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ABSTRACT

Changes to the coastline or shoreline arise from the water's dynamic interaction with the land surface, which is
triggered by ocean currents, waves, and winds. Various methods have been proposed to identify and monitor
coastlines and shorelines, but their outcomes are uncertain. This study proposes indicators for identifying coastlines
and shorelines in the fields and on the remote sensing data. Different pixel- and object-based machine learning (ML)
models were built to automatically interpret coastlines and shorelines from high-resolution remote sensing images
and monitor coastal erosion in Vietnam. Two pixel-based models using Random Forest and SVM structures and eight
object-based models using U-Net, and U-Net3+ structures were trained. All models were trained using the high-
resolution images gathered using Google Earth Pro as input data. The U-Net achieves the most remarkable
performance of 98% with a loss function of 0.16 when utilizing an input-image size of 512x512.

Object-based models have shown higher performance in analyzing coastlines and shorelines with linear and
continuous structures than pixel-based models. Additionally, the coastline is appropriate to evaluate coastal erosion
induced by the effect of sea-level rise during storms. At the same time, the shoreline is suited to observe seasonal
tidal fluctuations or the instantaneous movements of current waves. Under the pressure of tourist development, the
coasts in Danang and Quang Nam provinces have been eroded in the last 10 years. River and ocean currents also
cause erosion in the southern Cua Dai estuary. In the future, the trained U-Net model can be used to monitor the
changes in coastlines and shorelines worldwide.

Keywords: Erosion; Unet; Support Vector Machine; Random Forest; Google Earth.

1. Introduction worldwide have seen catastrophic erosion in
Ocean currents, waves, and winds the past 30 years (Dang et al., 2022a;
complicate the interaction of sea and land Escudero-Castillo et al., 2018). Since 1970,

surfaces, leading to shoreline changes various American eroded coasts have
(Martinez et al., 2018; Nazeer et al., 2020). averaged 0.6 to 0.9 m/year, with the east coast
70% of loose-material-containment beaches averaging 2.6 to 3.1 m/year (Titus and

Richman, 2001). Many countries with long

*Corresponding author, Email: gianglinh103 1@gmail.com coasts have made efforts to monitor shoreline
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erosion (Gallina et al., 2020; Hanley et al.,
2014; Martinez et al., 2018). Europe's coastal
erosion affects the likelihood of people on the
almost 20,000 km coastline (Hanley et al.,
2014; Mineur et al., 2015). All information
now has not been updated and depends
strongly on expert knowledge. To track
shoreline and coastline changes, managers
should be equipped with artificial intelligence
tools to track coastal erosion and sea-level
rise. The outcome information from these
tools must be updated quickly and correctly to
inform people in time about the future coastal
parts that will be eroded.

Remote sensing technology provides
multi-sensor, multi-temporal, and high-
resolution data for machine learning (ML)
models (Dang et al., 2020b; Gordana and
Avdan, 2019; Nirmala et al., 2022). Remote
sensing (RS) and geographic information
systems (GIS) have been utilized in coastal

erosion studies to offer management
recommendations (Dang et al., 2022c; Hoang
et al, 2022). Since the scientific

understanding of coastline/shoreline markers
differs, predictions related to coastal erosion
contain uncertainties (Pollard et al., 2020;
Toure et al., 2019). Input image data sources
and processing software significantly affect
outcome interpretation. In past studies
examining the process of coastal erosion, mid-
resolution satellite images (like Landsat,
SPOT, and Sentinel-2) were commonly used
to segregate land from the ocean in general
(Loi et al., 2021). The Sentinel-2 sensor
provides images with the highest accuracy of
10m in the free middle satellite image data.
However, the distance between the coastline
and the shoreline is only about 5 to 10m.
Therefore, using middle satellite images to
detect ineffective.

coastal erosion 1is
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Nowadays, many other remote sensing
devices, such as unmanned aerial vehicles
(UAV) and Google Earth photos with
resolutions of up to 0.3 m to 1 m, may be
employed to analyze coastlines and shorelines
to tackle this issue (Dang et al., 2022a; Vu et
al., 2004). It can help accurately locate and
date shorelines and coastlines in real-time.
However, Landsat and Sentinel missions have
been the most extensively utilized sources of
remote sensing data, while very high-
resolution images account for a small part.
Recently, ArcGIS, ENVI 5.1, eCognition,
and DSAS software have been used to
the
changes (Loi et al,, 2021). However, these

examine shoreline's and coastline's
methods cannot analyze large amounts of data
or develop Al models (Tran and Prakash,
2020). Meanwhile, still
coastlines and shorelines, especially with
the

development of ML technology, developers

experts interpret

high-resolution images. Based on
may train computers to separate coastlines and
shorelines from neighboring coastal objects
2022a). the

