1D), and two-dimensional
depth-averaged (2D) models were
implemented to simulate flood depth in the
study area. The 1D model solves the Saint-
Venant equations consisting of continuous
and momentum equations using an implicit
finite difference scheme developed by (Abbott
and Ionescu, 1967). In the 2D model, shallow-
water equations (well-known governing
equations) are solved using the cell-centered
finite-volume method for spatial deviations
and a second-order Runge Kutta or an explicit
Euler method for temporal integrations. The
computational domain in the 2D model is
discretized by the subdivision of the
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continuum into non-overlapping triangle
elements. An approximate Riemann solver
was also used to compute the convective
fluxes, making it possible to handle
discontinuous solutions between the edges of
elements in the computational grid (Tansar et
al., 2020). The coupling between 1D and 2D
models allows representation of the domain of
interest in the model as much as it enables the
simulation of continuous interaction and
lateral transfer flow processes between rivers
and tributaries and adjacent floodplains.

In terms of numerical setup and
implementation of the model for the domain
of interest, the 1D model was used to
represent the three river systems: Ben Hai,
Thach Han, and O Lau. In the Ben Hai
system, the area studied included the main
channel of the river (from Gia Vong gauging
station to the river mouth, a length of 23.4
km) and the Sa Lung branch (from Sa Lung
dam to the confluence with Ben Hai River
near Hien Luong Bridge, a length of 15.7 km.

In the Thach Han River system, the model
included the Thach Han River (from the

confluence of the Dakrong River and Rao
Quan stream to Tram Dam and up to the East
Sea at Cua Viet, a length of about 77 km) and
the Hieu or Cam Lo River (from the Cam
Tuyen bridge to the confluence with the
Thach Han River at Gia Do, near Dong Ha
city, a length of about 20.3 km). In the O Lau
system, the main river, from Pho Trach
Bridge to Tam Giang Lagoon in Cua Lac (a
length of about 31.8 km), was modeled.

The adjacent floodplains along rivers and
channels of the three river systems above
were represented in the 2D model using an
unstructured triangle grid (with a total of
78,234 cells or triangles and 39,772 nodes).
Note that the triangles and cells ranged
between 150 and 200 m in length. The
elevation at each grid node was interpolated
based on a digitized 1/10,000 map. Figure 2 is
a simple diagram of the multiple rivers and
channels represented in the 1D model, Fig. 3
presents the calculation domains for the 2D
model and coupling between the 1D and 2D

models.
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Figure 2. Simplified diagram of the rivers and channels considered in the 1D model
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Figure 3. Coupling between 1D and 2D models in the computational domain

The hourly time series of the water
discharge was prescribed at upstream
boundaries (i.e., Pho Trach, Hai Son,
Dakrong, Cam Tuyen, Gia Vong, and Sa
Lung). In contrast, the hourly datasets of
water  elevation were prescribed at
downstream boundaries named Cua Lac, Cua
Viet, and Cua Tung. Note that water discharge
calculated from the rainfall-runoff model was
used at several specific upstream boundaries
where hydrological data were unavailable.
Different simulations were performed for
calibration, validation, and related purposes.
Detailed simulated results are presented in the
next section.

2.2.2. NAM model

In the whole of Quang Tri province and
neighboring river basins, flow data was only
available for the Gia Vong station upstream of
Ben Hai River, so we first calibrated and
verified the NAM model with the Gia Vong
data and then used that as a basis from which
to generate runoff at other sub-basins in the
study area. The Quang Tri River basin was
divided into 21 sub-basins based on the DEM
and the available meteo-hydrological data
(Fig. 1). The area of the sub-basins varied
from 20 to 1046 km”.

To accurately describe the flood-forming
conditions in Quang Tri province, the
hydrodynamic network included:

In the Ben Hai River system: the main
channel of the Ben Hai River from the Gia
Vong gauge station to the river mouth (23.4 km
long), the Sa Lung branch (15.7 km in length)
from Sa Lung dam to the confluence with the
Ben Hai River near Hien Luong bridge.

In the Thach Han River system: the main
channel of the Thach Han River from the
confluence of the Dakrong River with the Rao
Quan stream, flowing out the Tram dam, and
up to the Eastern Sea at Cua Viet (77 km in
length); and the Hieu River (Cam Lo River;
about 23.4 km in length) starting from the
Cam Tuyen bridge and meeting the Thach
Han River at the confluence of Gia Do near
Dong Ha city.

