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ABSTRACT

In geotechnical engineering, soil shear strength is one of the most important parameters used in the design and
construction of construction projects. However, determining this parameter in the laboratory is costly and time-
consuming. Therefore, the main objective of this work is to develop a new alternative machine learning approach
based on extreme learning machine (ELM) and Particle Swarm Optimization (PSO), namely PSO-ELM, for the shear
strength prediction of soil for the Hoa Vuong new urban project in Nam Dinh province, North Vietnam. For this
purpose, twelve soil parameters were collected on data from a survey of 155 soil samples to construct and validate the
proposed model. We assessed the model's performance using the root-mean-square error (RMSE), the mean absolute
error (MAE), and the coefficient of determination (R*). We compared the model's capability with five benchmark
models, support vector regression (SVR), Gaussian process (GP), multi-layer perceptron neural network (MLP-NN),
radial basis function neural network (RBF-NN), and the fast-decision tree (Fast-DT). The results revealed that the
proposed PSO-ELM model yielded the highest prediction performance and outperformed the five benchmark models.
It suggests that PSO-ELM can be an alternative method in estimating the shear strength of soil that would help
geotechnical engineers reduce the cost of construction.

Keywords: extreme learning machine, particle swarm optimization, soil, shear strength.

1. Introduction characteristics. In this context, a
determination of the shear strength of soil
plays a crucial role in geotechnical
investigations. The literature review shows
that soil shear strength is largely influenced
by several factors involved, such as the
plasticity index (PI), the liquid limit (LL), the
water content (/), and the content of clay

Due to urbanization, industrialization, and
rapid population growth, many projects have
been implemented in developing countries,
resulting in high pressure and significant
changes in soil conditions and their

*Corresponding author, Email: nhuvietha@humg.edu.vn (Kaya, 2009; Das et al-, 2011; Das and

219


mailto:nhuvietha@humg.edu.vn

Viet-Ha Nhu et al.

Sobhan, 2013). It can be generally determined
by geotechnical experiments, such as the
direct shear and the triaxial compression tests.
However, these tests are often time-
consuming and costly. Thus, previous studies
attempted to predict soil shear strength using
different approaches. Hatanaka and Uchida
(Hatanaka and Uchida, 1996) pointed out the
correlation between the parameters of shear
strength and the Standard Penetration Test
(SPT). For unsaturated soil, the soil property
was predicted by employing the relation
between the moisture content and the soil
suction using the characteristic of the soil-
water curve (Fredlund et al., 1994; Oberg and
Sillfors, 1997; Khalili and Khabbaz, 1998;
Toll and Ong, 2003; Sheng et al., 2008). In
addition, the shear strength could also be
estimated by multiple regression analysis
(Lebert and Horn, 1991).

In recent years, machine learning and
artificial intelligence (AI) approaches have
been popularly used in various fields,
including civil engineering, particularly in
geotechnical engineering (Yoo and Kim,
2007; Yagiz et al., 2009; Wu and Chau, 2013;
Taormina and Chau, 2015; Bui et al., 2018;
Faizollahzadeh Ardabili et al., 2018; Yaseen
et al., 2019; Banan et al., 2020; Fan et al.,
2020). Besides, recently, some new meta-
heuristics such as Slime Mould Algorithm
(SMA), Heap-Based Optimizer, and Harris
Hawks Optimization (HHO) have been
employed to solve many problems in civil
engineering (Bui et al., 2019; Askari et al.,,
2020; Li et al., 2020; Moayedi et al., 2021;
Tiachacht et al., 2021). For example, SMA
algorithm was employed to accurately predict
the location and damage level of the frame
structure (Tiachacht et al., 2021). Besides,
HHO algorithm has been applied in estimating
landslide problems as well as the bearing
capacity of the foundation (Bui et al., 2019;
Moayedi et al., 2021). Regarding estimating
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the compressive strength of soil, Das et al.
(2011) used the AI method to estimate the
compressive strength of cement-treated soil,
whereas Gunaydin et al. (2010). applied the
artificial neural network (ANN) technique for
computing the compressive strength of
artificial soil. Gunaydin et al. (2010) also
revealed that the model using ANN produced
a Dbetter performance prediction than
traditional statistical models for estimating the
compressive strength of the soil. Das and
Basudhar (2008) used ANN to estimate soil's
residual friction angle (i.e, clay). In addition,
the ANN method was also employed to
predict the compressive strength of clayed soil
stabilized by geopolymer (Mozumder and
Laskar, 2015). Recently, the shear strength
parameters of weak soil were estimated using
different methods of machine learning such as
the ANN and Classification And Regression
Trees (CART) models (Kanungo et al., 2014),
the models using Particle  Swarm
Optimization based Adaptive Neuro-Fuzzy
Inference  System  (PANFIS),  Genetic
Algorithm based Adaptive Neuro-Fuzzy
Inference System (GANFIS), the ANN, and
the SVR (Pham et al., 2018).