computer can distinguish the shoreline and

(Dang et al, Accordingly,

coastline during remote sensing image
analysis, creating real-time coastal change
monitoring models. Different ML structures,
such as SVM, CNN, Unet, U2Net, Unet3+,
and DexiNed, have been used in geology
(Hoang et al.,, 2021; Nguyen et al., 2022a;
Nhu et al., 2022; T. B. Pham et al., 2022),
hydrology (Duong et al., 2022; T. A. Nguyen
et al., 2020), lithology (Le et al., 2020; Pham
et al., 2020), and the environmental fields (D.
T. Nguyen et al., 2020; Nirmala et al., 2022).
The application of these models has not been
tested with the task of identifying coastlines,

shorelines, and coastal erosion.
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To accurately locate shorelines and
coastlines supporting coastal erosion analysis
in the field and on high-resolution satellite
images, this research attempts to: (1) propose
an indicator system; (2) compare ML models
using pixel- and object-based approaches in
automatically  defining  shorelines and
coastlines from high-resolution remote
sensing data; and (3) use these models to
assess coastal erosion in the Center path of
Vietnam. The categorization of the coastline
and shorelines investigated in this
research using several ML models built from
the random forest (RF), support vector
machine (SVM), and different artificial neural
networks (presented in sections 2.2 and 2.3).
The findings of this work may be used to
provide a method for using an ML model for

was

tracking erosion along various coastline types
in Vietnam and elsewhere in the globe.

2. Material and methods

2.1. Machine learning
coastline/shoreline classification

structures

for

The classification of coasts and shorelines
was broken down into three primary phases,
as indicated in Fig. 1. Step 1 was completed
both inside the lab and outside through field
investigation to determine the appropriate
coastline and shoreline criteria for each
coastal type. To produce sample data from
remote sensing images, ground truth points
(GTP) were found on the fields and processed
with Google Earth images. Step 2 involves the
categorization of coastlines and shorelines
using pixel- and object-based ML models.
Step 3 included testing and verifying the
trained models using updated Google Earth
image data sources to map the coastline and
shoreline changes once the model had been
built with high accuracy.

Collecting and synthesizing documents

' | images from Google Earth -+  correction and
|| sources in different coasts noise filtering

Collect Google Earth
images (since 2002)

In two coasts
in Vietnam

Digital Shoreline Analysis System (DSAS) |—

v

\ Ground truth collection
Coastal type classification
in five fieldtrips
Collect high-resolution Geometric

Coastlines and shorelines overtime in two coasts

Maps of shoreline and coastline changes in two coasts

Identifying coastline
» and shoreline indicators
for different coasts
Remote sensing samples of +
» coastlinesand shorelines on
different coastal types

-
v

Experiment with pixel-
and object-based ML
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coastlinesand shorelines
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v

The best model for detecting coastlines
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Figure 1. Structure diagram to develop ML model for mapping coastline and shoreline changes

2.1.1. Coastline and shoreline indicators

Scientists often encounter  several

challenges when identifying shorelines on the

fields and in the satellite images, particularly
when these image sources have not been

supported frequently (Pollard et al., 2020;
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Vinchon et al., 2006). In contrast to the more
stable nature of coasts, shorelines are only
there temporarily. Therefore, in wetland
research, shorelines could be sampled 10 times
per second, while certain studies looking at
coastline changes require 10 to 20 years of
sampling (Hanh and Furukawa, 2007).

The indicators for shorelines and coastlines
could differ and depend on coastal types, such
as cliffs, estuaries, and sandy beaches (Dang et
al., 2022a; Hanley et al., 2014). Dang et al.
(2022a) proposed some coastal components
that can be used to identify coastlines and
shorelines. Three indicator categories were
found, including (1) visible indicators,
(2) indicators based on tidal data,
(3) technique-based indicators. Visible signs
are characteristic coastal objects that can be

and

observed clearly in nature (Boak and Turner,
2005; Gens, 2010). The wet/dry zone border or
high tide line, depending on high, low, and
mean sea levels in a particular day or season,
are example of the second indication type
(Phan et al., 2019). Although the second
indicator group is the least subjective of the
groups this has
limitations when it is impossible to ascertain

mentioned above, one
historical shorelines. Coastal signs observed in
identify
coastline and shoreline at large scales (Gens,
2010; Stockdon et al., 2009). Despite having
less accuracy than the two first indicator
groups,
prevalent in detecting shorelines and coastlines

aerial and satellite images help

the third one has become more

because its outcomes can be used for land use
planning and natural hazard warming for long
coasts. It improves the subjectivity of visible
indicators and the lack of updates when using
the tidal-datum-based indicators on the fields
(Boak and Turner, 2005).
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Depending on the tidal, land use/cover, and
current ocean characteristics at a particular
period, shoreline and coastline indicators may
be detected alternatively in different coastal
types (Boak and Turner, 2005). 13 indicators
were chosen to identify coastlines and
shorelines in sandy coasts from the 16
indicators listed by Dang et al. (2022a)
(Fig. 2). Accordingly, the coastlines can be
identified at three field locations, including
points C1, C2, and C3. They are vegetation
boundaries that have grown steadily on
embryo- and fore-dunes or the boundaries of
waves/storms' effects on land. Whereas the
location of the shoreline is also significantly
influenced by seasonal characteristics
(Sowmya et al., 2019). There are two
categories of shoreline indicators. The first
category is connected to a specific physical
characteristic, such as erosion and accretion
signs along coasts (points C3 and C4 in Fig.
2). The second category relates to tide, wave,
and river movement activities, such as high or
low ocean current levels (from points S1 to
S9). In the first category, owing to the effect
of waves, tides, or wind during a brief time, a
coastline displacement of 15 to 20 meters may
be seen on a beach with a modest slope (Dang
et al., 2020a; Phan et al., 2019). It alters the
coast's geometry, affecting how waves behave
near and on the coastline. Several nations
have utilized the mean sea-level tides (S7, S8,
and S9) as a criterion for identifying the
shoreline and supporting coastal aquaculture
and seafood businesses (Pajak and
Leatherman, 2002). The second category is
observed in the long-term trend and used to
assess coastline modification due to extreme
weather events like storms and cyclones, as
well as new constructions of all living things
and artificial structures, such as the existence
of embankment constructions.
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Coastline indicator

