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ABSTRACT

Precise streamflow prediction is crucial in the optimization of the distribution of water resources. This study
develops the machine learning models by integrating recurrent gate unit (GRU) with bacterial foraging optimization
(BFO), gray wolf optimizer (GWO), and human group optimization (HGO) to forecast the streamflow in the Tra
Khuc River, Vietnam. For this purpose, the time series of daily rainfall and river flow at Son Giang station from 2000
to 2020 were employed to forecast the streamflow. The statistical indices, namely the root mean square error, the
mean absolute error, and the coefficient of determination (R?), was utilized to evaluate the performance of the
proposed models. The results showed that the three optimization algorithms (HGO, GWO, and BFO) effectively
enhanced the performance of the GRU model.

Moreover, among the four models (GRU, GRU-HGO, GRU-GWO, and GRU-BFO), the GRU-GWO model
outperformed the other models with R? = 0.883. GRU-HGO achieved R? = 0.879, and GRU-BFO achieved R?=0.878.
The results of this study showed that GRU combined with optimization algorithms is a reliable modeling approach in
short-term flow forecasting.

Keywords: machine learning, streamflow, gate recurrent unit, bacterial foraging optimization, gray wolf
optimizer, human group optimization.

1. Introduction 2021; Cho and Kim, 2022). Streamflow
forecasting models can be regrouped into
physics-based and data-based. The first group
includes such models as soil and water
assessment tool (Easton et al., 2008; Bieger et
al., 2014), Mike Nam (Ghosh et al., 2022;
Nannawo et al., 2022), variable infiltration
capacity (Tesemma et al., 2015; Wang et al,,
2019), the topography-based hydrological
model (Gumindoga et al., 2011; Gumindoga
et al.,, 2014). These models simulates the
physical process of runoff formation,
configured  with  various  parameters

*Corresponding author, Email: nguyenhuuduy@hus.edu.vn phySically' They can generate predictions

The streamflow process is exceptionally
complex and essential in the hydrological
cycle (Dehghani et al., 2020; Ahmed et al.,
2021; Samanataray and Sahoo, 2021). It has
been affected by various elements such as
Precipitation, evaporation, and anthropogenic
activities (Parisouj et al., 2020). Accurate
streamflow forecasting plays a vital role in
agricultural development, irrigation system
layout, hydropower generation, flood control,
and drought management (Ghimire et al.,
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through the evaluation and simulation of the
hydrological cycle. The wuse of physical
parameters allows us to comprehend the
different  hydrological  processes  with
relatively high spatial and temporal resolution
(Lane et al., 2019; Khosravi et al., 2021).
Although considerable effort has been made
to improve the precision of physics-based

models, they have been restricted by
uncertainties  in  datasets, = parameter
heterogeneity, = and  non-linearities  in

generating streamflow. Furthermore, these
models require large amounts of reliable data
(Adnan et al., 2021; Rahimzad et al., 2021;
Hunt et al., 2022). This presents difficulties
when applying the models in areas with
limited data. The establishment of these
models is also complicated and time-
consuming. Therefore, these approaches must
be replaced by data-based models, particularly
in global warming.

Data-based  models in  streamflow
prediction have been widely applied in recent
years. These models can present the
mathematical relationships  (linear and
nonlinear) between the streamflow and its
explanatory factors to predict streamflow
effectively (Seo et al., 2015; Samanataray and
Sahoo, 2021). These models can be regrouped
into two categories: statistical and machine
learning. Statistical models are based on the
dataset's structure, including a long-term
trend, random or cyclical variation, or
seasonal changes. The development of these
models assumes stability in the data set.
Therefore, most statistical models are limited
in predicting non-linearity in hydrological
time series (Adnan et al., 2021).