More recently, ELM (extreme learning
machine) is a speedy-performing method,
which was first introduced by Huang et al.
(2006) and has been extensively employed in
predicting and evaluating slope stability (Liu
et al., 2014). It has also been used to estimate
the resilient modulus of subgrade soils (Pal
and Deswal, 2014). Numerous studies have
used the ELM technique for various domains,
such as landslide susceptibility modeling
(Vasu and Lee, 2016), flash flood
susceptibility mapping (Bui et al., 2019), the
prediction of horizontal load-bearing capacity
for piles (Muduli et al., 2013), and the
estimation of the compressive strength for
carbonated rocks (Liu et al., 2015). Based on
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the above literature, it can be accepted that
ELM could apply and solve many problems.
This is because, as reported, ELM could
overcome some disadvantages of ANN,
Support Vector Machine, or Random Forest,
such as backpropagation and its variant, the
Levenberg-Margquardt (Huang et al., 2006).
Besides, it was reported that ELM can be
thousands of times faster than traditional
algorithms and achieve SLFN (single-hidden
layer feedforward neural network) with better
generalization performance (Huang et al,
2006; Pacifico and Ludermir, 2012).
Furthermore, ELM also could avoid many
difficulties, such as stopping criteria, learning
rate, learning epochs, and local minima
(Huang et al.,, 2006; Cao et al., 2011).
However, it was indicated that ELM tends to
require more hidden neurons than traditional
algorithms in many cases (Huang et al., 2006),
which may cause ELM to respond slowly to
unknown data (Pacifico and Ludermir, 2012).
PSO (Particle swarm optimization) is a
heuristic global optimization technique for
solving nonlinear problems (Eberhart and
Kennedy, 1995; Cheng et al., 2007). The PSO
algorithm is commonly used in numerous
fields of civil engineering because of its
advantages compared to other optimized
algorithms (Bui et al., 2018; Hajihassani et al.,
2018). Prior studies have shown that the PSO
method has been usually employed in a wide
range of geotechnical engineering
applications, for example, the analysis of
slope stability, soil, and rock mechanics as
well as pile foundation engineering
(Armaghani et al., 2014; Hasanipanah et al.,
2016; Sharma et al., 2017; Hajihassani et al.,
2018). For slope stability, PSO has been
successfully applied to computing the safety
factor of potential slip surfaces and finding
the critical slide surface of 2D problems,
which could be a potential candidate for

solving 3D problems (Kalatehjari et al.,
2014). For the applications of the PSO
algorithm in pile and foundation design and
shallow foundation, it can be accurately used
in predicting the capacity of rock-socketed
piles, the behavior of load-deformation of
axially loaded piles, and the single pile (Zhao
and Yin, 2010; Ismail et al., 2013; Armaghani
et al., 2014). In the case of rock mechanics,
the properties of rock were estimated using
the PSO method. For example, Babanouri et
al. (2013) employed the PSO technique and
the multi-layer perceptron neuron networks to
predict the crack length of unevenness profiles
(D) and the standard dimension of rocks. In
addition, the unconfined compressive strength
of rock was also estimated using the PSO
approach (Mohamad et al., 2015; Momeni et
al., 2015; Mohamad et al., 2018). For the case
of soil mechanics, the characteristics of soil
erosion, properties of unsaturated soils, and
the interaction of soil-structure, as well as soil
parameters were predicted using PSO
algorithm (Yunkai et al., 2010). From the
above discussion, it is known that PSO has
been popularly employed in many problems
mentioned above because PSO has some
advantages concerning evolutionary
algorithms (Eberhart and Kennedy, 1995; Han
et al, 2013); for instance, PSO has no
complicated  operators as evolutionary
algorithms as it has fewer parameters that
need to be adjusted (Ludermir and De
Oliveira, 2013).