In the O Lau River system: O Lau main
river from Pho Trach bridge to Tam Giang
lagoon in Cua Lac, 31.8 km in length.

The connection between Ben Hai and
Thach Han River and Canh Hom River, being
about 16.1 km long, must also be included.
Vinh Dinh River from the Viet Yen culvert on
Thach Han River (in Trieu A commune),
flowing through Trieu Phong, Hai Lang
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districts up to O Lau River with a length of
37.6 km.

According to the network that was
constructed above, there are 6 upstream
discharge boundaries - Sa Lung Bridge, Gia
Vong, Cam Tuyen, Dakrong, Hai Son, and
Pho Trach and 3 downstream water level
boundaries at Cua Tung, Cua Viet, and Cua
Lac. Based on observed data conditions,
discharge data is only observed at the upper
boundary at Gia Vong, and the upper
boundaries must utilize discharge generated
by the hydrological model (NAM) using
calibrated and verified.

2.3. Conditioning factors

Selecting the appropriate conditioning
factors is essential when using machine
learning to assess the flood. However, there is
no standard guide or consensus on selecting
these factors (Zhao et al., 2019; Prasad et al.,
2022). Several studies have found that the
selection of conditioning factors depends on
data availability, data which are often grouped
under topography, climate, hydrology, and
human activity. In this study, 13 conditioning
factors were selected to use as the input data
for the machine learning model, namely
elevation, slope, aspect, curvature, distance to
river, distance to road, flow direction, rainfall,
land use, normalized difference vegetation
index (NDVI), normalized difference built-up
index (NDBI), soil type, and sediment
transport index (STI) Fig. 4).

Elevation is a crucial conditioning factor
when assessing flood depth in any region.
Low-elevation areas are more susceptible to
deeper floods. In the province of Quang Tri,
the low-altitude region in the east is often
affected by flood depth (Eslaminezhad et al.,
2022). The elevation value in the study area
(as a whole) ranges from 0 to 1700 m.

The slope is another topographic factor and
is considered indispensable to flood analyses.
It affects water flow, velocity, and

462

accumulation capacity (Yariyan et al., 2020).
All these elements influence the depth of the
flood. In the study area, the slope value
ranged between 0 and 76 degrees.

Curvature is essential in a flood depth
model because it significantly influences
drainage. The higher the curvature value, the
greater the degree of flood (Mirzaei et al.,
2021). In this study, curvature ranged from
-16 to 21.

Aspect strongly affects evaporation and
vegetation distribution and is inversely
proportional to flood depth (Costache et al.,
2022). Aspects in Quang Tri province ranged
from 0 to 360 degrees.

Distance to the river affects flow velocity,
flood magnitude, and flood depth. Regions
near the river are flooded more deeply than
those further away (Khosravi et al., 2019). In
the study area, a flood occurs along the Ben
Hai, Thach Han, and O Lau, and flood depth
is highest in the areas close to these rivers.

The road distance is an essential factor for
a flood depth model because roads influence
permeability and roughness (Pradhan and
Youssef, 2011; Tehrany and Kumar, 2018;
Mind'je et al., 2019). In the province of Quang
Tri, in recent years, the construction of roads
has impacted flood depth. Areas near roads
tend to flood more.

Rainfall is indispensable in any flood
pattern because heavy precipitation over a
short time causes floods with high intensity
(Pradhan and Youssef, 2011; Pham et al.,
2021; Hoang et al., 2022). The province of
Quang Tri has a tropical monsoon climate and
is often affected by significant typhoons
accompanied by heavy rains, a central cause
of floods. In the study area, the rainfall value
2021 ranged from 1680 to 3566 mm.

Land use significantly affects river flow,
roughness, and velocity (Nguyen et al., 2022).
On recent field missions, we have witnessed a
rapid change in land use across Quang Tri
province, leading to a higher floodwater level
and faster flow speed than before.
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Figure 4. Conditioning factors used for the flood depth model
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NDVI and NDBI show vegetation and higher the density of buildings, the higher the
building density. The higher the vegetation flood probability and the greater the flow rate
density, the lower the flood probability and and flood depth (Nguyen, 2022). The value of
the shallower the flood depth. Meanwhile, the NDVI and NDBI in the study area ranges
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from -1 to 1.