C1: Seaward stable dune vegetation line
C2: Seaward dune vegetation line

Shoreline indicator

S9: An old high tide water level

S8: Previous high tide high water level
S7: Mean high water (datum referenced)
S6: Wet/dry line or runup maxima

S5: Ground water exit point

C3: Erosion scarp
C4: Storm/debris line

S4: Instantaneous water line

S3: Shore-break maximum intensity

S2: Mean lower low water line
(datum referenced)

S1: Beach toe/ crest of beach step

Figure 2. Indicators and their location to identify a coastline and a shoreline in sandy coasts

2.1.2. Input data preparation

Three procedures were taken to prepare the
input sample. The Google Earth (GEE)
database with a resolution of 0.7 m was
directly downloaded from the Google Earth
Pro (GEP) program in the first step to identify
the coastline and shorelines precisely. These
images frequently have various brightness
levels (Dong et al., 2019; Tong et al., 2020).
Therefore, for the computer to comprehend
the pattern and diversity in the visual data
requires many samples. To maximize the

samples offered by Google Earth Pro software
over different years, the image is saved in
small areas in *.JPG format with a resolution
of 4800%x2800. The chosen appropriate scale

was set to 1:500. After all background data
from the software was removed during the
image-saving process, the output images were
collected with RGB colors. Seven provinces
in the Center part of Vietnam were chosen to
collect samples, including Quang Binh,
Quang Tri, Hue, Da Nang, Quang Nam,
Quang Ngai, and Binh Dinh (Fig. 3). The total
length of the coasts exceeds 400 kilometers.
2010 through 2021 is the time frame for the
image collection. The focus area is roughly 2
kilometers from the inland to the coast and 2
kilometers from the coast to the open ocean.
In step 2, coastal and shoreline
digitization was done on 25,034 image
frames obtained from step 1. To create a
continuous image, the images taken in the
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same year and close to one another
underwent a similar process. Due to the
effects of spatial distortions on the high-
resolution image produced by GEP software
(Hu et al., 2013), a meticulous geometric

correction has been carried out by keeping an
eye out for fixed features like roads or other
civil engineering constructions. The street-
view data on ArcGIS software was used to
fix the geometry features in this study.

! DEM(m)

N BRI
| M o-20 |
i [F] 20 - 40
| [ 40-60
! [ 60-80 !
| B0 - 120 |

Ha Tien |

Location of collected
image samples

o8| Area between coastline
and shoreline

Figure 3. Places of high-resolution satellite-image samples chosen along Vietnam's coasts

Following the completion of the image
data, the third step of editing the interpretative
sample data involves digitizing the coastline
and shorelines following the indicator
described in Section 2.1.1. From 2017 to
2020, the author made four field excursions
along Vietnam's coast, according to the
shoreline and coastal indicators. Four
fieldwork trips were conducted as part of the
digitization process to (1) locate the coastline
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and shoreline in the field and compare them to
conclusions drawn from the visual image
interpretation from Google Earth sources;
(2) measure and calculate the distance
between the coastlines and shorelines on the
fields; and (3) pinpoint areas with recent
accretion and erosion phenomena. The
"Discussion" section will go into detail on this
subject. After this step, the surrounding areas
have a value of "0" and the region between the
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coastlines and shorelines has a value of "1".
The complete database was loaded into ML
models after the GGE image and mask data
were finished. The computer analyzes and
learns the characteristics of the coastal region
between beaches, shorelines, coastlines, and
neighboring places.

2.2. Architecture of pixel-based models
2.2.1. Support Vector Machines

One of the most popular kernel-based
learning algorithms is the Support Vector
Machines technique, initially developed by
Vapnik and his team in the late 1970s and
notably useful for image classification
(Karatzoglou et al., 2006). SVM is a linear
binary classifier that distinguishes only one
border between two classes, particularly
between the region from coastlines to
shorelines and the surrounding areas in this
study, in its most basic configuration. For the
linear SVM to work, the multidimensional
data must be assumed to be linearly separable
in the input (Pham et al., 2018; Xue Su et al.,
2017). Specifically, SVMs use the training
images obtained from Google Earth sources to
find an ideal hyperplane (in the simplest
example, a line) to divide the dataset into two
specified classes. SVMs employ a subset of
the training sample closest in the feature space
to the ideal decision boundary, serving as
support vectors, to maximize the separation or
margin (Cervantes et al., 2020). It is possible
to determine mathematically and
geometrically the ideal hyperplane or
maximum margin. It alludes to a decision
boundary designed to reduce misclassification
mistakes during training.

