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ABSTRACT

Accurate prediction models for spatial prediction of forest fire danger play a vital role in predicting forest fires,
which can help prevent and mitigate the detrimental effects of such disasters. This research aims to develop a new
ensemble learning model, HHO-RSCDT, capable of accurately predicting spatial patterns of forest fire danger. The
HHO-RSCDT method combines three distinct components, namely Random Subspace (RS), Credal Decision Tree
(CDT), and Harris Hawks Optimizer (HHO). Herein, RS generates a series of subspace datasets, which are
subsequently utilized to produce individual CDT classifiers. Then, HHO optimizes the ensemble model, enabling the
model to achieve higher predictive performance. The model was trained and validated using a forest fire dataset at
Phu Yen province, Vietnam. The dataset includes 306 forest fire locations and ten influencing factors from the study
province. The results showed the capability of the HHO-RSCDT model in predicting forest fire danger, with an
accuracy rate of 83.7%, a kappa statistic of 0.674, and an AUC of 0.911. A comparison between the HHO-RSCDT
model and two state-of-the-art machine learning methods, i.e., support vector machine (SVM) and random forest
(RF), indicated that the HHO-RSCDT performs better, making it a valuable tool for modeling forest fire danger. The
forest fire danger map produced using this novel model could be a new tool for local authorities in the Phu Yen
province, assisting them in managing and protecting the forest ecosystem. By providing a detailed overview of the
areas most susceptible to forest fires, the map can help authorities to develop targeted and effective forest
management strategies, such as focusing on areas with high fuel loads or implementing controlled burning programs.
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1. Introduction life, and property (McWethy et al.,, 2019;
Agbeshie et al., 2022). The risk of forest fires

Forest fire is one of the most significant < . . ) i
is increasing, especially in areas with long dry

ecological and environmental problems in

many countries (Michael et al., 2021), posing
a severe threat to forest ecosystems, human
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seasons, high temperatures, and strong winds
(Leigh et al., 2015; Tavakol, 2020). One of the
most effective strategies to mitigate forest
fires' adverse impacts is to predict the risk of
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forest fires accurately. Thus, forest fire danger
mapping is an essential tool for forest fire
prevention and management, enabling early
warning and timely decision-making to
minimize the impact of forest fires (Van Le et
al., 2021). Therefore, developing accurate
forest fire danger prediction models has
become increasingly important for forest
management and protection (Tehrany et al.,
2019; Oliveira, 2021; Naderpour et al., 2019).

Forest fire danger can be defined as the
probability of a fire breaking out and rapidly
spreading in a particular geographic region.
This probability is determined by several
factors, including but not limited to prevailing
weather patterns, the presence of combustible
materials, and the topographical
characteristics of the area. The spatial
prediction of forest fire danger offers insight
into the areas where fires are prone to occur
but does not provide a precise forecast for
when a fire event might happen (Tehrany et
al., 2019). Literature review shows numerous
studies have been conducted on this topic, and
various models have been proposed for spatial
prediction of forest fire danger (Chicas and
Ostergaard Nielsen, 2022). These models
employ various methods, including numeric
simulations (Lattimer et al., 2020; Mell et al.,
2007; Moinuddin and Sutherland, 2020; Zhu
et al., 2018; Pimont et al., 2012; Iudin et al.,
2015), statistical analysis (de Santana, 2021;
Dos Reis et al., 2021; Sivrikaya and Kiigiik,
2022; Storey and Price, 2022a, 2022b),
machine learning (Pourghasemi et al., 2020;
Jain et al., 2020; Ngoc Thach et al., 2018; Bui
et al., 2017; Sachdeva 2018), deep learning
(Van Le et al., 2021; Rihan et al.,, 2023;
Naderpour et al, 2021), and ensemble
learning (Tehrany et al., 2019; Moayedi et al.,
2020; Bjénes et al., 2021; Xie and Peng, 2019;
Tuyen et al., 2021). Reviews of these methods
can be found in (Naderpour et al., 2019; Jain
et al., 2020; Abid, 2021).

Among machine learning approaches, it
has been observed that ensemble learning

methods tend to provide higher levels of
accuracy (Naderpour et al., 2019). Ensemble
learning combines multiple models or
algorithms to achieve better predictive power
than any single model or algorithm can
provide alone. This technique can improve the
accuracy of machine learning models,
particularly in complex and large-scale
problems, i.e., forest fire modeling, where
single models may not be sufficient to capture
all of the relevant geo-environmental
information. Thus, ensemble methods are
increasingly recognized for their potential to
enhance the accuracy of predictions in a wide
range of applications (Ganaie et al., 2022).