Flow direction 1is indispensable in
constructing a map, as it affects the water
storage capacity and influences the flood
depth in an area (Liuzzo et al., 2019; Luu et
al., 2022). In the province of Quang Tri, the
value of this factor ranges from 1 to 255.

STI influences the capacity of water
accumulation (Chen et al., 2019). The value of
STI in Quang Tri province ranges from O to
759.

Soil type is crucial in flood assessment
because it influences water flow and the
rainfall-runoff mechanism (Hammami et al.,
2019). In the study area, soil was divided into

© Gisand l;emote!

11 types: cambic fluvisols, dystric fluvisols,
eutric fluvisols, ferralic acrisols, gleyic
fluvisols, heplic arenosols, humic acrisols,
lithic leptosols, molli salic fluvisols, rhodic
arenosols, and rhodic ferralsols.

2.4. Machine learning methods

The methodology used to estimate the
flood depth in this study comprised five main
steps: (i) collection of flood depth locations,
(ii)) selection of conditioning factors,
(iii) construction of machine learning models,
(iv) evaluation of the proposed models, and
(v) construction and analysis of the flood
depth map (Fig. 5).
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Figure 5. Methodology used for the flood depth model

(i) In this study, the flood depth locations
were collected from two sources: flood marks
measured on the field mission and
hydrodynamic modeling. 540 flood depth
locations were used to build the machine
learning model.

(il)) Conditioning factors were selected
from four groups: topographic, hydrological,
climatic, and anthropogenic. We selected all

available factors and then used random forests
to eliminate unnecessary ones.

Ultimately, 540 flood depth locations and
12 conditioning factors were used as the
model input data. These data were divided
into two groups: 60% to train the models and
40% to validate the models.

(ii1) Four machine learning models, namely
support vector regression (SVR), XGBoost
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regression (XGR), CatBoost regression
(CBR), and decision tree regression (DTR),
were used to build flood depth maps. The
precision of SVR depended on the parameters
C, gamma, and epsilon; DTR used the
criterion and splitter parameters; C.B. used
depth; and XGB worked on n_estimators, eta
min_child weight, and max_depth.

In this study, model parameters were
C=10, gamma='scale', epsilon=0.1, and
max_iter=500 for SVR; max_ depth=5,
criterion="absolute_error', and splitter="best'
for DTR; iterations=500, depth=3,
train_dir="logloss”, loss_function="RMSE' for
CBR, and n estimators=500, eta=0.3,
min_child weight=1, and max_depth=6 for
XGR.

(iv) The statistical indices R?, RMSE, and
MAE were used to evaluate the proposed
models.

(v) After validation of the proposed
models, they were used to build the flood
depth map by assigning 30 million pixels for
all the study areas with each of the 12
conditioning factors.

2.4.1. Support vector regression (SVR)

Support vector machines (SVMs) represent
a family of machine learning algorithms
capable of solving discrimination and
mathematical regression problems. The first
SVMs were developed in the 1990s and were
used to solve regression problems in 1996 by
Vapnik et al. (1997).

The main ideas of SVR are similar to those
of SVMs. They consist of discriminating
using a hyperplane in which the data is
separated into several classes, the boundary of
which is as far as possible from the data
points (or "maximum margin"). To achieve
this goal, SVR uses kernels, i.e., mathematical
functions for projecting and separating data in
vector space, the "support vectors" being the
data closest to the border. The optimization
aims to find the furthest boundary of all
training points, which is, the most optimal and
has the best generalization capacity. Using the
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kernel trick allows the use of linear classifiers
and solves nonlinear problems (Tehrany et al.,
2015; Choubin et al., 2019).

More precisely, SVR operates by finding
the function f(x), which has at most one
deviation & concerning the training examples
(xi, yi), for i =1,..., N, and which is as flat as
possible. This amounts to not considering
errors more minor than & and prohibiting those
larger than €. Maximizing the function's
flatness minimizes the model's complexity,
which affects its generalization performance.
The accuracy of the SVR model depends on
the adjustment of the C and gamma
parameters. These parameters were optimized
using trial and error (Naghibi et al., 2017;
Nachappa et al., 2020).