The kernel coefficient "gamma" and error
term penalty parameter "C" were found and
improved to optimize SVM  models
(Karatzoglou et al., 2006). Gamma increases
may make the hyperplane smoother, and the
training dataset fits SVM models. Even
minimizing  inaccuracies ~ may  cause

overfitting. Thus, linear, polynomial, sigmoid,
and radial basis (RBF) kernel functions
impact SVM model performance (Hassan and
Sadek, 2017). In the SVM development
process in this study, "C" restricts training
data. Thus, "gamma" and "C" were evaluated
to maximize OA and kappa. The ideal
"gamma" and "C" values were 0.35 and 90,
respectively, in the classification of coastal
and non-coastal regions. The best hyperplane
is identified when the separation margin
between coastal and non-coastal samples is
most significant. The learning process is the
iterative process of building a classifier with
an optimal decision boundary.

2.2.2. Random Forests

The random forest classifier is made up of
different tree classifiers, each of which is
created using a random vector sampled
separately from the coastal input data. Each
tree then casts one unit of the vote for the
most prevalent class to categorize the input
data (Berhane et al., 2018; Piragnolo et al.,
2017). This procedure reduces overfitting
because the dataset was classified several
times based on a random subset of training
pixels, and each tree did not take all the
training datasets to develop (Tian et al., 2016).
Moreover, a random process is used to
optimize the choice at each node. Finally,
each tree casts a vote to determine the
outcome, and the class that the majority of
trees choose is the random forest's output.

In this study, two user-defined parameters
are necessary to create a random forest
classifier, including (i) the depth of each tree
in the forest- or other words, for the number
of rules each decision tree is permitted to
develop. and (ii) the number of trees to be
developed. In this study, the forest grew 50-
trees classifiers, with the maximum depth of
each tree being 30. By projecting the training
data onto a randomly selected subspace and
fitting each tree, the variety among the trees
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(50 trees) is introduced, and each tree is
developed with 30 rules. The majority of vote
decided the output result.

2.3. Architecture of object-based models
2.3.1. Model layers

In the development of robotic fields,
various structures, and methodologies are
used in ML models (Alom et al., 2019;
Nguyen et al., 2022b). To train a model for
categorizing coastlines and shorelines, two
ML architectures were created and examined
in this part. Three dimensions width, length,
and depth are present in its neurons. The
depth parameter of input images is determined
by spectral bands employed for prediction.
Two different sizes of sub-images were
explored, including  256x256x3  and
512x512x3, to determine the ideal size for
training data (width, height, and depth,
respectively). Models using smaller sub-
images can recognize minor object features
such as embryo dunes or vegetation (Dang et
al., 2022b; H. N. Pham et al., 2022), whereas
models using larger sub-images can recognize
major object characteristics from the area
between coastlines and shorelines, such as the

bright color, continuous and linear
distribution.
The DL architecture for image

classification typically consists of six different
layer types: (1) input, (2) convolutional
(CONV), (3) batch normalization, (4) pooling,
(5) concatenate, and (6) dropout layers. The
training model analyzes all sub-images from
the INPUT layer's raw pixel values (Albawi et
al., 2018; Dang et al., 2020b). Filters in the
CONV layers control the outputs of neurons.
The Batch Normalization layer is used to
simplify data to a new scale once all of the
CONV layers have been trained. Internal
covariate shift problems, or initial value
changes during training, are minimized using
this layer (Diakogiannis et al., 2020;
Hatamizadeh et al., 2020). The standard
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deviation of each input layer depends on the
mean and variance of the current batch, as
follows:
pi =aq + B (1)
In which the @ and [ are training
parameters, g, is calculated based on mean
(uy) and variance (0Z) of mini-batch A =
{qi...qm} based on following formulas:

1
e 3T, @)
1
of = ;Zﬁl(ql' — ua)? 3)
/\L «— di — Ha (4)

Regarding POOL layers, they use a 2x2
spatial matrix generated from activation
functions to downscale data. This process
removes poor sub-data from the input dataset.
In contrast, a "ConvTrans" convolution matrix
is generated at another site to up-sample a
larger matrix before providing the outcome
prediction (Heidler et al., 2022). Both matrix
types have been used together in an expanding
route and a contracting path, respectively, and
linked by the concatenate layer. The data from
earlier layers were condensed in the
contracting route and combined with those
from earlier layers in the extended path (Dang
et al., 2022a). The Dropout layer is integrated
with the Concatenate layers by deactivating
extraneous neurons rather than training them.
It plays an essential role in minimizing the
cases of under and over-fitting and training
mistakes. The ML models developed for this
work employed a dropout value near 1.0 to
maintain layer input visibility.