Despite the recognized benefits of ensemble
learning in enhancing prediction accuracy
(Sagi and Rokach, 2018), no single method or
technique is universally the best for spatially
predicting forest fire danger in all regions.
Thus, the study of new ensemble models to
improve the accuracy of spatial prediction for
forest fire danger is still essential, as the need
for accurate and timely forest fire risk
assessment continues to grow, especially when
new geospatial data sources i.e., Sentinel 2
imagery, Landsat 8 OLI, and Landcover data
(Phan et al., 2021) are available.

This study addresses the research
mentioned above gap by introducing and
validating a novel ensemble learning method,
namely HHO-RSCDT. This method is
designed to accurately predict forest fire
danger spatial patterns, specifically focusing
on a case study conducted in Phu Yen
province. The HHO-RSCDT approach
involves combining the strengths of Random
Subspace (RS) (Ho, 1998), Credal Decision
Tree (CDT) (Mantas 2016), and Harris Hawks
Optimizer (HHO) (Heidari et al., 2019) to
achieve improved prediction performance. RS
is utilized to generate multiple subsets of the
input data, each of which is then used to train
a separate CDT classifier. The HHO
algorithm is then employed to optimize the
ensemble model and obtain the best possible
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combination of the trained classifiers. This
approach aims to enhance the accuracy of
forest fire danger prediction by leveraging
each component algorithm's strengths and
optimizing their collective performance.

2. Background of the algorithms used
2.1. Credal Decision Tree

The Credal Decision Tree (CDT)
introduced by Mantas and Abelldn, (2014a) is
considered for fire danger modeling in this
research  because it allows for the
consideration of imprecise and uncertain
information (Mantas and Abellan, 2014b),
which is often present in multisource
geospatial derived input data, i.e., weather
conditions, vegetation, topography, and
human activities.

Compared to other decision tree
algorithms, the CDT algorithm's main
distinction lies in the method it employs to
choose features, i.e., factors that affect forest
fires, for the division at each node of the tree.
In this case, the selection criteria are based on
the imprecise probabilities and uncertainties
of the credal sets (CS) (Mantas and Abellan,
2014b), which enables the algorithm to
manage noisy data effectively (Mantas, 2016).

Suppose we have a training dataset of
forest fire Z, where Z consists of pairs of
inputs and outputs, represented by x; € R* and
yi € (0,1), respectively. Here, i ranges from 1
to N, which denotes the total number of
samples, and d represents the dimensionality
of the input samples. In this research, d equals
ten, indicating ten forest fire influencing
factors. The output variable y; takes values
from 0 to 1, corresponding to the two possible
classes: fire and non-fire. The CDT aims to
construct a set of classification models f: R
— [0,1] that can predict the likelihood of
forest fire occurrence based on ten driving
factors. The classification models are
constructed using a set of credal sets that
describe the uncertainty and imprecision in
the input data, CS”, which are subsets of Z
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using Eq.1 (Michael et al., 2021) below:
z n(FF) n(FF) +s

"= {p/p(m © [N Fs N+s } ©
where p(FF) is the probability distribution, FF
is a forest fire influencing factor, N is the
sample size, n(FL) is the frequent value, and s
is a hyperparameter of the CDT algorithm
with a default value of 1.

2.2. Random Subspace Ensemble

Random Subspace (RS) is a machine
learning ensemble technique proposed by Ho
(Ho, 1998) for constructing multiple decision
trees, and then, these decision trees are
aggregated to form an ensemble model. This
technique helps to reduce the risk of
overfitting and can improve the overall
accuracy and robustness of the prediction
model. Based on the training dataset Z
described in Section 2.1, the RS technique
creates k subsets from the dataset, where each
subset is referred to as a subspace of Z.
Herein, each subspace is created by selecting
a random subset of m (where m < d) forest
fire influencing factors from the full set of
factors available in the dataset, where d is the
total number of available influencing factors
in the dataset. Then, each k is used to generate
a CDT classifier, and finally, the ensemble
model is derived by combining all CDT
classifiers. The global performance of RS is
influenced by k, m, the maximum depth of the
CDT tree (mCDTree), and the minimum total
weight of the instances in a leaf (minNum),
and Harris Hawks Optimizer can optimize
these parameters in the next section.

2.3. Harris Hawks Optimizer

Harris Hawks Optimizer (HHO) proposed
by Heidari et al., (2019) is a metaheuristic
optimization algorithm inspired by the
hunting behavior of Harris hawks in nature.
The algorithm simulates Harris hawks' social
behavior and hunting strategies to solve
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optimization problems. HHO has shown
promising results in solving various
optimization problems in different domains,
including engineering, finance, and landslides
(Alabool et al., 2021). The algorithm has also
demonstrated faster convergence and better
accuracy than other optimization algorithms,
making it a popular choice for many
researchers and practitioners.