2.4.2. XGBoost regression (XGR)

XGBoost (eXtreme Gradient Boosting) is a
prevalent machine learning model and
enhances the Gradient Boosting algorithm. It
is used to solve both classification and
regression problems and reduce errors in
predictive data analysis (Abedi et al., 2022;
Nguyen et al., 2022). It is a weak decision tree
set that predicts residuals and correct errors
from previous decision trees. This algorithm's
particularity resides in using the decision tree
(Costache et al., 2022). Weak decision trees
that do not perform well enough are 'pruned'
until they entirely play their role (Ma, Zhao, et
al. 2021). XGR performance depends on
ground, max_depth, eta, gamma,
colsample_bytree, min_child weight,
subsample (Abedi et al., 2022). In this study,
these parameters were determined using the
trial-and-error technique.

2.4.3. CatBoost regression (CBR)

CatBoost was developed by Yandex and is
based on gradient boosting. This technique
promotes learning by turning weak learners
into strong learners by improving old patterns
and reducing errors. Each decision tree is an
evolution of the first set of data (Abujayyab et
al., 2022; Nguyen et al., 2022). CBR is
powerful for two reasons: it provides accurate
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results even with (i) little training data and (ii)
a raw dataset (Sahin 2022).

Although CBR is based on gradient
descent, it has some additional features that
make it more robust: (i) it implements a
symmetric tree which reduces prediction time
and also has a shallower tree depth by default;
(i) CBR uses random permutations, similar to
how XGR has a random parameter (Nguyen et
al., 2022).

2.4.4. Decision tree regression (DTR)

D.T.s are popular machine learning tools
that can solve regression and classification
problems. They have a tree-like hierarchical
structure consisting of a root node, branches,
internal nodes, and leaf nodes (Ghosh and
Maiti, 2021). A decision tree starts with a root
node that has no incoming branches. Branches
out of the root node lead to internal nodes,
also known as decision nodes. Depending on
the available characteristics, both nodes
perform evaluations on homogeneous subsets,
which are referred to as leaf or terminal
nodes. Leaf nodes represent all possible
outcomes in the dataset (Sahani and Ghosh,
2021). The decision tree model is constructed
in two main steps: (i) building the tree and (ii)
pruning the tree. In many cases, tree pruning
may be required to remove inappropriate
knots. A good algorithm builds a large tree
and then reduces it to an appropriate size
(Nefeslioglu et al., 2010; Bui et al., 2012).

In this study, the method used to construct
the decision tree includes: (i) selection of
conditional factors, (ii) selecting the root node
as the first internal node, (iii) dividing the
input dataset into subsets to construct the
subnodes, (iv) estimating the value of nodes
using the random forest method, and
(v) selection of the best nodes.

2.5. Prediction performance evaluation

Evaluation of the performance of the
prediction model is indispensable and the
most important of all the steps in the
construction of the model. Model performance
was evaluated using statistical indices ROC,
AUC, RMSE, MAE, and R2.

RMSE and MAE are popular quantitative
methods for determining the predictive ability
of models by measuring the absolute error
between the observation value and the
estimate value, that is, the prediction errors
(Bui et al., 2019). The following equation
computes them:

n
1
RMSE = j;Z(XsL-m = Yous)?
i-1

n
1
MAE = =" | Xsim = Yous
-1

Xobs Tepresents the observation value in the
training or validation dataset; X, represents
the output value of the prediction model; n is
the sample number. Machine learning and
optimization algorithms use RMSE as the
objective function to optimize model
parameters. The smaller the value of RMSE,
the better the model.

R? is a popular index for evaluating the
quantitativeness of a regression model by
measuring the proportion of the total variance
of the dependent variable computed by a
model. The closer the R? value is to 1, the
better the model explains the variance of the
dependent variable (the closer the relationship
is between the independent variable and the
dependent variable). Meanwhile, the value of
R? is zero, which means that the model does
not explain the variance of the dependent
variable (the relationship between the
independent variable and the dependent
variable is discrete) (Nguyen et al., 2021).

NASH is used to evaluate system errors in
a long-term simulation by measuring the
accuracy rate between simulation and
observation value (Damadi et al., 2021). The
following equation computes it:

I (e — xpm)”
n(xers - %)°

NASH =1—|

3. Results
3.1. Hydrodynamic model calibration

Using flood data from an event in
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November 1999 (it is considered a historic
flood of the province), different simulations
were performed to calibrate the modeling
parameters in the coupling between 1D and
2D models. Different values were tested to
determine those appropriate for the modeling
parameter. Figure 6 shows the comparison
between simulated and observed water level
at Thach Han and Dong Ha stations.