Machine learning models include artificial
neural networks (Dolling and Varas, 2002),
support vector regression (SVR) (Kisi and
Cimen, 2011), random forest (Peng et al.,
2020), extreme learning machine (ELM)
(Adnan et al., 2019), long short-term memory
(LSTM) (Ghimire et al., 2021), recurrent gate

unit (GRU) (Wang et al., 2021), random
subspace (Nhu et al., 2022), radial basis
function classifiers (Luu et al., 2022) and
multilayer perceptron (MLP) (Hosseinzadeh
Talace, 2014; Panahi et al., 2021). They can
effectively simulate the nonlinear features of
streamflow. This has increased machine
learning applications in hydrology and water
resource management. Parisouj et al., (2020)
applied three machine learning algorithms,
namely SVR, artificial neural network (ANN),
and extreme machine learning, to predict
streamflow in four rivers in the USAThe
authors pointed out that SVR was better than
the models used. Rahimzad et al. (2021) used
four algorithms, namely linear regression
(LR), multilayer perceptron (MLP), support
vector machine (SVM), and LSTM, to predict
daytime streamflow for the Kentucky River in
eastern Kentucky, USA. The results indicated
that the LSTM was better at streamflow
prediction than the other models. Siddiqi et al.
(2021) developed a hybrid model by
combining ELM and ANN with a wavelet to
predict the average monthly streamflow of the
Tarbale Dam on the Indus River. The hybrid
models outperformed the individual models in
predicting streamflow. Meshram et al. (2022)
predicted the streamflow into the Shakkar
watershed in India using an adaptive
neuro-fuzzy inference system (ANFIS),
genetic programming (GP), and ANN. The
performance of ANFIS was superior to the
other models; GP came second, and ANN was
last. Although machine learning models has
the ability to address non-linearity and non-
stationarity issues in the hydrological process
(Adnan et al, 2021). However, their
implementation is not consistent, and there is
not yet a universal conclusion for the superior
methods (Ghimire et al., 2021). Furthermore,
machine learning models still have limitations
in the generalization performance problem,
trapping in local optimization and overfitting
problems (Mosavi et al., 2018; Zhao et al.,
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2021). To surpass these limitations, various
studies have developed hybrid models. These
models have been regrouped into five
approaches: ensemble framework, a hybrid
evolutionary  algorithm, a swarm-based
algorithm, a physics-based algorithm, and an
ensemble of statistics and machine learning.
Adnan et al. (2021) integrated the support
vector machine model (SVM) with the
simulated annealing algorithm (SA)-mayfly
optimization algorithm (MOA) to predict the
streamflow in the Helium River Basin. Kilinc
et al. (2022) combined a Gated recurrent unit
(GRU) with a gray wolf algorithm (GWO) to
forecast the streamflow in the Seyhan River
Basin of Turkey. The advantage of hybrid
models is that they can reduce the weak points
of individual models (Nguyen, 2022). Tran
and Kim (2022) have shown that hybrid
models solve generalization performance
problems.

Currently, nature-inspired meta-heuristic
algorithms like particle swarm optimization
(Ch et al., 2013), genetic algorithm (Nguyen
et al., 2022), ant colony optimization (Adnan
et al., 2022), differential evolution (Tao et al.,
2017), artificial bee colony (Kisi et al., 2012),
and gray wolf optimization (GWO)
(Tikhamarine et al., 2020), combined with
machine learning, have been successfully
utilized to predict streamflow in a variety of
regions around the globe. The structure of any
metaheuristic algorithm consists of two main
processes: exploration and exploitation.
Exploration is the ability to expand the search
space, while exploitation is the potential to
find optimization solutions (Chakraborty and
Kar, 2017; Brezonik et al., 2018). Abdel-
Basset et al. (2018) pointed out that the key to
a good research process is balancing the two
processes. Although these methods have
proven effective in predicting streamflow in
multiple  locations,  difficulties  persist,
especially in river engineering applications.
However, due to the complexity of
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streamflow data, the accurate prediction of
streamflow has been considered an important
problem for several decades. The literature
shows that selecting appropriate models and
methods in the hundreds of models is
challenging and that these models depend on
each region's location and characteristics. Due
to the complexity of streamflow, especially in
the context of global warming and urban
growth, it is necessary to develop new models
by combining machine learning models with
optimization algorithms.

GRU is considered one of the most
influential and efficient models. In addition to
quickly solving nonlinear relationships, GRU
has a remarkable ability to analyze
relationships between input and output data.
In addition, the simplicity of application of
this model is one of the most appropriate
characteristics for water resource managers.
However, GRU has the disadvantages of slow
convergence and low learning efficiency.
Therefore, the integrations of the GRU model
with the optimization algorithms are essential
to predict the daily streamflow with high
accuracy (Muhammad et al., 2019).