In this Research, HHO is used to optimize
four parameters (k, m, mCDTree, and
minNum) of the Random Subspace based
Credal Decision Tree (RSCDT) model with
the steps below:

Pos(t + 1) = POS and (t) — 11 |POS anq (t) — 2r,Pos ()]
~ | IPosp,(t) — Posy, (©)| — r3(LB + r,(UB — LB)) with q < 0.5

where Pos(t) and Pos(t + 1) are the position of
the hawks at the iteration t and the iteration
t +1, respectively; Posp.(t) is the individual
position with the best fitness, also called the
location of the prey at iteration ¢
r;, Iy, I3, Iy, and q are random numbers between

Step 1: Firstly, the searching space for four
parameters, namely k, m, mCDTree, and
minNum, is defined. Then, a population of
hawks (nHawks) is initialized, and these
hawks have four coordinates each, which
correspond to the values of the four
parameters (k, m, mCDTree, and minNum)
and represent a possible solution for the forest
fire danger model.

Step 2: Evaluate the fitness of each hawk
in the population based on an objective
function (see Section 4.2). Then, update the
hawks' position based on their fitness using
Eq. 2; this is called the search phase.
with q = 0.5

} ()
0 and 1; Pos,,(t)is the average position of
individuals.

Step 3: Pos(t+ 1) is updated using Eq. 2
if |E| = 1or the following equations when
|E| <1 (Peng, L., etal., 2023).

_ (APos(t) — E|JPosp.(t) — Pos(t)|; 0.5 <|E|<1&r=> 0.5}

Pos(t+1) = { Posp,(t) — E|APos(t)]  ; |E| < 0.5&r > 0.5 (3)

Pos(t + 1) = {Pospr(t) — E|JPosp,(t) — Pos(t)[; 05<|E|<1&r<0.5; Fl} @
" | Posp,(t) — E|[JPosp,(t) — Pos(t)| + S + Levy; 0.5 < |E| < 1&r < 0.5;F2

Pos(t + 1) = {Pospr(t) — E|JPosp, (t) — Pos,, (1) |; |E| <0.5&r < 0.5; Fl} 5)
~ | Posp,.(t) — E|[JPosp,(t) — Pos,,,(t)| + S + Levy; |E| < 0.5&r < 0.5;F2

where E is the escape energy of prey; r is the
random number between 0 and 1; J is the
random number between 0 and 2; F1 and F2
are the fitness conditions; S is a random
vector; and Levy is the Levi's flight function.

Step 4 - Termination: Stop the algorithm
when a stopping criterion is met, such as
reaching the maximum number of iterations or
the desired fitness level.

3. Study area and data
3.1. Study area

The study area is Phu Yen, a coastal
province in the south-central region of
Vietnam (see Fig. 1). It
108°41°’E  and

lies between

longitudes 109°28°E  and

latitudes 12°42°N and 13°42’°N, covering an
area of 5,049.6 km®. The province boasts a
diverse topography encompassing mountains,
hills, plains, and coastal areas. Mountains and
hills comprise 70% of the land area, while the
plain is narrow and heavily dissected. In
contrast, the coastal areas are relatively flat
and sandy. The elevation ranges from —46.1 m
to 1706.3 m. The slope of the province is from
0 to 59.9° with a mean of 1441 m and a
standard deviation of 9.43 m.

As of 2022, the population of the Phu Yen
province is 876,619 people, and the
population density is 174 people/km’
(www.phuyen.gov.vn, accessed on 28 March
2023), and about 70% of the population lives
in rural areas, where agriculture, forestry,
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aquaculture, and fisheries are the primary
likelihood (Truong and Tri, 2021). Phu Yen
province boasts a rich and diverse range of
vegetation types well-suited to its varied
geography and climate (Hoi and Dung, 2022).
Coastal areas are characterized by mangroves,
which are well-adapted to saline conditions
and play a critical role in protecting the coast
from storms and erosion. In addition, the
province's coastal sand dunes provide a
unique habitat for specialized plant species

landscape at medium elevations, featuring a
mix of evergreen and deciduous trees and
planted forests (Tri et al., 2019). The mix of
the evergreen forest is dominant and accounts
for more than 95% of the natural forest that

provide essential ecosystem services, such as
carbon sequestration, soil stabilization, and
water regulation. At higher elevations,
mountainous forests take over, characterized
by a mix of broadleaf that provide habitat for

adapted to these environments' harsh a wide range of wildlife (Hoi and Dung, 2022;
conditions. Mountainous forests dominate the Lung et al., 2011).
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Figure 1. Study area and forest fire locations

The climate of the Phu Yen province

is influenced by oceanic climate (Lee and

features tropical monsoon, hot and humid, and Dang, 2018). The average temperature is
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around 26.5°C. There are two distinct seasons:
the rainy season from September to December
and the dry season from January to August. In
recent years, Phu Yen province has
experienced several El Nifio-related droughts,
which led to significant crop losses and water
shortages in the region (Duong et al., 2020).