The model reproduces the observed data

very well at both locations. The values for the
NASH coefficient are equal to 0.95 and 0.92
at Thach Han and Dong Ha stations,
respectively. Furthermore, the discrepancy in
water elevation between the simulated results
and observed data ranges from 15 to 19 cm,
revealing that the accurately
represented the maximum value of water

model

elevation at both stations.

8
4 Obs
7 A\ Sim
\‘\\ ‘ Alert level T
_ 6 ’ \\/‘\ Alert fevet It
§ 5 =7 \
) \
g 4 !
e
2 3 | \\
= 1 v\
2 "\
1 .
'Fl '\a‘\':\\:\\:\
0 >
99 99 99 99 99 99 99
MR N A RE AAA Y

5
1—Obs ----- Sim
Alert level T ‘ Alert llevel IT
4 . N
—_ \
E AN ‘
E: i X
= ]
3 i |
1) |
VJ
0 4 r T
ot NPT NG TN Ehane®

Figure 6. Comparison of simulated and observed water level at Thach Han and Dong Ha station in
Nov. 1999 flood event

Figure 7 shows the validation results of the
model for the flood event in October 2005.
Similar to calibration results, the coupling
between 1D and 2D models also represents
very well the water elevation of the flood at
both stations. The NASH coefficient of water
elevation ranged from 0.85 to 0.90, while the
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discrepancy of the highest value of water
elevation changes from 2 to 16 cm at both
locations. These results suggest that the values
of the modeling parameters used in the
simulation are accepted. The model can be
applied in further investigations related to
flood depth.
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Figure 7. Comparison of simulated and observed water level at Thach Han and Dong Ha station in
Oct. 2005 flood event
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3.2. Conditioning factor assessment

Assessing the quality of input data is an
essential step in improving model performance.
One way to improve the quality of input data is
to select appropriate conditioning factors
because data redundancy can reduce model
accuracy. This study used random forest to
assess the importance of 12 conditioning
factors used for the flood depth model. The

Aspect

Flow direction
Distance to river
Curvature

NDVI

NDBI

Soil type

STI

Landuse

Conditioning factor

Distance to road
Slope
Rainfall

Elevation

0 0,1 0,2

results showed that elevation (0.67), rainfall
(0.54), slope (0.46), distance to the road (0.43),
and land use (0.4) were the most critical factors
for flood depth in Quang Tri province,
followed by STI (0.37), soil type (0.35), NDBI
(0.29), NDVI (0.18), curvature (0.1), distance
to the river (0.1) and flow direction (0.025).
However, the aspect did not influence flood
depth, with an R.F. value of 0 (Fig. 8).

0,3 0,4 0,5 0,6 0,7

Variable importance

Figure 8. The importance of conditioning factors using random forest

3.3. Model performance

In this study, the R® coefficient of
determination was used to evaluate the
performance of flood depth models during the
training and validation processes. The results
showed that for the learning process, the XGR
model had the most accurate flood depth
estimation capability among the four models
with an R? value of 0.99, followed by C.B.
with an R? value of 0.94, D.T. with an R2
value of 0.85 and SVR with an R? value of
0.7. For the validation process, the CBR
model performed best, with an R? value of
0.86, followed by XGR (0.84), DTR (0.75),
and SVR (0.7) (Fig. 9).

RMSE and MAE were also used to
evaluate the performance of the models. For
the learning process, the XGR model had the
best fit, with an RMSE value of 0.16 and an
MAE value of 0.09, followed by CBR
(RMSE=0.25, MAE=0.14), DTR
(RMSE=0.42, MAE=0.17), and SVR
(RMSE=0.6, MAE=0.31). For the validation
process, the CBR model was the most
accurate, with an RMSE value of 0.39 and an
MAE value of 0.21, followed by XGR
(RMSE=0.43, MAE=0.2), DTR (RMSE=0.58,
MAE=0.23), and SVR (RMSE=0.6,
MAE=0.32) (Table 1).
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Figure 9. the R? values for SVR, XGR, CBR, and DTR