Various neural network architectures have
been developed depending on the number and
structures of the above six-layer types. It
makes the performance of the ML models for
shoreline and coastline extraction vary. To
extract the shoreline and coastline in this
study, the authors proposed two cutting-edge
structures: U-Net and U-net3+. Their
architecture can be explained as follows:



Vietnam Journal of Earth Sciences, 45(2), 251-270

2.3.2. U-Net

U-Net models were first used to separate
medical and geological imaging data
(Ronneberger et al., 2015). These models have
two expanding and contracting channels. The
contracting route on the left half of the U-Net
models (yellow blocks in Fig. 4) is comparable

Sup
1 1
X En X De

64 64

Conventional

Up- li
I Up-sampling skip connection

L Down-sampling

% skip connection

to a convolutional neural network architecture.
Algorithms for right-hand up-sampling (blue
blocks in Fig. 4) convert prediction results to
the size of the starting image. 20 CONV layers
use 3x3 filters to transform raw data from sizes
512x512 to 8x8 in the contracting route and
back to 512%512 in the expanding path.

t Full-scaleintra
-~ skip connection

Full-scale inter sup Supervision by |

¢ ground truth

Figure 4. Architecture of U-Net (i) and U-Net3+ (ii) models used to train ML models for coastline and
shoreline detection

In total, 256 filters were generated. The
previous layer's width and height are doubled
in the expanding path and reduced by half
compared to the preceding layer in the
contracting route (Fernandez et al., 2020). On
the right side, a conversion is made from
intermediate values to the original image size.
The 20 additional CONV layers are applied
after batch normalization. The POOL layers
are applied before the Dropout layers for the
downscaling data process in the contracting
route. For upscaling in expansive layers,
transposed convolution matrices with Dropout
layers are used. In total, 73-layer image
processing algorithms were trained. The final
products obtained from the Conv2D layer
include two values: "one" represents the
coastline and shoreline border, and "zero"
represents other objects. Utilizing 73 layers

(IXINPUT, 20xCONV, 4xConv2DTrans,
4xPOOL, 19xBatch-Normalization,
4xConcatenate, 19xActivation, and 2x

Dropout) and 8041 sub-images, the trained U-
Net interpreted the coastline and shoreline
border. The input picture size and optimizer
techniques allow for parameter adjustment of
the CONV and Batch Normalization layers.
The Adam optimizer was selected after testing
the model's performance using other optimizer
techniques, and the input picture size was
varied between 256x256 and 512x512.

2.3.3. U-Net3+

As a novel U-shape-based architecture, the
U-net3+ model uses the interconnection and
the intra-connection between the encoder and
the decoder to collect fine-grained
information and coarse-grained semantics
from the input dataset (Huang et al., 2020)
(Fig. 4). Moreover, each side's output is
coupled with a hybrid loss function. While U-
net uses conventional skip connections, the U-
net3+ structure includes full-scale skip
connections between the encoder and decoder
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in complete scales but with fewer parameters
to use the multi-scale features fully.
Moreover, full-scale deep supervision is
utilized in the UNet 3+ to train hierarchical
representations from full-scale aggregated
feature maps (Dang et al., 2022a). To
seamlessly combine geographical information,
320 filters made in batch normalization and
ReLU activation functions were applied to the
feature maps. Each decoder level in the
proposed U-Net 3+ produces a side output
that the ground truth data checks. Each
decoder phase's final layer is input into a 3x3
convolution layer with sigmoid and bilinear
up-sampling functions.

2.4. Assessing model performances

To prevent over- or underfitting, the data's
correctness was examined while the ML
models were being developed (Dai et al.,
2020; Moore, 2001). The optimal model is
chosen when the results fit the training and
validation data labels. Total accuracy and loss
function values are two metrics to evaluate the
effectiveness of the outcome models (Le et
al., 2022). First, the following formulas were
used to calculate the accuracy of each training
model:

ACC =2TP +FP + FN (1)

TP and FP are real positive values, while
TN and FN are valid negative values. ACC
values were gathered every epoch during the
training period to track the model's
performance. The authors employed a trained
model with one of the lowest loss functions
and the highest ACC to enhance the
identification of all coastlines and shorelines.

To minimize the Cost function (C) or Loss
function (L), both of which are convex
functions, ideal weights must be chosen (Yang
et al., 2019). Weight, training images, and
labeled output results substantially impact the
loss function. By lowering the loss function,
the adjusted weight values can also help
increase the precision of the following training
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coastline predictions. Following this process,
the average loss values were computed as
follows once all training sub-image data sets
had been entered:

J==3n,L® )
where L((x)) is the loss value for a training
sub-image during the training process, and n is
the volume of training data collected.

The computer setup affects all models'
training duration and size. With the help of
the computer ASUS-1603, 12th Gen Intel(R)
i7-12700KF 3.6GHz, 32.0 GB RAM, and
NVIDIA GeForce RTX 3070, eight models
were trained. A total of 13 hours were spent
training each model utilizing U-Net
architectures. All deep learning models were
created using the Keras API and Tensorflow
(Gulli, 2017). Throughout the training, the
testing and validation accuracy was recorded.
The ML training method may be stopped if the
coefficient converges. However, it is restricted
to 500 loops (or epochs - iterations through the
training data).