Hot weather and prolonged drought on a
large scale are one of the leading causes of
forest fires in the province. For example, on
June 27, 2019, at 4 pm, a fire broke out in the
Ro Huou mountain region, likely caused by the
scorching sun and high temperatures. The fire
quickly spread to the adjacent forests, burning
down a significant portion of the planted forest
aged between 3 to 7 years old. The location of
the fire was a steep hill with gusty winds
exacerbating the situation. Other forest fires
broke out in Dinh Thai village on September
10, 2019. The fire escalated rapidly due to the
challenging terrain and strong winds resulting
in the burning of 10 hectares of planted forest
belonging to the residents

3.2. Data used
3.2.1. Forest fire inventory

Historical forest fire data are crucial to
develop accurate models for predicting forest
fire danger. This data provides valuable
information on where fires have occurred and
the conditions that contributed to their ignition
and spread. As a result, it is essential to create a
detailed forest fire inventory map as the first
step in the modeling process. In this research,
the forest fire inventory map with 306 fire
locations from 2019-2023 in a national project
B2021-MDA-13 prepared by Truong et al.,
2023a was used (Fig. 1). This project
was funded by the Ministry of Education
and Training (MoET) of Vietnam. These
forest  fires  were  compiled  from
several sources, including the forest fire
prevention database of the Ministry of
Agriculture and Rural Development of
Vietnam (www.watch.pccer.vn, accessed on 28

March 2023), the Fire Information for Resource
Management System (FIRMS) project of
NASA  (www.firms.modaps.eosdis.nasa.gov,
accessed on 28 March 2023), and fieldwork
with handheld GPS. According to statistical
analysis, most forest fires (around 76%)
occurred during June, July, August, and
September. Additionally, it was found that most
of these fires occurred during the daytime.

3.2.2. Influencing factors

Identifying the influencing factors for forest
fires in the Phu Yen province is essential for
predicting the spatial prediction of fire danger
in forests. Based on our examination of the
historical data on forest fires in the province, it
is evident that climate conditions, vegetation
type, topography, and human activities were
the primary factors that led to forest fires.
Therefore, this research, 10 ignition factors
were considered, including elevation, slope,
aspect, distance to road, NDVI, NDWI, relative
humidity, temperature, and rainfall.

In this research, a digital elevation model
(DEM) 30 m resolution for the study area was
derived from the ALOS DEM of JAXA
(available at www.eorc.jaxa.jp, accessed on 28
March 2023). The DEM was produced using
data captured by the Panchromatic Remote-
sensing Instrument for Stereo Mapping
(PRISM), which was installed on the
Advanced Land Observing Satellite (ALOS)
(Takaku and Tadono, 2009). Then, the DEM
was utilized to obtain three influencing
factors, namely elevation (Fig. 2a), slope
(Fig. 2b), and aspect (Fig. 2c), using the
Spatial Analysis tool in ArcGIS Pro.

The elevation is often considered a critical
factor in fire regimes as it influences an area's
weather and climatic conditions, impacting
fuel moisture content and availability (Miller
and Urban, 2000). While slope should be used
because it affects the rate and direction of
forest fire spread, making it an essential input
for modeling and predicting fire behavior
(Zheng et al., 2017). In the case of aspect, this
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factor influences the exposure of vegetation to
sunlight and wind, affecting its moisture
content and potential to fuel fires, making it
relevant in forest fire modeling (Slijepcevic et
al., 2018).

Many previous studies considered the
distance to the road in predicting the potential
spread and impact of forest fires (Ngoc Thach
et al., 2018; Robinne et al., 2016; Gonzalez-
Olabarria et al., 2019) because it can influence
the likelihood of a fire occurring in a
particular area, as humans are often the cause
of forest fires. Roads provide easier access for
people to enter remote forested areas. In this
research, we generated a distance to road map
(shown in Fig. 2d) for the study area by
buffering the road networks and then
classified the distance into five categories: 0—
120, 120-240, 240480, 480-900, and >900
m. The road networks used for the map were
sourced from the national topographic map of
Vietnam at a scale of 1:50,000 and the
Open Street Map (www.openstreetmap.org,
accessed on 28 March 2023).