Table 1. Performance of the four models

Training dataset Validating dataset
RMSE MAE R? RMSE MAE R?
SVR 0.604018 0.316811 0.700956 0.60094 0.322496 0.699445
CBR 0.258044 0.146606 0.945421 0.396621 0.213205 0.869078
XGR 0.000836 0.000529 0.999999 0.43078 0.201412 0.845556
IDTR 0.424725 0.169214 0.85214 0.580535 0.236999 0.719509

3.4. Flood depth mapping evaluation

Figure 10 shows the flood depth level in
Quang Tri province according to CBR, DTR,
SVR, and XGR models. In this study, the
maximum flood depth was 5 m. It should be

noted that there
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is a difference between
measuring the water level and the flood depth.
This is because the water level was measured
against the national elevation mark at Hon

Dau (in the northern part), which is generally
considered the mean sea level for many years.
Flood depth is measured by taking the water
level (7 meters) minus the topographic height
of the location. So the depth is 5 meters.

SVR identified about 2590 km? of Quang
Tri province to be flooded by less than 1 m,
129 km? flooded by 1-1.5 m, 19 km? flooded
by 1.5-2 m, 66 km? 2-2.5 m, and 210 km?
flooded by more than 2.5 m.
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Figure 10. Flood depth produced by CBR, DTR, XGR, and SVR models

According to the XGR model, about
2559 km? was flooded by 0-1 m of water, 143
km? by 1-1.5 m, 111 km? by 1.5-2 m, 87 km?
by 2-2.5 m, and 114 km? by more than 2.5 m.

For the CBR model, 2570 km? of the study
area was flooded by between 0 and 1 m, 200
km? by 1-1.5 m, 124 km? by 1.5-2 m, 62 km?
by 2-2.5 m, and 58 km? by over 2.5 m.

Finally, according to the DTR model,
2365 km® saw a flood of 0-1 m, 280 km?
1-1.5 m, 173 km? 1.5-2 m, 89 km? 2-2.5 m,
and 111 km? were flooded by more than 2.5 m
of water.

4. Discussions

The growing flood risk in the context of
climate change has received significant

attention from the scientific community
(Bronstert et al., 2002; Saghafian et al., 2008).
Various studies have been developed to
reduce flood damage. However, there are not
yet universal guides for model selection that
can solve all problems in all regions because
each region has different environmental
conditions, climates, hydrology, and human
activities. In particular, the integration
between machine learning and the
hydrodynamic model to estimate flood depth
is still missing in the literature and is not yet
used in the study area. So, in this study, we
indicated that integrating hydrodynamic
modeling and machine learning shows
promise in obtaining results accurately and
reliably (Nguyen et al., 2022; Nguyen et al.,
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2022). The results of this study can support
decision-makers or planners in the sustainable
development of the territory, for example, the
avoidance of new constructions in the region
at high flood risk.

In general, the performance of all four
proposed models was acceptable. We found
the CBR model to be more potent than the
others, with an R? value of 0.89. CBR makes
models with optimum precision and does not
require  high  computational resources.
Adjusting CBR parameters is easy, and CBR
can be optimized with default parameters (Li
et al., 2022; Lu et al., 2022). With an R? value
of 0.83, the model of XGR was second. In
addition to rapid convergence, XGR has the
advantage of not requiring any data
preprocessing, since it has built-in routines
that allow processing missing data, so
implementation is  straightforward. In
addition, this algorithm helps to process large
datasets efficiently while reducing their
attributes (Devan and Khare, 2020; Zhong et
al., 2020; Hajek et al., 2022). The DTR model
came third, with an R? value of 0.72. In
addition to being easy to install, DTR makes
decisions using a targeted approach, which
can make significant improvements to
performance (Bansal et al., 2022; Wen et al.,
2022). With an R? of 0.7, SVR had the lowest
accuracy. This algorithm is easy to interpret
and relatively simple, hence not very
computationally expensive, and it effectively
solves problems in dimensional space.
However, the main drawback of SVR is that it
is inefficient when working on a large dataset.
Another drawback is that it works less
efficiently when a dataset has much noise, as
in this study (Lin et al., 2006; Marin et al.,
2022).