2.4.  New
interpretation

coastline and  shoreline

Any model for identifying a coastline or
shoreline that has been trained can be used to
analyze new data. The coastlines and
shorelines in Da Nang city and Quang Nam
province in the center part of Vietnam during
the past 10 years were compared using the
DSAS tool in ArcGIS. The best ML model
was used to separate shorelines and coastlines
from the multi-temporal GGE's images, after
which they were put into the DSAS tool
(Nazeer et al., 2020). GGE's image data was
gathered and prepared as described in Section
2.1. Once the final model is finished, more
training data or ground truth points are not
required. The model also generates the final
coastline and shoreline maps by converting
the new GGE's images into the appropriate
spatial matrices using the learned spatial
matrices.



Vietnam Journal of Earth Sciences, 45(2), 251-270

3. Results
3.1. ML Model Performance

There were ten trained models based on
four model structures, pixel-based (Random
Forest and SVM) and object-based (U-net and
U-Net3+). Tables 1 and 2 show that,
compared to pixel-based models, object-based
models provide greater spatial and attribute
details on the coastlines and shorelines. Pixel-
based models only provide details on
individual pixels. These eight models make

94%). The pixel-based ML models had a 3-
6% chance of correctly predicting, and the
error of omission in the non-coast zone is
about 3.5%. The false favorable rates of pixel-
based models in coastal areas were higher
than in non-coast areas, 3% with the RF
model and 1% with the SVM model. Four U-
shaped models have a Kappa index and

overall accuracy of more than 0.95 and 0.97.

Table 1. Accuracy values of two trained pixel-
based ML models

the trained models understand the differences | Accuracy values |2ndom forest SVM
between land, ocean, and the space between _ CoastNon-coast) Coast | Non-coast
. [Error of omission 34 10.0 5.2 6.1
thgm and can be seen clearly in the networks o= =" - 61 52
trained based on U-net and U-Net3t+ |producer accuracy | 96.6] 90.0 | 948 | 939
algorithms. In contrast, Random Forest and  |User Accuracy 90.6| 964 |939| 948
SVM models have low Kappa indices (0.86 [Kappa 0.86 0.88
and 0.88) and low overall accuracy (about [Overall Accuracy 933 94.3
Table 2. Accuracy values of eight trained object-based ML models
U-Net U-Net U-Net3+ U-Net3+
Accuracy values 256 512 256 512
Coast |Non-coast| Coast [Non-coast| Coast |Non-coast| Coast Non-coast
Error of omission 2.4 6.1 0.4 2.6 1.4 4.1 2.9 9.1
Error of commission| 5.9 2.5 2.5 0.4 4.0 1.4 8.6 3.1
IProducer accuracy 97.6 93.9 99.6 97.5 98.6 95.9 97.1 90.9
User Accuracy 94.1 97.5 97.4 99.6 96.0 98.6 914 96.9
Kappa 0.91 0.97 0.94 0.88
Overall Accuracy 95.7 98.5 97.3 94.0

Regarding object-based ML models, all U-
Net-based structure models have accuracy
values higher than 94%, especially the U-Net-
256 model, which has an accuracy higher than
98%. U-net-shaped structures' false positives
and negatives were recognized as lower than
pixel-based models in both objects (coasts and
non-coasts). However, the U-Net-3+ structure
using the input cell size of 512x512 provides
outcomes with low accuracy, which is equal
to the pixel-based models. In addition to
having the most petite model sizes, the
prediction time of U-net3+ is longer than
other models because of its more complex
structure. Two U-Net models had the best

accuracies while having middling training
times and file sizes (about 13 hours and 118
MB). It demonstrates that the U-Net structure
may be taught more quickly and efficiently
compared to other network architectures.

3.2. The best model for coastline and
shoreline extraction

For comparison, two DL models with
accuracy more significant than 97% were
used. Each U-net model was trained for 500
epochs in more than 13 hours. The loss
function and accuracy values were perfectly
convergent (Fig. 5). At the same time, the
U-Net3+ model changed erratically after
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50 epochs and 100,000 steps over 30 hours.
The numbers have fallen since the 45™ epoch.
According to the validation accuracy and loss
data, the model started overfitting during

training but converged around the 40™ epoch.
In contrast, the time to train and predict pixel-
based models was shorter than U-shaped
models, and the accuracies were lower.