Satellite-derived  indices, = Normalized
Difference Vegetation Index (NDVI), and
Normalized Difference Water Index (NDWI),
are important influencing factors for forest
fire prediction as they can provide information
about the vegetation and moisture conditions
in the Phu Yen province. Herein NDVI
provides information on vegetation health and
density (Gouveia et al., 2012), while NDWI
indicates the presence of water (Teng et al.,
2021). Both these indices can indicate the
flammability of vegetation, with low NDVI
and high NDWI values indicating high
moisture content and lower flammability.
Conversely, high NDVI and low NDWI
values indicate that drier vegetation is more
susceptible to fire.

The study computed NDVI and NDWI (as
shown in Figs. 2e and 2f, respectively) for the
study area using the reflectance values of
Landsat 8 OLI imagery with a 30 m
resolution. Two images captured on April 10,
2022, were used, and Egs. 6 and 7 (Ke et al.,
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2015; Gao, 1996) were employed to calculate
NDVI and NDWI. The Landsat 8 OLI
imagery was obtained from the USGS archive
at www.earthexplorer.usgs.gov (accessed on
28 March 2023).

NDVI = (Band 5-Band 4)/(Band 5+Band 4) (6)

NDWI = (Band 5-Band 6)/(Band 5+Band 6) (7)
Relative humidity should be selected
because it measures the amount of moisture in
the air relative to its capacity and affects the
moisture content of fuel materials in the forest
(Matthews et al., 2012). Herein, when the air
is dry, the fuel is also likely to dry, making it
more susceptible to catching fire. On the other
hand, if the air is moist, the fuel retains more
moisture, reducing its flammability. Surface
temperature is another critical climatic factor
influencing forest fire behavior (Liu, 2014).
High surface temperatures can lead to high
fuel temperatures, increasing the likelihood of
ignition and fire spread. In addition, high
temperatures can increase plants'
evapotranspiration rate, which reduces fuel
materials' moisture content and makes them
more susceptible to catching fire.

Rainfall is also a critical factor that affects
forest fire prediction because it can
significantly impact the moisture content of
fuels in the forest (Flannigan et al., 2016).
Adequate rainfall can help reduce the risk of
forest fires by increasing fuel materials'
moisture content, making them less likely to
catch fire. Conversely, drought conditions can
lead to dry fuels that are more susceptible to
fire. In this analysis, relative humidity
(Fig. 2g), surface temperature (Fig. 2h), and
rainfall (Fig. 2i) were obtained for the study
area by utilizing the climatic data provided by
NASA (USA), which is accessible through
www.power.larc.nasa.gov (accessed on 28
March 2023). Herein, the climate data from
June, July, August, and September of 2018-
2020 were utilized since these months have
been observed to have a high incidence of
forest fires.
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Finally, land use/land cover (LULC) is
essential for forest fire prediction because it
may influence the fuel load and flammability
of different land cover types (Calvifio-Cancela
et al., 2016). Land cover types, such as forests,
grasslands, and shrublands, have different
vegetation densities and fuel loads (Rouet-
Leduc et al., 2021), which can affect the spread
and intensity of a fire. Moreover, land cover
types can have varying moisture content and
flammability, which can be influenced by
weather conditions such as rainfall and
temperature (Littell et al., 2016). Hence,
incorporating LULC data may provide critical
information for modeling and predicting forest
fires. In this research, the study area's LULC
map with 30 m resolution for the Phu Yen
province with 13 different classes (shown in
Fig. 3j) was created by compiling the 30-meter
resolution LULC map products of 2020
produced by the Japan Aerospace Exploration
Agency (JAXA), which can be downloaded at
WWW.eorc.jaxa.jp, accessed on 28 March 2023.

4. Proposed HHO-RSCDT for improving
the accuracy of forest fire danger mapping

This section describes the proposed HHO-
RSCDT ensemble learning for forest fire
danger mapping (Fig. 3). We process the
multisource geospatial data using ArcGIS Pro
2.8.0 software. The Matlab code for the Harris
Hawks optimization (HHO) algorithm can be
accessed from (Heidari et al., 2019). At the
same time, the HHO-RSCDT was implemented
by the researchers in the Matlab platform using
the Matlab Weka Classifiers tool provided by
should be Dunham, (2023). In addition, a
Python script was also programmed to code the
ten influencing factors for the HHO-RSCDT
model and then convert the result into the final
forest fire danger map. The conceptual
framework of the HHO-RSCDT proposed in
this research is demonstrated in Fig. 3.