Due to the advantages of PSO, some
previous studies have tried to combine PSO
and ELM (Figueiredo and Ludermir, 2014;
Du et al., 2020; Zhu et al., 2020). It was found
that the combination of PSO and ELM could
enhance the generalization capacity of the
SLFNs (Eberhart and Kennedy, 1995).
Besides, PSO-ELM has been employed in
predicting landslide displacement and daily
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evapotranspiration. They concluded that PSO-
ELM outperformed compared to single
machine learning, such as ELM alone and a
hybrid model of PSO-SVM (Du et al., 2020;
Zhu et al., 2020). Although the hybrid model
of PSO-ELM has some advantages and
successful application in the geotechnical
engineering field, until now, no study of
ELM-PSO for estimating the parameters of
soil's shear strength has been conducted
carried out. Thus, this work aims to fulfill this
gap in the present literature by inspecting and
verifying the potential use of a combination of
the ELM and the PSO methods for the
prediction of the shear strength of soil for a
case study of a real-life project of the Hoa
Vuong new urban area at the Nam Dinh
province, north of Vietnam.

The structure of this study is arranged as
follows: the second section reviews the
background of algorithms used in this study,
including ELM and PSO. The third section
describes the study site and dataset collection,
followed by the presentation of the proposed
PSO-ELM model for estimating the soil's
shear strength. The next section shows the
results and discussion, followed by several
concluding remarks in the final section.

2. Mathematical
algorithms used

background of the

2.1. Extreme Learning Machine

The soil shear strength can be expressed by
the function Su = f (y, W, PL, PL, e, etc.). This
section depicts the extreme learning machine
(ELM) method to determine the shear strength
of the collected soils. The ELM was first
introduced by Huang et al. (2006) and has
been appealed to much more attention from
various applications. It is carried out as single-
layer feedforward networks (SLFNs) that can
be employed as an assessor for the regression
problem.
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There are three layers in the ELM, namely
the input layer, output layer, and hidden layer.
In the ELM, for the hidden layer, the weight
of this layer (i.e., {;; shown in Fig. 1) can be
assigned arbitrarily; therefore, we only need
to consider the weights (6 shown in Fig. 1) of
the output layer and optimizing these weights
(Huang et al., 2011). This optimization
technique is implemented by employing the
generalized inverse proposed by Moore-
Penrose (Martinez-Martinez et al., 2011).
Thus, we can infer that the ELM can be
considered a simple theory and rapid
technique for estimating the shear strength
parameters for soil.

For a specified training dataset (x; t,), x; =
[Xila Xi2y «eey Xin]T e R"and ti= [til, to, ..., tim]T
e R", the output of a typical SLFNs
containing L hidden nodes to predict the soil
shear strength as follows:

L
o, =Zaj,q(g’j.xi +cj) d=1,2,.,N (1)
=

Where ¢(...) is the activation function,
G -G o . Gl is the weight vector, c;
represents the threshold of the hidden node j",
S =[61, G2 ..., é}m]T means the weight vector
that connects the /” hidden node to the output
node, x; is the regularized variable at the i
node, o, is the estimated output. The
aforementioned N formula can be expressed
simply as O = Hd.
[P(é,1~x1+cl)] [p(gL'xl+CL):|

i : @

[p(§1~x.N+C]):| [p(é“L,x.N+cL)J -

5=[5/...5] ] and 0=[0]....0] ]
where H is considered as the matrix of hidden
output. If the sum of neutrons of the hidden
layer L = N (sum of training dataset), with V
¢ and c, the error of ELM can be
approximately equal to zero error (Huang et
al.,, 2006), in other words iHOt—’iHﬂ) , the

T

Nxm

standard SLFNs will be written as below.
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L
0, :Z;q..q(g,.x,. +c,)=t i=1,2,.,N (3)
J=

As aforementioned, the input weight and
threshold are randomly allocated in ELM,
then the output matrix of the hidden layer and
output weights are calculated. This algorithm
solves the obstacle related to adjusting all
parameters, which cannot be tackled in other
conventional learning techniques (Vasu and

Lee, 2016).
Because the hidden layer (node)
parameters are arbitrarily allocated, the

training process in SLFNs problem can be
converted to a problem to search the output
weights of the network that can be resolved
using a least-square technique as the
following:
S=H'T (4)

Where H' is called as the Moore-Penrose
inverse matrix of H, and T denotes the goal
value matrix.

The structure of ELM for predicting shear
strength is expressed in Fig. 1.
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Figure 1. Structure of the ELM for the shear
strength prediction

2.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a
powerful  optimization technique used
popularly for optimization problems in soil
mechanics (Cheng et al., 2007; Bui et al.,

2018; Pham et al., 2018). This method is
constructed to imitate simplified social
models and swarm theory for finding an
optimal solution in a given space (Eberhart
and Kennedy, 1995; Poli et al., 2007).