Compared with the inundation depth map
obtained using another method in previous
studies, the results of this study agree well
with this map (Nguyen, 2022; Doan et al.,
2022). The floodplains concentrate mainly in
the eastern regions with 0 to 5 m depth.
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In general, the approach proposed in this
study can provide an accurate flood prediction
model on a large scale, especially in regions
with limited data. The results of this study
may represent an essential tool in the early
warning of flood. They can support decision-
makers and local authorities in the
construction of appropriate strategies to
reduce damage to human life and property.

This study applied different machine
learning algorithms, namely SVR, XGR,
CBR, and DTR, to construct flood depth maps
in Quang Tri province in Vietnam. As
expected, machine learning succeeded in
building a highly accurate map. This map
plays a crucial role in informing processes
such as limiting construction in highly flood-
prone areas and flood risk reduction planning.
Previous studies have shown that urban
growth significantly influences flood risk.
Although it is not a primary cause, it has
crucial effects on flood intensity. In this sense,
planners should be meticulous about changes
to land use, especially the transformation of
agricultural land into urban areas, a growing
trend in coastal areas in Vietnam.

Planning cannot prevent hazards but it can
minimize their damage. In more detail, there
are two planning implications Planners can
impose restrictions to minimize the effects of
floods and are also able to minimize the
exposure to floods by restricting new
constructions and high densities of population
in areas with high flood levels. At the same
time, planners are responsible for avoiding
land use changes, particularly those
attempting deforestation to make room for
urban developments, which are frequent in the
coastal areas of Vietnam (Petrisor et al.,
2020). In general, our study provides
additional evidence indicating that planners
need to integrate the results of scientific
research into their work (Petrisor et al., 2021,
2022).
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Although this study was successfully used
to construct precise flood depth maps in the
Quang Tri province of Vietnam, it
encountered general limitations related to the
use of the data. The collection of flood depth
data is challenging due to the data-sharing
policy of Vietnam (similar issues are faced in
other countries) and the limited financial
resources of the project. This study used the
hydrodynamic model to add training data for
the machine learning model. Also, in this
study, the topographic data was extracted
from the 1:50,000 scale topographic map.
However, this data only reflects the terrain.
Other techniques, such as drones (UAV) or
LIDAR, can provide more information, such
as slope, flow direction, or anthropogenic
factors such as buildings, dyke networks, etc.
Ultimately, Quang Tri province is subject to
two types of floods: river floods and coastal
floods. However, coastal flooding is
insignificant because the study area is
influenced by a micro-tidal regime and storm
surges, contributing only marginally to
flooding. Previous studies have confirmed
this. Thus, in this study, we do not consider
the risk related to the sea. However, several
studies have pointed out that using more data
makes the models more reliable.

While the hydrodynamic model was
constructed with high accuracy, there are still
some remaining uncertainties. This study used
RMSE as the objective function, so it was
necessary to address the overfitting problem.
To this end, we used several techniques, such
as a k-fold search limit or search benchmark.
In future research, additional training data
would improve the accuracy of the models.
The more training data, the more accurate the
prediction model.

5. Conclusions

Flood is one of the most dangerous natural
disasters, and the flood impact has worsened
in the context of climate change. Accurate
prediction of flood depth and extent plays an

important role in flood early warning systems
that reduce damage to human life and
property. Therefore, this study aims to
develop a rapid flood forecasting model by

combining machine learning algorithms
(SVR, XGB, CB., and D.T.) and
hydrodynamic modeling in Quang Tri

province in Vietnam. The results of this study
can support decision-makers or local
authorities in evacuating people in the event
of an emergency; equally, it can inform the
sustainable development of the territory.

Integration of the hydrodynamic with
machine learning models can build precise
flood depth maps. This approach can be used
to build a map in any region on any scale,
especially in data-limited regions.

Of the 13 conditioning factors used as
model input data, elevation, and rainfall were
the most influential, while the aspect was the
least. Among the proposed models, CBR
outperformed the other models with an R’
value of 0.86 for simulating flood depth,
followed by XGR (R>=0.84), DTR (R>=0.72),
and SVR (R>=0.7), respectively. All models
can provide results accurately and quickly
enough to meet the demands of a flood early
warning system.

The flood depth maps indicated areas of
high inundation located in the east of the
study area, with low elevation and a dense
river network.

Although this study has explained in detail
the scientific significance and all the steps of
flood depth model construction, completing
all these processes locally is considered a
significant challenge. Future studies can use
the trained models to assess flood risk in
Quang Tri province and other provinces in
Vietnam in general.
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