Furthermore, several previous studies have
pointed out that there are no universal
conclusions on the best models to predict
streamflow with high accuracy (Parisouj et al.,
2020). Therefore, developing new models is a
convenient and scientific tool. New
algorithms based on data mining are being
developed, and they are receiving attention
from some researchers in the world thanks to
their ability to solve the weak points of
traditional machine learning algorithms. Their
performance exceeds the performance of
traditional machine learning.

This study looks to develop models by
integrating GRU with BFO, GWO, and HGO
to forecast streamflow for one and six day
ahead in the Tra Khuc River. One and six
days ahead were selected as the output data of
the models, which are similar to the previous
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studies (Alizadeh et al., 2021; Sharma et al.,
2021). The comprehensive comparison
between popular models can make a more
challenging task in selecting algorithms to
simulate and predict the natural process more
accessible. In other words, this study tried to
identify the best algorithms that can predict
streamflow with high accuracy to provide
guides for managers for water resource
management actions. In recent years, the
river's streamflow has been highly modified
due to climate change and human activity,
such as dam construction; the results in this
article are essential for developing policies
and strategies for water resource management.
This study's results significantly affect
streamflow simulation in watersheds where
data quality and availability are serious
challenges.

108°20'0"E

2. Data and methods
2.1. Study area and observational data

The Tra Khuc River basin is situated in the
South-Central region of Vietnam (Fig. 1). The
study area has an area of about 3703 km? with
elevations ranging from 0 to 1442 m and an
average slope of approximately 23.9%. It
includes four types of terrain: coastal sandy
areas, plains, high mountains, and plateaus.
With a tropical monsoon climate region, the
study area has two seasons: the rainy and dry
seasons. The rainy season starts from
September to January, and the dry season
starts from February to August. The average
annual rainfall in the basin is about 2,960 mm.
The rainy season accounts for 70-75% of
annual rainfall.
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Figure 1. Location of study area

Tra Khuc River has a total length of
195 km with an average annual flow of about
176 m’/s. The uneven distribution of water
flows between the wet and dry seasons poses
fundamental challenges in water resource
management in this region. In the rainy

season, the basin is often affected by floods,
with an average of 5-7 floods per year.
Meanwhile, drought and saline intrusion in
the coastal area severely affect the dry season.
Therefore, flow forecasting plays an essential
part in managing and allocating water
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resources for agricultural and industrial
development in the basin.

Figure 2 shows the observed rainfall and
discharge at Son Giang station between 2000
and 2020, upstream of the Tra Khuc River.
These data were available at the Vietnam
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Center. These data were used to build the
streamflow prediction model to forecast the
streamflow before one day and six days (Fig. 2).
Specifically, daytime precipitation data from
2000 to 2020 were used to simulate daytime
river flows from 2000 to 2020 and predict the
streamflow before one day and six days.
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Figure 2. The rainfall and streamflow at Son Giang station on the Tra Khuc river from 2000 to 2020

In general, the model training process
using the machine learning approach
encounters several difficulties because the raw
streamflow data has nonlinear characteristics,
which strongly influence the model if we
directly use these data in the model (Khosravi
et al., 2021). It is, therefore, necessary to
normalize these data. Streamflow prediction
studies have proposed several methods, such
as nominal, ordinal, ratio, min-max, and
interval types. The selection of the appropriate
method depends on the available dataset and
the algorithm. GRU takes into account the
original values of the input data, so min-max
normalization was used.