PSO starts with a random group of
particles, and each particle plays a specific
approach to solving the problem. It comprises
a cluster of particles, in which each particle
position is governed by the most surrounding
optimal position when each individual moves
(Awad et al., 2012). The fitness of the
particles' position was validated using the
RMSE (root-mean-square error) and MAE
(mean absolute error) on the training set. In
detail, the lower RMSE or MAE shows the
more accurate model. The individual position
of a particle is updated concerning its present
position and its velocity in each iteration (Qi
et al, 2018). The following swarm was
created based on the updated position of
particles that took into account the best
position of the swarm (called Gbest) and each
best position of the particle (Pbest) in former
times (Qi et al., 2018). The position and
velocity of particles are determined by the
following equation:

ViHI =wl/ +Clri(pll;est,i =Y +ern (g;)est,i_ ) (5)

t+1 _ vt t+1 6
Y=Y+, ©
Where V' and Vl,’+l are velocities at

repetition ¢ and ¢+ of particle i, respectively;
Y and Y'*' denote positions at iteration ¢

and ¢+ of particle i; ¢; ¢, and w represent the
social effect parameter, inertia parameter, and
cognitive parameter, respectively; r; and r;
symbolize random numbers ranging [0, 1];

pgem and g;esz,i are the best location of

particle i and the best location formed by
particles, respectively.

223



Viet-Ha Nhu et al.

The particle and swarm best positions at
the next iteration are determined as following
equations to minimize problems (Qi et al.,
2018).

Y, f(Y,vm) < f( Pf,m,i) @)

pltaest,nf(YiHl) 2 f(p}t;est,i)

g =argmin £ (piis o )onf (Picns ) S (8her )} ®)
Where ns represents the sum of particles

that belong to the swarm, the PSO algorithm
is described using a flowchart shown in Fig. 2.

t+1
best,i —

[ Intitialization ]

'

Calculate fitness for each particle

Yes

Assign current position as

Keep previous Pbest

new Pbest
[ I
Assign the optimum Pbest postion as Gbest

‘ Calculate veloctiy for each particle ‘

‘ Update position of paricles |

Maximum
iteration?

[ Select the optimum solution ]

Figure 2. Framework of the PSO algorithm
(Qietal., 2018)

3. Study site and data used

The study site covering an area of 55.4 ha
is called the Hoa Vuong new urban housing
project located in Nam Dinh City, around
90 km to the southeast of Hanoi capital
(Fig. 3). This urban housing project was
selected as a case study because this project is
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located in the Red River delta (Hong river
delta), which is known as one of the most
extensive delta plains in Vietnam. The
geological of this region is covered mainly by
the alluvial clay layer (containing soft clay).
The geological profile of this area can
represent the typical geological condition of
the Red-river Delta in the North of Vietnam.
In this urban housing project, about 48.12%
and 16.99% of the total area are used for road
systems and public utilities, respectively,
whereas approximately 34.89% is used for
housing. Total investment is estimated at
around 65.2 million US$. The urban housing
connects to Hanoi capital and Hai Phong city
via national road 21 and national road 10,
respectively.

The geotechnical engineering survey was
conducted for the project area of 55.4 ha to
derive the soil characteristics under the
surface. Accordingly, soil samples for the
study site were collected using the boring
method (Tien Bui et al., 2019). Slurry and
metal tubes were adopted to prevent boreholes
from collapsing (Bui et al., 2018). For this
project, 6 boreholes were drilled for the
project. The total drilling length was 294.5 m,
whereas the highest and lowest drilling depths
were 55.5 m and 45 m, respectively. As a
result, 155 samples at depths varying from 1.6
m to 55.5 m below the surface were obtained.

In the next step, three laboratory tests,
including the SPT (Standard penetration test),
the CPT (Cone  penetration  test)
(Schmertmann, 1978), and the VST (Vane
shear test) (ASTM, 2016) were conducted to
derive the physical properties of these soil
samples, which were used for the assessment
of the geological conditions of the
construction site for the project area. As a
result, the soil shear strength (SS) was
obtained for each sample and used as the
output variable of the machine learning model
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in this research. A total of twelve parameters
consisting of Depth of sample (IP1), sand
(IP2), Loam (IP3), Clay (IP4), moisture
content (IP5), wet density (IP6), dry density
(IP7), void ratio (IP8), liquid limit (IP9),
plastic limit (IP10), plastic index (IP11), and
liquid index (IP12) were used as inputs of the

model. These twelve soil parameters are
known as the most important factors that
directly affect the soil's shear strength. In
addition, previous studies also used these soil
parameters for modeling to estimate the shear
strength of soil (Bui et al., 2018; Tien Bui et
al., 2019).
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Figure 3. Location of the Hoa Vuong Township Project (North Vietnam)
An example of the data used in this shown in Table 2, and the frequency

analysis is shown in Table 1. Statistics of the
soil data used for the current project are

distribution of the soil variables is depicted in
Fig. 4.