4.1. Data processing and building a GIS
database

The first step is data processing which
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processes the multisource geospatial data into
ten forest fire-influencing factors using ArcGIS
Pro software to build a GIS database (Fig. 3).
Then, all the factor maps were converted into a
raster format 30 m resolution. Next, eight
continuous factors (elevation, slope, NDVI,
NDWI, relative humidity, temperature, and
rainfall) were normalized (Eq. 8) (Bui et al.,
2017) in a range [0.01-0.99] using the Spatial
Analysis tool in ArcGIS Pro. For the remaining
factors (aspect, distance to road, and LULC),
each category was assigned an integer attribute
(Bui et al., 2012) and then normalized in the
range [0.01-0.99] above using Eq. 8.

Ny = = Min) o0 00114001 (8
v_Max(Fa)—Min(Fa)[' - 001} +0. ®)

where Fa; is the value of the considered factor.
Min(Fa) and Max(Fa) are the minimum value and
the maximum value of the considered factor, and
Nv is the newly computed value for the
considered factor.

The subsequent stage involved the creation
of 306 non-fire locations chosen randomly
from areas in the Phu Yen province that were
unaffected by forest fires, as determined by an
NDVI score of less than 1.5. Following this, a
"1" was attributed to each of the 306 fire
locations, while a "0" was assigned to each of
the 306 non-fire locations. Afterward, the
locations were randomly divided into two sets.
The first subset, which comprised 428
locations (214 forest fire locations and 214 non-
fire locations), was utilized to construct a
training dataset, while the remaining 184
locations (92 forest fire locations and 92 non-
fire locations) were reserved for model
validation purposes. A sampling procedure was
executed to extract the values of the ten factors
influencing the data for both the training and
validation datasets.

In forest fire modeling, assessing the role
of influencing factors is crucial for the
prediction model's accuracy and reliability.
The role of the influencing factor was
assessed using the Wrapper Subset Evaluator
method (Abawajy and Kelarev, 2017).
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Figure 3. The proposed HHO-RSCDT Ensemble learning for forest fire danger mapping

4.2 Configuration of the HHO-RSCDT
Ensemble model

The process of configuring the HHO-
RSCDT ensemble model involves two stages:
the first is integrating the Credal Decision
Tree into the Random Subspace ensemble,
and then, four parameters (k, m, mCDTree,
and minNum) were extracted and connected
to the HHO for searching and optimizing
them. Subsequently, a four-dimensional
search space was established, as explained in
Section 2.3. Herein, the coordinates of each
hawk in the four-dimensional searching space

corresponded to four parameters (k, m,
mCDTree, and minNum). Therefore, each
hawk was a potential solution for the HHO-
RSCDT ensemble model and was measured
by an objective function in Eq. 9.
1 N
MSE = &) (FFli— FFO;)? 9)
where MSE is the Mean Squared Error; FFI; is
the fire danger value in the training dataset Z
(see Section 2.1); FFO; is the fire danger
output from the HHO-RSCDT model; N is the
total number of the training samples used.
In the optimization process using HHO, a
population of 30 hawks was selected, and
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1000 iterations were employed. The search
space was established as 4-dimensional, with
k € [1-500], ensuring a maximum of 500
trees were used to maintain the diversity of
the ensemble. We employed 10 forest fire
influencing factors, so m € [1-10].
Additionally, mCDTree was set to a maximum
of 100, limiting the depth of the tree to 100,
mCDTree € [1-100], and minNum € [1-10].

4.3. Evaluation metrics

The performance of the HHO-RSCDT
model was evaluated using standard statistical
metrics for two-class pattern classification,
fire, and non-fire, including -classification
accuracy (Acc), Kappa, Receiver Operating
Characteristic (ROC) curve, and Area under
the curve (AUC). Because the literature
extensively covers these metrics, commonly
used in forest fire danger modeling (Chicas
and Ostergaard Nielsen, 2022). Hence, we
refrain  from providing elaborate
explanation of these metrics, and thus,
interested readers may refer to relevant
articles for more information, i.e., (Tehrany et
al., 2019; Ngoc Thach et al., 2018).

an

4.4. Forest fire danger map

Once the HHO-RSCDT model is
successfully trained and validated, the model
was then used to compute the forest fire

danger map for all pixels of the study area. In
the next step, five classes, very high, high,
low, very low, and no (Bui et al., 2017) were
used. The values for separating these classes
were determined using a plot graph (Bui et al.,
2017) generated by crossing the forest fire
inventory map with the forest fire danger.