2.2. Methodology
2.2.1. GRU

GRU was first developed in 2014 by Cho
et al. (2014) and is another improved version
of RNN model, which enhances the memory
and clustering performance of ML tasks (Ha
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et al., 2021). This model allows altering input
weights in a neural network to avoid the
trailing  gradient problem, which is
represented in RNN frequently (Zhao et al.,
2021). Similar LSTM model, GRU also uses
the gating mechanism. However, it only uses
two gates, including the update and reset gates
(Ha et al., 2021). The update gate is used to
reform the information in the preceding step,
while the reset gate identifies the information
that needs to remove in the antecedent state.
This allows neurons to remove unnecessary
information to predict the streamflow and
save long-term information by reducing loads.
The hidden layer candidate represents the
memory being created at the current time (Ha
et al., 2021). The following equation presents
the structure of GRU:
z; = o(Wylhe—1, X¢])
1y = o(Wrlhe—q, Xe]) _
he=(1-2)Qh1+hey Qhy
hy = tanh(W[ry ® he_y, %))
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Where o is the sigmoid function as the
activation function for the hidden layer, which
germinates values in the range [0, 1], and the
tanh function is the activation function for the
output layer, which has values between the
range [-1, 1]. Wz, Wr, and W are the weight
matrixes.

2.2.2. BFO

BFO was first developed by Passino
(2010).1t is inspired by the foraging behavior
of groups of bacteria, such as E. coli and M.
Xanthus. The bacteria sense chemical
gradients in the environment and move toward
or away from specific cues. Bacteria always
try to find areas of high food resources and
avoid harmful substances. According to the
optimization points of view, the value of
places where the food is higher is the
optimization value. Bacteria can be placed in
predetermined  locations or  dispersed
throughout the nutrient medium. The bacteria
move to places of high nutritional value by
applying random walks with a constant step
size. After performing these walks, the health
of the bacteria is assessed based on the
nutritional value they received. Healthy
bacteria receive the most nutrients; they are
selected to participate in the reproduction
process to take the place of their mother.
During this time, low-nutrient bacteria die off
(Passino, 2010).

2.2.3. GWO

GWO was presented for the first time in
2014 by Mirjalili. It mimics the predatory
abilities and social hierarchy of the gray wolf.
Gray wolves generally live in packs of
between 5 and 12 and are classified into four
main groups: alpha (o), beta (B), delta (5), and
omega (®); (Tikhamarine et al., 2020). Alpha
is considered the pack's leader and is
responsible for making decisions during the
hunt. Beta supports alpha to help make more
accurate decisions and is a backup candidate

when alpha is absent. Deltas act as scouts or
hunters. Omega watches arguments within the
group. The order of the dominance hierarchy
descends from alpha to omega (Tikhamarine
et al., 2020). GWO works by dividing the
solutions to the optimization problem into
four main groups: a, B, 8, and ®, of which
three solutions - a, B, and & - are considered
the best. To implement this mechanism, the
hierarchy is updated according to the three
best solutions at each iteration. The GWO
algorithm works on four main processes:
finding, circling, hunting, and attacking prey
(Tikhamarine et al., 2019). GWOs have the
advantage of being easy to implement because
they have few tuning parameters and a fast
convergence speed (Hao and Sobhani, 2021;
Zhang et al., 2021).

2.2.4. HGO

HGO was first developed by Carbone and
Giannoccaro (2015) and is inspired by how
humans solve self-interest problems in groups
and seek consensus. The group is conceived
as the whole of the individual who makes
selections based on rational calculations and
self-interested motivations (De Vincenzo et
al., 2016). However, any individual choice is
influenced by social relationships, which lead
individuals to change their initial choices. It is
human nature to seek consensus and avoid
conflict with others. Therefore, the most
accurate group decisions are the choices made
by the many individuals interacting in the
group (DiMaggio and Powell, 1983). HGO is
based on the statistical process of individual
choices in the continuous-time Markov
process. The continuous-time Markov model
is proposed to describe the time evolution of

the decision-making process. Like other
optimization algorithms, the model
parameters are  continuously  adjusted

throughout the optimization process to ensure
convergence and overall optimization.
However, in HGO, the parameters are
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determined using the NK model (N is the
decision, and K is the interaction between
them). The individual's idea transition rate is
like the product of the Ising-Glauber rate to
achieve consensus building and model the
individual's autonomous behavior. The
driving force of this system is the phase
transition from low value to high value.

2.2.5. Performance assessment

The precision of the proposed models was
quantified applying various statistical indices:
RMSE, MAE and R2. These indices have been
extensively applied in previous studies
(Siddiqi et al., 2021; Adnan et al., 2022).