Table 1. Example of the soil data of the Hoa Vuong new urban project used

Sample IP1 1P2 IP3 1P4 IP5 IP6 1P7 1P8 Ip9 | 1IP10 | IP11 | IP12 y
1 1.8 28.0 | 41.0 | 31.0 | 599 | 1.55 | 0.97 | 1.775| 56.7 | 36.5 | 202 | 1.16 | 0.100
2 3.8 55.0 | 31.0 | 140 | 547 | 1.58 | 1.02 | 1.634 | 48.5 | 349 | 13.6 | 1.46 | 0.093
3 2.0 | 260 | 40.0 | 34.0 | 629 | 1.58 | 0.97 | 1.794 | 55.5 | 33.5 | 22.0 | 1.34 | 0.105
153 523 | 72.0 | 19.0 9.0 | 214 ] 2.01 | 1.66 | 0.619 | 257 | 20.0 | 5.7 0.25 |0.434
154 43.8 | 72.5 | 20.0 7.5 [ 23.0 | 1.93 | 1.57 | 0.708 | 27.7 | 220 | 5.7 0.18 | 0.457
155 553 | 74.0 | 18.0 80 | 226 | 1.89 | 1.54 | 0.738 | 28.7 | 220 | 6.7 0.09 | 0.450
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Table 2. Descriptive statistics of the soil data of the Hoa Vuong new urban project

Soil parameter Coding Lowest Highest Mean Median

Depth of sample (m) IP1 1.6 553 25.3 25.8

Sand (%) 1P2 12.5 75.5 41.5 37.8

Loam (%) IP3 17.5 49.0 33.8 35.5

Clay (%) P4 5.0 40.0 24.7 26.5

Moisture content (%) IP5 214 62.9 38.8 37.7

Wet density (g/cm’) IP6 1.55 2.01 1.74 1.74

Dry density (g/cm’) IP7 0.97 1.66 1.26 1.27

Void Ratio IP8 0.619 1.794 1.163 1.123

Liquid limit (%) IP8 25.7 64.6 43.0 42.8

Plastic limit (%) IP10 20.0 39.7 26.4 25.2

Plastic Index (%) IP11 5.5 29.4 16.7 16.6

Liquidity index 1P12 0.1 1.46 0.71 0.74

Shear strength (kG/cm?) y 0.09 0.50 0.28 0.29
30 30
16 25 25
§ 12 = 20 > 20
% 8 § 15 a§ 15

(ol =3 (=8
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5 5
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Figure 4. Frequency distribution of the soil variables in this project
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4. Proposed PSO-ELM for the prediction of
Soil Shear Strength

This section describes the implementation

2. Configuration of ELM model

of the PSO-ELM method employed for
predicting the soil shear strength in this
project. The concept of the proposed PSO-
ELM model is shown in Fig. 5.

Weight matrix
g _ Wiz Wi
£ 3 " | T
g W2 WL
El o, 0L:|: BA
s| B
E e @y Parameter (kG/ e ) I;Ilumzer o: E?;Idparamters
Py .
o| = Input layer ~ Hiden layer Output layer b - umber ot idden neurons
[=H o
[
§ § 3. Optimization of IW & BA using PSO S
-~ 3 Generation of an initial swarm < ‘Generate initiation
Determination of position and N weight matrice (IW & BA)
velocity of each particle in the swarm W
= _ , & Trained PSO-ELM model|
S Update the position and velocity BA
£ Determine the best position of the swarm
5
g No v
° 5. Stopping condition < I 4. Fitness evaluationl
Model
validation _ | 6. Final PSO-ELM model |

Figure 5. Diagram of the proposed PSO-ELM in this project

4.1. Data preparation

The soil dataset was rescaled, ranging from
0.01 to 1.00, using Eq. 9 (Rafiq et al., 2001) to
preclude the model from being biased due to
significant differences in the magnitudes of
the soil variables.

IP—IPmin
TPoorm = IPmax—IPmin ©

Where IP,,. is the rescaled value; IP is the
original value of the soil variable; 1P, and
IPin are the maximum and minimum values
of the original soil dataset.

In the current work, a total of 155 soil
samples were divided into two parts, of which
70% was used for the training phase to

construct the model, whereas the remaining
data (30%) was employed for the validation
phase to test the model. We chose this ratio of
70:30 for the training and testing of the
models based on the authors' experience and
similar studies carried out by other researchers
to obtain the best performance of the models
(Nguyen et al., 2021).