Training accuracy Training loss
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Figure 5. Diagrams show the accuracy and loss function fluctuation during training time of the best three
ML models

Four trained models were used to evaluate
four new images, as shown in Fig. 6. The
regions between coastlines and shorelines are
combined with urban regions in inland areas,
such as white houses or bare land, in the
forecast findings from the random forest and
SVM models, particularly in the results of the
Random Forest models. It is clear that both
U-net-shaped models correctly comprehend
the area between two lines. They may divide
the area with low-growing vegetation that
looks blurry in the images from the foredunes.
However, the U-Net3+'s results still mixed a
bit between the regions on the coasts and the
sandy regions in the inland areas. The U-net
model's outcomes are the best when they have
the fewest mistakes. As a result, it was
decided to forecast coastlines and shorelines
along Vietnam's Center part in the following
section.
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3.3 Application of ML models
coastline/shoreline change assessments

for

The shoreline and coastline changes in the
northern path of Quang Nam province, Da
Nang City, and the estuary of Lai Giang River
(in Binh Dinh province) were successfully
retrieved from 2002 to 2021 based on the
512x512-U-Net model and DSAS tool
(Fig. 7). Consequently, the space between the
shoreline and the coastline reaches 30 to 40 m
in the study area. This distance is closer to the
Son Tra Peninsula (about 2-5 m). Based on
the features of the study area's erosion and
accretion during the last 20 years, the targeted
coast was divided into 1922 coastal sections.
The zones of erosion and accretion were
divided into seven levels, five of which were
associated with erosion (negative), one with
accretion (positive), and one with relative
stability.
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Figure 6. Four regions between the coastline and shoreline were interpreted based on the six ML models
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No | Color RM:c:::'z:'""f Emﬁio:“fﬂr“in" S e ‘t%] |
(miyear) evel Coastline | Shoreline | Coastline | Shoreline |
| | — =05 Accretion 58.52 68.55 49.33 51.79
2 | e— (-0.2)-0.5 Relative stability 29.84 13.73 25.16 11.57
3 | — (-0.2)(-1.5) Weak erosion 10.39 12.93 8.76 10.90
a (-1.51(-3.0) Moderate erision 14.48 14.21 12.21 11.97
5 (=3.0)-(-5.0) Strong erosion 236 3.57 1.99 3.01
6 | m— | (-5.0)-(-10.0} Very strong erosion 0.71 1.09 0.60 0.92
T | — <-10.0 Super strong erosion 2,33 4.55 1.96 383
Total 118.63 118.63 100.00 100,00

2. Shoreline changes

Figure 7. Rate of erosion and accretion in two case study areas in the Center path of Vietnam
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However, the coasts remained steady
throughout the study areas, while the
shoreline changes were more apparent. While
some shorelines reported an erosion process,
others, including those in Lien Chieu district
(Da Nang City) and Hoi An district (Quang
Nam province), observed an accretion trend in
Dien Ban district (Quang Nam province). The
two most extensive estuaries, the Cua Dai and
Nam O estuaries, show the most noticeable
disparities. Between 2002 and 2021, the
coastline in the Cua Dai area and Hoi An City
suffered substantial degradation of more than
100 m. In the meantime, Fig. 7's green hue
depicts several beaches along the accretion
process in Hoi An's northern regions. On these
coasts, eroding coastlines have been generated
due to the land uses of the traditional
settlements being modified for tourist
development. Due to the influences of river
and ocean currents, erosion is also seen in the
southern path of the Cua Dai estuary in both
coastline and shoreline-change predictions.

4. Discussions

4.1. Remote sensing data for coastline and
shoreline classification

This study used high-resolution remote
sensing images to locate 13 shorelines and
coastlines for ML model input. Early coastline
and shoreline identification studies focused on
separating the land from the sea using mid-
range resolution images (Boak and Turner,
2005; Yadav et al., 2017). Shoreline and
coastline analysis was not based on Landsat
images with 30 m resolution (Kumar et al.,
2020). Sentinel images can only distinguish
the coastline and shoreline from beach objects
with 10m precision (Veettil et al., 2020).
Fieldwork showed a 5-20 meter distance
between the shoreline and the coastline.
Sentinel-2 medium-range remote sensing
images cannot detect this distance. Seaside
residents said that only homes built without
casuarina trees might be affected by sea level
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rise during storms. Coastal erosion has not
affected most people who live 50-200 meters
behind casuarina trees for generations. Thus,
Landsat or Sentinel images alone cannot
determine coastline and shoreline changes,
significantly when storms raise sea levels and
cause coastal erosion. High-resolution GGE
image data with 0.7 m accuracy may aid real-
time shoreline and coast separation research.

According to traditional studies, shorelines
and coastlines require expert identification.
Coastal managers find shoreline assessment
difficult. Figure 2 shows how shorelines and
coastlines are sampled differently. Shorelines
were the wettest terrain around beaches. GGE
images show the day's highest tidal limit.

Meanwhile,  coastlines  were  more
complicated than shorelines. Their furthest
limit defines the coastlines where casuarina
trees were planted to protect locals and tourists
(Dang et al, 2021; Doody, 2005). The
outermost boundary of stable vegetation on the
image must define the coastline on sandy
coasts. Ipomoea pes-capraec grows low on
foredune sand beaches. Sometimes, this
ecosystem is sparse. It grows on foredunes in
fields outside of coastal casuarina forests. This
ecosystem slowly invades the sea on accretion
coastlines. Eroded coasts often eliminate this
ecosystem. The beach sometimes extends far
into the Casuarina forest.