They were computed by the following
equations:

n
1
RMSE = \/;Z(Ypredicted_ obserued)2

|2

=1
n
1
MAE = ; I Ypredicted = Yobserveal
i=1

2.2.6. Basic step of modeling by GRU-BFO,
GRU-HGO, GRU-GWO

The methodology employed to forecast the
streamflow before one day and six days were
separated into four steps: (i) data collection
and preparation, (ii) building the models,
(ii1) model validation (Fig. 3).

- ' Validlatin
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Model development: -E;
Initialize of hyper- 5
parameters, including <
inputlayer, hidden layer UEJ.
and output layer g
o
| ,

BFO, GWO Initialize the weight for |
and HGO each layer
T ‘ No

Figure 3. Flowchart of the proposed hybrid GRU models (GRU-BFO, GRU-GWO, and GRU-HGO)

(i) Data collection and preparation. The
input data from 2000 to 2020 at Son Giang
station were Precipitation and discharge data.
In this study, 90% of the data (from 2000 to
2018) were used to train the models, and 10%
(from 2019 to 2020) for validate the models.
Several rates (60/40, 70/30, 80/20) were tested
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in this study. However, the models had more
performance of  90/10.
Additionally, Precipitation and discharge data

with a rate
have been normalized over a range of 0 to 1 to
ensure data consistency and reduce the
complexity of the models using the mean.
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(i) Building the models. Three
optimization algorithms - BFO, HGO, and
GWO - were used to optimize the hyper-
parameters of the GRU model. The model
hyper-parameter initialization was duplicated,
including the GRU model hyper-parameter
initialization and the parameters of the three
optimization algorithms. The structure of the
GRU model consists of an input layer, a
hidden layer, and an output layer. Unlike the
LSTM-based model, the architecture of the
GRU-based model has only two gates,
including reset and update, as mentioned in
2.2.1. The GRU-based model's performance
(including accuracy and computing speed)

Python environment with two preprocessed
datasets read separately to train the model.

(ii1) Model validation. RMSE, MAE, and
R? were used to predict the performance of the
proposed models.

3. Results
3.1. Comparison of models

Table 1 shows the precision of the proposed
models. All proposed models performed well
in predicting streamflow in the Tra Khuc River
for one day and six days. For the one-day-
ahead prediction, GRU-GWO was strongest,
with the highest R? value and lowest RMSE
and MAE values (R?>=0.883, RMSE=52.675,

depended on various hyper-parameters, AE=25.006). Second was GRU-HGO
including window size, number of neurons in (R>=0.879, RMSE=53.521, MAE=28.112),
the hidden state, number of hidden layers, then came GRU-BFO (R?=0.878,

batch size, epoch size, and initial learning
rate. In which the most complex problem is to
determine the number of layers. This study
chose the number of hidden layers and epoch
hyper-parameters to optimize the GRU-based
model. In this study, we implemented one

RMSE=53.791, MAE=28.226), and GRU was
least successful (R*=0.865, RMSE=56.488,
MAE=30.088). Six days ahead, the picture was
similar: GRU-GWO was more accurate than
GRU-HGO, GRU-BFO and GRU with
R2=0.706, RMSE=83.486, and MAE=39.946.

GRU layer as a hidden layer with 32 neurons.  Second was GRU-HGO (R>=0.703,
This configuration of GRU model was used in RMSE=283.839 MAE=40.957) then
many studies to avoid the overfitting problem GRU-BFO ’ (R=0.607 RM S,E= 24,692

(Kilinc and Yurtsever, 2022; Li et al., 2020).
After determining the parameters, the
proposed models were established in the

Table 1. Model performance and comparison

MAE=43.174), and finally GRU (R>=0.683,
RMSE=86.622, MAE=46.926) (Table 1).