4.2. Designing the ELM structure

As the structure and weights of the ELM
model control the model performance,
therefore, they must be properly determined
beforehand based on the study area data. A
total of 12 soil variables were considered as
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the inputs, whereas the soil shear strength
(SS) was the output. It is noted that the size of
input weight (IW) and bias (BA) matrices is
dependent on the number of hidden neurons

(L) used. Thus, we used a trial-and-error test
with L = 10 showed the highest performance
in terms of the mean absolute error (MAE)

(Eq.11).

Liquid limit (%)
Plastic limit (%)
Plasticity index (%)

(kG /cm?)

Soil paramaters Coding Input layer Hidden layer Output layer
r = 1 ~ 1 ( 1\ r Y = ]
ow
Depth of sample (m) = |p, = w, L
Sand (%) > p, > W, N {1{7; IP - Input parameter
0 NS 27 IW : Input weight
Loam (%) > IR W ORRRESIESLZIHIL OW: Output weight
R\ 5L = :
Clay (%) > Py > Wy R 7/ b :Bias
Moisture content (%) —» IR, = Ws
Wet density (g/cm®) == 1 == w,
Dry density (g/cm3) —= P, = W,
Void ratio > Py = 1w, Shear strength
—> -
- —-
- -5
- —

Liquidity index (%)

Figure 6. The PSO-ELM model in this research

Consequently, the structure of the ELM
model consisted of 12 input neurons, 10
hidden neurons, and 01 output; therefore, the
size of 12x10 was used for IW while its
corresponding number was 10x1 used for the
OW. These weights were also determined and
optimized using the PSO algorithm described
in the next step. Figue 6 shows the structure of
the PSO-ELM model used in this study.

4.3. Optimizing the ELM model using PSO

Once the ELM structure has been
determined, PSO is adopted to train the ELM
model. The training process aims to find the
optimized values in the two weight matrices
that minimize MAE (Eq.11). In the current
study, we converted and combined the IW and
the bias matrices into a new matrix with a size
of 130x1 and assigned this dimension to the

228

coordinate of the particles in the swarm. Each
particle can be a solution for the PSO-ELM
model. Thus, all swarm particles fly in
searching space to find their best locations
where the most petite MAE is attained. It is
noted that the original ELM algorithm
computes the OW. Once the best location of
the swarm has been found, the coordination
values of this location are converted to values
of the IW and the bias matrices, and the final
PSO-ELM model is trained.

4.4. Performance evaluation

The performance of the final PSO-ELM
model in this study was evaluated using the
root-mean-square error (RMSE), the mean
absolute error (MAE), and the correlation
coefficient (R?) (Mohammadzadeh et al.,
2014; Pham et al., 2017; Hoa et al., 2019).
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These evaluation criteria are known as good
indicators and are usually used in many

previous studies to assess the model's
performance.
RMSE = lZ(SSoi—SSmi)z (10)
i=l1
1 n
MAE =—>(SSo,—SSm,) (11)
nig
D" (SSo, —SSm,)’
R?=1-1L (12)

>"(SSo, —SSo)’
i=1

Where $So and SSm are the output of the
actual and predicted value, respectively; SSo
is the measured mean values of the project; n
is the total soil samples in the project.

5. Results and discussion
5.1. Training and validation results

The prediction results of the PSO-ELM
model used for estimating soil shear strength
are shown in Figs. 7 and 8. As can be seen,
the model performance was tested and
evaluated on both the training and the
validation datasets using standard metrics.
Based on the experimental outcomes
measured by the RMSE and the MSE values,
it was observed that the RMSE values of the
proposed model in the training and the testing
phases were 0.0145 and 0.0242, respectively.
These numbers were lower than the standard
deviation values of the training dataset
(0.0146) and the validation dataset (0.0244),
showing that the PSO-ELM model had a good
prediction performance.
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Figure 7. Performance metrics of the proposed model on the training dataset: (a) Measured and computed
value; (b) Error magnitude; and (c) Error distribution

Additionally, R* and MAE values of the
proposed PSO-ELM model were 0.981 and
0.0108 for the training phase, whereas these
corresponding numbers were 0.952 and

0.0197 for the testing phase, indicating that
the novel model proposed in the current
work had a high precision and performed
well.
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Figure 8. Performance metrics of the proposed model on the validation dataset: (a) Measured and
computed value; (b) Error magnitude; and (c) Error distribution