Even high-resolution satellite images blur
this ecosystem. Visual recognition was
difficult for model input samples. This
environment typically ranges from 10-20 m,
1-2 pixels on mid-range remote sensing
images. Mid-range remote sensing data like
Landsat or MODIS images can identify the
Ipomoea pes-caprae ecosystem, extending up
to 100-200 m, except along stable and high-
accretion coastlines. GEP's high-resolution
data may solve this problem. High-resolution
data shows a transparent blue banded structure
between the beach and coastal casuarina
woods. Based on this structure, deep learning
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algorithms can locate coasts. The pixel-based
models cannot resolve this problem because
they do not have the spatial information to
identify it. Then the pixel-based models
misrepresented shoreline and coastline when
there was the texture or reflectance of similar
objects like bare land or white houses.

Shoreline  changes  affect  coastal
administration, planning, and development.
Erosion destroys beach space, which is vital to
tourism. Beach erosion destroys the
permanently stable ground. It could affect
coastal land management and people's lives.
Thus, long-term protective construction
should use coastal erosion or change to detect
storm-related sea-level rise. According to
local interviews, no significant changes have
been observed in the past several decades
besides urban  growth-induced coastal
changes. Thus, shoreline erosion or abrasion
research is inaccurate. However, tides and
satellite image acquisition do not affect
coastline erosion or abrasion evaluation.
Instead of shorelines, coastlines may benefit
coastal management and planning.

This study used the 512x512-U-Net model
to detect and evaluate coastline and shoreline
changes in some case studies in the Center
path of Vietnam. Van et al. found similar
coastline and shoreline changes in Da Nang
and Quang Nam (2013). Cham et al. (2020)
report a 0.62-16.27 meter tidal adaptation
variation along the Cua Dai coastline
(particularly in the southern path of the
research area A - Fig. 7). The results from the
UNet model also showed significant erosion
in the south (near Cua Dai with about
9-10 m/year), moderate erosion in the middle,
and a steady coastline in the north. Significant
coastline changes can be observed in some
estuaries, such as Thu Bon, Cu De, and Lai
Giang estuaries. Some regions under the
impacts of human-made constructions, such as
Da Nang Bay, along the Nguyen Tat Thanh
Road, make it difficult for the ML models to

detect coastlines and shorelines. High-
resolution remote sensing images may track
coastline and shoreline changes in the future.
Google Earth multi-temporal remote sensing
images showed 30 shorelines from 2002 to
2019. Spatial accuracy was 0.6m in this study.
Better remote sensing photos like Worldview
2, 3, or UAVs can improve spatial precision to
0.3 m. It should be updated to the ML model
in the future.

4.2. Models' comparison

In general, shorelines and coasts were
identified using four suggested model
structures. It is simple to translate the results
from the other algorithms into shorelines and
coasts in a regional manner. The shorelines
are the lines closest to the offshore area, while
the coastlines are the lines closest to the
mainland. It supports evaluating coastal
change by aiding in the precise and rapid
dissection of shorelines and coastlines (Boak
and Turner, 2005). When examined in further
depth, several other fundamental disparities
between the object-based and pixel-based
findings became apparent. For linear groups,
including coastlines and shorelines, the
object-based models' predictions often
coincided better with label data than pixel-
based models. The results show how superior
the U-shaped architecture findings are. The
pixel-based technique does not consider
spatial context, so they had more 'salt-and-
pepper" signals and noise. These findings
demonstrate  object-based  architectures'
potential to enhance current coasts and could
successfully resolve regions that could not be
converted into label data.

Compared to the model using the U-Net

structure, the model using the U-net3+
structure provides quite detailed output
results. Consequently, the supplementary

secondary information helped clarify the core
information. The line between primary and
secondary data is blurred because the weights

265



Tuan Linh Giang et al.

applied in the following phases are fixed.
Consequently, there is a general loss of
information when decoding. This problem
demonstrated that, even though artificial
intelligence models employing U-net3+
networks can scan databases more thoroughly,
it is not appropriate to use them to identify
coastlines and shorelines. These models
should be used to distinguish objects on
photos with high multispectral resolution
(above 1024x1024) or more excellent
resolution. However, a mighty processing
machine will be needed to employ these
models.

5. Conclusions

To sum up, 13 indicators were suggested
and utilized in this research to pinpoint
Vietnam's coastlines and shorelines. As a
result, the computer can learn to recognize
these two items on high-resolution satellite
images reliably and quickly. Based on trained
weights in ML models, the computer chose
appropriate indicators to distinguish the
border between coastlines and shorelines for
sandy coasts. With an image input size
of 512x512, the fundamental U-Net
appropriately comprehends the coastlines and
shorelines among the four suggested pixel-
and object-based structures. This model's
accuracy is at its highest-ever level, 98%.

The evaluation of coastline and shoreline
changes in coastal regions of Vietnam was
done successfully using the best U-Net model.
In the studied areas of Danang and Quang
Nam, the DSAS tool revealed that land use
changes in traditional villages for tourism are
eroding these coastlines. According to
predictions of coastline and littoral change,
river and ocean currents erode the southern
Cua Dai estuary. Therefore, it is fair to
consider the coastline for evaluating coastal
erosion brought on by the influence of sea
level rise during storms. At the same time, the
shoreline is helpful throughout the year for
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measuring tidal changes or the quick motions
of current waves.
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