For one day ahead For six days ahead
RMSE MAE R? RMSE MAE R?
GRU 56.488 30.088 0.865 86.622 46.926 0.683
GRU-BFO 53.791 28.226 0.878 84.692 43.174 0.697
GRU-HGO 53.521 28.112 0.879 83.839 40.957 0.703
GRU-GWO 52.675 25.006 0.883 83.486 39.946 0.706

Note: (*) - GRU: gate recurrent unit (GRU); BFO: bacterial foraging optimization, GWO: gray wolf optimizer; HGO:
human group optimization; RMSE: root-mean-square error; MAE: mean absolute error; R the coefficient of determination

3.2. Assessment of the one-day, seven-day
ahead

In this study, the other ahead outflows (one
and six days ahead) were used to analyze the
usefulness of the proposed models. In general,
when the forecast moved from one day ahead

to six days ahead, the performance of all the
models (GRU, GRU-BFO, GRU-HGO, and
GRU-GWO) decreased (Fig. 4 and Fig. 5). For
the GRU model, the values of RMSE and
MAE augmented from 56.488 to 86.622 and

from 30.088 to 43.174, respectively. While the
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R? value reduced from 0.865 to 0.683. For the
GRU-GWO model, the trend was the same:
RMSE and MAE augmented from 52.675 to
83486 and from 25.006 to 39.946,
respectively. The R? value reduced from 0.883
to 0.706. For the GRU-HGO model, the values
of RMSE and MAE augmented sharply from

53.521 to 83.839 and from 28.112 to 40.957.
The R? reduced from 0.879 to 0.703. For the
GRU-BFO model, RMSE and MAE also
augmented from 53.791 to 84.692 and from
28.226 to 43.174, and R? reduced from 0.878 to
0.697. In conclusion, the prediction accuracy is
reduced when the prediction step increases.
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Figure 4. Scatterplots of the observed and predicted streamflow for one-day-ahead predictions
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Figure 5. Scatterplots of the observed and predicted streamflow for six-day-ahead predictions
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Figure 6 presents examples of the
streamflow results before one day and six
days of forecasting after validating the
proposed models for the rainy season in 2020.
The results generally show that the predicted
streamflow closely follows the observed
streamflow for both cases of one- and six-day
forecasting. However, the streamflow during

flooding predicted by the proposed models
tends to be underestimated compared to the
observed streamflow. Among the proposed
models, the streamflow prediction results of
the GRU-GWO model are closer to the
observed streamflow value than the remaining
models, followed by the GRU-HGO, GRU-
BFO, and GRU models.
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Figure 6. Streamflow prediction for one day ahead (top) and six days ahead (below)
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4. Discussions

This study develops machine learning
models based on GRU, BFO, GWO, and
HGO, to forecast the streamflow in the Tra
Khuc River, where problems in the
management of water resources are regularly
encountered, particularly in the context of
climate change.

The results confirmed that the three
optimization algorithms successfully
improved the GRU model's precision. Of the
proposed models, GRU-GWO was the
strongest, with R* = 0.883 (before one day)
and 0.706 (before six days), followed by
GRU-HGO (R? = 0.879, 0.703), GRU-BFO
(R* = 0.878, 0.697), and finally GRU
(R? = 0.865, 0.683). Although GRU has the
advantage of improving the memory capacity
of a recurrent neural network which helps to
facilitate training, the models and the hidden
units can be used to solve vanishing gradient
problems in the recurrent neural network
(Wang et al., 2019). However, GRU also has
convergence speeds and low learning capacity
disadvantages. This is why it is necessary to
use optimization algorithms. GRU-GWO was
the strongest because GWO has the power
exploration capability to avoid local
optimization problems. In addition, GWO
balances the processes of exploration and
exploitation (Wang and Li, 2019), which
makes it effective in solving complex
problems like streamflow prediction. The
GRU-HGO model was the second most
powerful. De Vincenzo et al. (2016) explained
how HGO could solve complex problems, and
the algorithm has been effective in giving the
right solutions in the case of missing data. Of
the hybrid models, GRU-BFO was least
effective because despite the advantages of
being insensitive to initial values, fast
convergence, and global optimization, the
BFO algorithm also tends to get stuck in local
optimization (Hernandez-Ocana et al., 2013;
Sahib et al.,, 2018), leading to reduced
accuracy.
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The proposed models (GRU, GRU-BFO,
GRU-GWO, GRU-HGO) do not accurately
predict the peak flow in the case of the six-
day (long-term) forecast, but they perform
well in short-term flow forecasting. This is
found in previous studies: Khosravi et al.
(2022) integrated the random forest model,
support vector machine, multilayer
perceptron, adaptive neuro-fuzzy inference
system, and convolutional neural network
with Bat metaheuristic algorithm to predict
the daily streamflow in the Korkorsar
catchment in Iran. Most proposed models had
the prediction results of under-predicting or
over-predicting maximum values. Adnan et al.
(2020) built four models, namely optimally
pruned extreme learning machine (OP-ELM),
least square support vector machine
(LSSVM), multivariate adaptive regression
splines (MARS), and M5 model tree
(M5Tree) to predict monthly stream flows in
Swat River basin of Pakistan. The results
showed that these models simulated the trend
of hydrological processes well. However, they
cannot accurately predict the maximum
values. The main reasons are that the
maximum value data in the training dataset
does not cover all the maximum values in the
validation dataset. Reis et al. (2021) pointed
out that it is essential to provide the model
with sufficiently long data on extreme events
and the variables that influence these events.
This is underlined by Cheng et al. (2020).