5.2. Model comparison

As the purpose of this work was to predict
the shear strength of soil, the usability of the
proposed PSO-ELM model should be
assessed and confirmed in its effectiveness.
Therefore, we compared five machine
learning models, i.e., the SVR, the GP, the
MLP-Neural-Nets, the RBF-Neural-Nets, and
the Fast-DTree. The results in Table 3
revealed that all six machine learning models
performed satisfactorily using the training and
validation datasets. Analysis of the R’, the
RMSE, and the MAE values for the soil shear
strength prediction in the training dataset
showed that the PSO-ELM model had the
highest performances (R> = 0.981, RMSE =
0.0145, MAE = 0.0108), followed by the Fast-
DTree model (R* = 0.938, RMSE = 0.0262,
MAE = 0.0169), the MLP-Neural-Nets model
(R*=0.932, RMSE = 0.0296, MAE = 0.0224),
the GP model (R*= 0.926, RMSE = 0.0312,
MAE = 0.0250), and the SVR model (R*> =
0.870, RMSE = 0.0586, MAE = 0.0507),
whereas the RBG-Neural-Nets model had the
minor performance (R*> = 0.771, RMSE =
0.0503, MAE = 0.0411). Remarkably, a
similar trend was observed using the
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validation dataset, showing that the PSO-ELM
model yielded the best prediction accuracy
(R*=0.952, RMSE = 0.0242, MAE = 0.0197).
It is noticeable that the Fast-DTree model
achieved the second-best method in terms of
the R*, the RMSE, and the MAE values (R*=
0.946, RMSE = 0.0260, MAE = 0.0171) while
the RBF-Neural-Nets model had the lowest
performance (R2 = 0.765, RMSE = 0.0538,
MAE = 0.0409. The results also showed that a
combination of ELM and PSO metaheuristic
produced significantly better accuracy than
the MLP Neural Nets and the RBF-Neural-
Nets in the validating phase, thus, reflecting
that the proposed PSO-ELM method helps
construct the machine learning model for the
prediction of the shear strength of soil at the
study area. This study's results are consistent
with previous studies using the hybrid model
of PSO-ELM in estimating landslide
displacement and daily evapotranspiration
(Du et al.,, 2020; Zhu et al.,, 2020). They
indicated that the performance of PSO-ELM
model was better than other single models,
such as ELM alone. Overall, the experimental
results suggested that six machine learning
models performed well and can be used to
estimate soil shear strength in this project.
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Table 3. RMSE, MAE, and R? of the proposed PSO-ELM model and the five benchmark models

Regression model Training dataset ; Validation dataset ;
RMSE MAE R RMSE MAE R

PSO-ELM 0.0145 0.0108 0.981 0.0242 0.0197 0.952
SVR 0.0586 0.0507 0.870 0.0653 0.0568 0.883
GP 0.0312 0.0250 0.926 0.0385 0.0318 0.899
MLP-Neural-Nets 0.0286 0.0224 0.932 0.0248 0.0199 0.850
RBF-Neural-Nets 0.0503 0.0411 0.771 0.0538 0.0409 0.765
Fast-DTree 0.0262 0.0169 0.938 0.0260 0.0171 0.946

5.3. Accuracy assessment of the shear
strength prediction

Figures. 9 and 10 show the scatterplots of
predicted versus observed soil shear strength,
indicating the accuracy of the predicted soil
shear strength by six machine learning methods
at the study site. As can be seen, the proposed
PSO-ELM yielded the highest prediction
performances for the shear strength of soil in
the study area using the training and validation
dataset with R’ = 0.981 and R* = 0.952,
respectively, followed by the Fast-DTree
model with R* = 0.938 for the training dataset

and R* = 0.952 for the validation dataset. This
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result agreed well with the results of previous
studies in estimating landslide displacement
and daily evapotranspiration using the hybrid
model of PSO-ELM (Du et al., 2020; Zhu et
al., 2020). This is because the combination of
PSO and ELM could enhance the
generalization capacity of SLFNs (Figueiredo
and Ludermir, 2014). Four remaining machine
learning  algorithms achieved acceptable
prediction  performances regarding the
correlation coefficient, ranging from 0.771 to
0.932 for the training phase, whereas these
corresponding values were between 0.765 and
0.899 for the testing phase.
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Figure 9. R* of the models on the training dataset: a) the proposed PSO- ELM model; b) the SVR model;
¢) the GP model; d) the MLP-Neural-Nets model; e) the RBF-Neural-Nets model; f) the Fast-DTree model
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Figure 10. R* of the models using the validation dataset: a) the proposed PSO- ELM model;
b) the SVR model; ¢) the GP model; d) the MLP-Neural-Nets model; ¢) the RBF-Neural-Nets model;
f) the Fast-DTree model

Remarkably, all machine learning models
show reasonable ability in predicting the shear
strength of soil exceeding 0.46 (kG cm™) (Fig.
10). In this range, the proposed PSO-ELM
had a higher performance than other machine
learning models, followed by the Fast-DTree
model. It is noted that this number is slightly
lower than that of a case study in South
Vietnam reported by (Tien Bui et al., 2019). It
is likely due to the significant differences in
soil properties from North to South Vietnam.
Because in general, soil's shear strength
depends on many factors, such as soil type
(including particles and minerals of soil),
water content, and other conditions. However,
this number is similar to the predicted soil
compression coefficient reported by (Bui et
al., 2018), as this study was also conducted in
an urban area.