5. Results and analysis
5.1. Training and validating result

The training phase of the HHO-RSCDT
model was conducted over 1000 iterations,
and the optimal combination of the four
parameters was determined to be: k = 10,
m = 5, mCDTree = 29, and minNum = 3.0.
The performance of the HHO-RSCDT model
on the training dataset with 5-fold cross-
validation is shown in Table 1 and Fig. 4. Our
analysis shows that the model has a high level
of goodness-of-fit, with an accuracy (Acc) of
80.6%. The Kappa statistic, which measures
the agreement between predicted and
observed values, is also 0.612, indicating a
satisfactory The
performance, as measured by AUC with
5-fold cross-validation, is 0.884, and the AUC
increased to 0.952 (Fig. 4) using the whole
training dataset, indicating a high level of
performance. The other performance metrics
are presented in Table 1.

result. model's overall

Table 1. Performance metrics of the HHO -RSCDT model

Statistical metrics
HHO-RSCDT ensemble model TP | TN | FP | FN | PPV | NPV | Sens | Spec | Acc |Kappa] AUC
Training dataset 149 | 196 | 65| 18 | 69.6 | 91.6 | 89.2 | 75.1 | 80.6 | 0.612 | 0.884
Validating dataset 73 | 81 |19 11 | 793 | 88.0 | 869 | 81.0 | 83.7 | 0.674 | 0.911

To assess the HHO-RSCDT model's
performance on new data, we utilized the
validation dataset, and the result is also shown
in Table 1. The HHO-RSCDT model's
accuracy (Acc) was determined to be 83.7%,
indicating that 83.7% of the validation dataset
samples were classified correctly, which is a
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good result. Moreover, the Kappa statistic of
0.674 indicates a satisfactory result. The
global performance of the model measured by
AUC is 0.911 (Table 1 and Fig. 4), indicating
a high prediction power of the model.
The other validated metrics are presented in
Table 1.
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5.2. Role of fire ignition factor contribute to
the HHO-RSCDT Ensemble Model

The role of influencing factors results is

shown in Table 2.

Table 2. Role of the

influencing

factors

contributing to the HHO-RSCDT ensemble model

Influencing factor Merit value |Ranking
INDVI 0.304 1
Relative humidity (%) 0.171 2
[Elevation (m) 0.145 3
Surface Temperature (°C) 0.133 4
Rainfall (mm) 0.127 5
INDWI 0.122 6
Distance to road (m) 0.079 7
Slope (°) 0.067 8
IAspect 0.012 9
LULC 0.007 10

It can be seen that NDVI, with a merit

value of 0.304,
followed by relative

is the most important,
humidity (0.171),

elevation (0.145), surface temperature (0.133),

rainfall (0.127),

and NDWI (0.122). In

contrast, LULC has the lowest contribution to
the HHO-RSCDT model; the merit value is

0.007.

5.3. Model comparison

To evaluate the effectiveness of the proposed
HHO-RSCDT model, a comparison was made

between HHO-RSCDT and the benchmark
models Random Forest (RF) and Support
Vector Machines (SVM), which were built in
our previous work (Truong et al., 2023b).
Herein, the performance of the RF model
(Acc = 78.8%, Kappa = 0.576, and AUC =
0.865) and the SVM model (Acc = 76.1%,
Kappa = 0.522, and AUC = 0.851) model in
the validation dataset is lower than the HHO-
RSCDT model (Acc = 83.7%, Kappa = 0.674,
and AUC =0.911).

5.4. Forest fire danger map

To construct the forest fire danger map, the
HHO-RSCDT model was used to compute the
forest fire danger index for each of all pixels
of the study area, and subsequently, five
classes, very high, high, low, very low, and
no, were obtained (Fig. 5).

Herein, the four different values for
separating these classes are 0.84, 0.56, 0.29,
and 0.18, which were determined by assigning
the top 15% of the study area with the highest
fire danger values to the ‘very high’ class. For
the ‘high’, ‘low’ and ‘very low’ classes, 20%
of the study area each was allocated, and the
remaining 25% was assigned to the ‘no class’
classes (Figs. 6 and 7).
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Properties of the five forest fire danger
classes derived by the HHO-RSCDT model
for the Phu Yen province are shown in
Table 3. It could be seen that 44.4% and
29.7% of the forest fire locations were located

in the ‘very high’ class (757.5 km®) and the
‘high> class (1009.9 km?), respectively. In
contrast, 2.7% and 0.0% of the forest fire
locations are located in the ‘very low’ class
and the 'no' classes, respectively (Table 3).