The global optimization problem is
considered one of the crucial challenges
encountered in the machine learning
approach. Models perform less efficiently
when the dataset is not in the range of the
training data. Several authors have proposed
solutions to these problems: Bui et al. (2020)
demonstrated that more training data can
mean greater accuracy and improved ability to

solve the global optimization problem.
However, collecting comprehensive and
inclusive data on all events is very
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challenging, especially in the context of
global warming. Therefore, in such a case,
many authors extended the spatial prediction
range by dealing with input noises or built
hybrid models by integrating models like
LSTM, Deep learning with optimization
algorithms (Tran and Kim, 2022).

The potential of nature-inspired meta-
heuristic algorithms is seen as the adaptation
to improve the GRU model for the
implemented application. In an actual
application, the consistency of the proposed
models can be studied for more of the river.
Although Precipitation is the primary source
of river flow in the catchment area, it is clear
that using Precipitation as input to the flow
prediction model is correct. However, in
rivers like the Tra Khuc, the flow depends on
the upstream reservoir regulation policy.
Therefore, for future research, adding the flow
at the reservoirs as input data to the
forecasting model is necessary. In addition,
future models proposed in this study should
predict other processes, such as groundwater
or flood volume prediction. In addition,
applying the proposed models in the different
rivers will be necessary to obtain more
conclusive evidence. In the end, this study is
limited in predicting maximum value.
Therefore, it is necessary to provide models
with more data on this characteristic. The
exploitations of machine learning models are
necessary to find the best models that can
predict streamflow with high precision.

In recent years, the scientific community
has tried to develop machine learning
algorithms, to replace physics-based models
due to their efficiency. This study provides
essential references related to streamflow
prediction for future studies. In the context of
global warming and the increased dependence
on hydroelectricity, the hydrology regime has
been modified so strongly that the findings of
this study can provide important information
to decision-makers or water managers to build

more strategies and policies clearly, for the
management of water resources. Although this
study applies to one river in Vietnam, this
method can be generalized to apply to rivers
all over the world.

5. Conclusions

Accurate streamflow prediction is crucial
in optimization for agriculture development,
industry, and power center operation.
Therefore, the study aims to develop machine
learning models, namely GRU-BFO, GRU-
HGO, and GRU-GWO, to predict the
streamflow before one day and six days in the
Tra Khuc River in Vietnam.

All  three  optimization  algorithms
effectively improved the GRU model's
performance, with R? > 0.8. The GRU-GWO
model performed best, with R?> = 0.883,
followed by GRU-HGO (R*=0.879) and
GRU-BFO (R*=0.878), respectively. The
models proposed can be applied to the
streamflow in the other river in Vietnam to
support developers in building water resource
policies and management.

For future research, the proposed models
can be used in various applications related to
hydrology, such as groundwater volume
prediction, natural hazard prediction, and in
several areas of water resources. In addition,
the proposed models can be applied in more
rivers to obtain more conclusive evidence.

The results of the current study show that
data-driven approaches can be considered as
an effective tool to analyze and build policies
and strategies of water resource management,
especially in data-limited regions.
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