Determining soil shear strength is essential
in designing geotechnical structures and

232

constructions. However, conducting lab
experiments for computing soil shear strength
is fairly time-consuming and requires a
considerable cost apparatus (Vanapalli et al.,
1996). Therefore, the development of a new
machine-learning solution for the prediction of
the shear strength of soil is an essential task in
this context. Nonetheless, few attempts have
been carried out to predict soil shear strength
using  state-of-the-art ~machine learning
techniques (Samui, 2008; Samui and Sitharam,
2008; Chou et al., 2016). More importantly, no
universal method is available to predict soil
shear strength. Therefore, we performed and
compared the six advanced machine learning
approaches, i.e., the PSO-ELM, the SVR, the
GP, the MLP-Neural-Nets, the RBF-Neural-
Nets, and the Fast-DTree models for the
estimation of the shear strength of soil.

The machine learning techniques used in
the current work, such as the PSO-ELM and
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the Fast-DTree models, are likely more
advanced approaches than the remaining
models in predicting the shear strength of the
soil. However, the accuracies of these models
mainly depend on the data quality (Mair et al.,
2000). In geotechnical problems, parameters
used in a model are controlled by different
trials based on the number of samples taken,
resulting in the bias of the models used. In this
paper, six machine learning models perform
well, showing satisfactory performance. The
overall accuracies might be improved by
using more sample data because these models
are likely to be more regressive (He and
Garcia, 2009) in dealing with imbalanced
dataset (Krawczyk, 2016). Additionally, the
performance of the selected combination of
inputs can vary on the models' results, which
should be considered for future studies.

It should be noted that soil shear strength
prediction remains a challenging problem
because of the inherent variability of the soil
itself. Soils are composed of various
complicated materials and parameters,
resulting in predictive difficulty to their
properties (Minasny and Hartemink, 2011).
Some properties
laboratory experiments. However, several
factors could affect the results, such as
equipment, experimental conditions,
experience of testers, etc. In this project, we
developed and verified a mnovel hybrid
machine learning model, PSO-ELM, for the
prediction of the shear strength of soil with
satisfactory performances. Thus, the proposed
machine learning technique should be used
and tested in other study areas in future
studies to support geotechnical engineers for
construction projects in urban regions.

can be obtained from

6. Concluding remarks

The current work proposed a novel PSO-
ELM machine learning model and compared

its prediction performance with the five
machine learning models, namely, the Fast-
Dtree, the MLP-Neural-Nets, the GP, the SVR
and the RBF-Neural-Nets for predicting the
shear strength of soil in a case study at Hoa
Vuong new urban project, Vietnam. The
experimental results reveal that all machine
learning  models  produce  satisfactory
performance, and the soil shear strength
prediction results are greatly influenced by the
model used. Compared with the benchmark
models, the proposed PSO-ELM model
achieves the best prediction performance,
showing that the PSO-ELM model is a
valuable tool for predicting soil shear
strength.

This study demonstrated that a novel
machine learning (ML) model based on a
combination of the PSO and the ELM
algorithms might provide an effective
alternative tool for predicting soil shear
strength. Although the PSO-ELM model
demonstrated high prediction performance,
this method investigated to the specific soil
parameters as the inputs in the compiled
database used in this study. Further studies,
therefore, should consider more soil
parameters using novel machine learning
algorithms. Besides, the major demerit of the
proposed model is the determination of the
search space of the parameters in PSO, which
restricts the position of particles. Due to no
thumb regime existing; thus trial-and-error
tests must be conducted to find the most
appropriate search space. Another
disadvantage is that PSO only incorporated
with ELM was discovered; therefore, the
model's performance could be improved in a
newer alteration of PSO or other metaheuristic
optimization algorithms examined. Finally,
the size of the dataset of this study is still
relatively small; as a result, more case studies
of shear strength tests of soil need to be
collected to improve the generalization of the
machine learning-based model. Despite the
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limitations, the results of the current work
highlighted the potential use of the hybrid
swarm intelligence  optimized extreme
learning machine for predicting soil shear
strength that would help geotechnical
engineers reduce the construction cost in
urban areas.
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