Table 3. Properties of the five forest fire danger classes derived by the HHO-RSCDT model

No| Forest fire danger index |Forest fire location (%)| Description Forest fire danger map (%) | Areas (km?)
1 0.84-0.95 44 4 Very High 15 757.5
2 0.57-0.83 29.7 High 20 1009.9
3 0.29-0.56 23.2 Low 20 1009.9
4 0.19-0.28 2.7 Very Low 20 1009.9
5 0.06-0.18 0.0 No 25 1262.4

6. Discussions

Forest fires remain a significant problem in
Vietnam (Pham et al., 2021) and Phu Yen
province due to human activities, such as
burning agricultural land and illegal logging.
In addition, climate change has led to more
frequent and severe droughts (Nguyen-Thi-
Lan et al., 2021; Nguyen and Hoang, 2022).
This study introduces and validates a novel
ensemble modeling, HHO-RSCDT, for
predicting the spatial patterns of forest fire
danger, with a specific focus on a case study
in Phu Yen province. The HHO-RSCDT is an
ensemble of Random Subspace (RS), Credal
Decision Tree (CDT), and Harris Hawks
Optimizer (HHO). RS is used to generate
various subspace datasets, and then, each
dataset is adopted to generate a CDT
classifier, whereas HHO is integrated to
optimize the ensemble model. The HHO-

RSCDT model demonstrates a high predictive
ability, indicating that this novel ensemble
learning approach can accurately predict the
probability of forest fire danger, particularly
in the ‘high’ and ‘very high’ areas.

The findings of this study suggest that
the four parameters (k, m, mCDTree,
and minNum) significantly impact the
performance of the HHO-RSCDT model,
underscoring the need for careful parameter
selection. As a result, the high predictive
performance of the HHO-RSCDT model
suggests that the HHO algorithm has
effectively searched and optimized the four
parameters (k, m, mCDTree, and minNum)
autonomously. Moreover, the HHO-RSCDT
model outperforms the benchmark models,
such as the RF and the SVM regarding
prediction performance. This is because the

CDT algorithm effectively manages noisy
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geospatial data in this work. Additionally,
allowing RS to establish a forest of 10 CDT
trees ensures diversity. In conjunction with the
optimization phase of the HHO-RSCDT
model, which utilizes 1000 iterations and
30 hawks, a comprehensive exploration of
30,000 potential combinations of k, m,
mCDTree, and minNum was conducted to
determine the optimal configuration. These
factors contribute to the high performance of
the HHO-RSCDT model. Consequently, the
HHO-RSCDT model can be regarded as a
promising tool for forest fire danger
modeling. This finding supports recent
research in the literature indicating that
ensemble learning is a practical approach for
natural hazard modeling (Naderpour et al.,
2019; Ganaie et al., 2022; Ado et al., 2022),
as it leverages diverse data and processes
complex geospatial information.

Forest fires are complex processes;
therefore, identifying the essential factors that
contribute to forest fires can help improve the
prediction model's accuracy and provide
valuable insights for forest management and
fire prevention strategies. This research
indicates that NDVI is the most critical factor
in the HHO-RSCDT model. This is a good
result since NDVI is widely recognized as a
proxy for available fuel for forest fires
(Michael et al., 2021), as it provides
information on vegetation health and moisture
content - both critical factors in determining
the likelihood of a forest fire occurrence. In
contrast, the contribution of LULC to the
HHO-RSCDT model was found to be the
lowest, possibly because the forest fire
locations were distributed relatively evenly
across some LULC classes.

7. Concluding remarks

In this research, the effectiveness of a
new ensemble modeling, HHO-RSCDT, is
proposed and verified for forest fire danger
mapping with a case study in Phu Yen
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province of Vietnam. Following the findings
of this study, we have drawn some
conclusions presented below.

- The HHO-RSCDT, an integration of
HHO, RS, and CDT, has demonstrated its
capability to predict forest fires with high
accuracy.

- HHO is an effective optimization
algorithm capable of autonomously searching
and optimizing four parameters - k, m,
mCDTree, and minNum.

- The most significant contributing factor
to the HHO-RSCDT model is NDVI.

- The HHO-RSCDT demonstrates better
prediction power than the RF and SVM
benchmarks, indicating its potential as a
valuable tool for modeling forest fire danger.

- A limitation of this work is the absence of
an uncertainty analysis for the HHO-RSCDT
model. Therefore, future research should
consider conducting such an analysis to
enhance the model's transparency, credibility,
and applicability. By addressing this
limitation, the model can become a more
reliable tool for decision support in forest fire
management.

- Finally, despite the above limitation, the
forest fire danger map generated through this
study could serve as a valuable resource for
the local authorities in Phu Yen province,
aiding them in forest management and
protection efforts.
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