Microplastics in the Surface Sediment of the main Red River Estuary

Nhu Da Le 1,2*, Thi Thu Ha Hoang 2, Thi Thuy Duong 3, Ngoc Nam Phuong 4, Phuong Thu Le 5, Tien Dat Nguyen 6, Thi Xuan Binh Phung 7, Thi My Hanh Le 8, Thi Lien Le 9, Thi Huong Vu 9, Thi Phuong Quynh Le 1,2*

1Graduate University of Science and Technology, Hanoi, Vietnam
2Institute of Natural Product Chemistry, VAST, Hanoi, Vietnam
3Institute of Environmental Technology, VAST, Hanoi, Vietnam
4GERS-LEE Université Gustave Eiffel, IFSTTAR, F44344 Bouguenais, France
5University of Science and Technology of Hanoi, VAST, Hanoi, Vietnam
6Center of Research and Technology Transfer, VAST, Hanoi, Vietnam
7Electric Power University, Hanoi, Vietnam
8Institute of Tropical Technology, VAST, Hanoi, Vietnam
9Hanoi National University of Education, Hanoi, Vietnam

Received 07 August 2022; Received in revised form 17 August 2022; Accepted 05 September 2022

ABSTRACT

Microplastics (< 5mm) are one emerging pollutant in the environment. These are the threats and challenges facing the global environment, economy, and society, especially in hotspot regions such as Asia. This paper presents the microplastic characteristics found in the surface sediment of the main Red River estuary (the Ba Lat) during four separate monitoring runs in 2020. The microplastic amount in the sediment samples varied from 800 items per kg of dried weight (dw) to 3,817 items.kg\(^{-1}\) dw, averaging 2,188 ± 1,499 items.kg\(^{-1}\) dw. Fiber and fragment microplastics were discovered to be primary shapes, of which fibers dominated (94%). Microplastic fiber sizes were found mainly in the < 500 µm (69%) range. The most primarily observed colors of microplastics were blue (36%), white (21%), and red (11%). There were five recognized polymer types (polypropylene (PP), polyethylene (PE), polyurethane (PU), polyamide (PA), and polystyrene (PS)) in the sediment samples, with PE and PP predominating. Seasonal fluctuations in microplastic concentrations at the Ba Lat site, a significant aquaculture zone, may indicate the contribution of multiple sources. Our research demonstrated the necessity of microplastic observation in organisms, particularly in the aquaculture zones in Vietnam. Our findings further underline the importance of managing and minimizing the amount of plastic garbage that enters the ecosystem.

Keywords: Ba Lat estuary, microplastics, Red River, surface riverine sediment, Vietnam.

1. Introduction

The world plastics industry has grown rapidly, and the global production reached 368.10\(^6\) tons.yr\(^{-1}\) in 2019 (excluding fibers) (PlasticsEurope, 2020). The plastic manufacturing industry tends to shift to Asia, and currently, plastic is the third most popular artificial substance after steel and concrete.
However, the treatment of plastic waste has not been effective, leading to a huge amount of plastic waste being discarded and polluting the environment. Plastic waste can be divided into microplastics under physical, chemical, and biological effects. Tiny plastic pieces (< 5 mm) are defined as “microplastic” (Arthur et al., 2009; GESAMP, 2019), which pollute the environment in which they exist because of their durability and slow decomposition. Plastic pollution, including microplastics, is one of the threats and challenges facing the global environment, economy, and society. Microplastics are found in many different environments, including water, sediment, soil, air, and organisms, especially in hotspot regions such as Asia (Phuong et al., 2022). Microplastics can impact aquatic organisms and then human health through the food chain. In Vietnam, microplastics have recently become a topic of discussion regarding their presence in water and sediment. Microplastics have been found in the Saigon River (Lahens et al., 2018; Trinh et al., 2021), in the Day River, a distributary of the Red River (Doan et al., 2021a; Duong et al., 2022), in the sediment of Hanoi’s aquaculture ponds (Le et al., 2022), and some sites of other rivers, lakes and coastal zones (Strady et al., 2021).

The natural hydrological and biogeochemical processes in many hydro-systems worldwide have been directly or indirectly affected by different human activities in the basin. The Red River is representative of Southeast Asia, subject to significant human and natural influences. Extending over 12,751 km², the Red River Delta, where the average population density is more than 1000 inhabitants.km⁻² is a key economic region of North Vietnam. In this area, socio-economic development activities (industrial and agricultural production development, urbanization, and population growth) are increasingly becoming the main causes of environmental pollution (MONRE, 2019). Ba Lat, the main Red River estuary, plays an essential role in waterway traffic, agriculture irrigation, aquaculture water supply, and flood drainage for both Nam Dinh and Thai Binh provinces (Hoa et al., 2020). The riverine sediment and the water column are the habitats of many aquatic organisms and benthic animals. Thus the water and sediment quality are essential because they can directly affect organisms and their habitats. The quality of the water and sediment of the Red River, notably at the Ba Lat site, has been investigated in some prior studies (Nguyen et al., 2016; Hoa et al., 2020; Le et al., 2022b). However, microplastic pollution has not been observed.

This paper reports the findings of the microplastic characteristics in the sediment of the main Red River estuary, the Ba Lat, in 2020. The outcomes could be added to a database of microplastic pollution in ecosystems. They may provide a scientific basis for improvement in the management and conservation of aquatic ecosystems in Vietnam.

2. Sampling site and methodology

2.1. Sampling site

The Red River basin has a surface area of 156,451 km² (Le et al., 2018). The Red River originates from the Yunnan province, running through some provinces of Vietnam before flowing into Tonkin Bay through the four estuaries: Ba Lat, Tra Ly, Lach Giang, and Day. The Ba Lat estuary is the main estuary of the Red River and belongs to two provinces, Thai Binh and Nam Dinh (Fig. 1). The average annual water flow through the Ba Lat estuary is about 544 m³.s⁻¹ (Table 1), with a higher value in the rainy season (841 m³.s⁻¹) than in the dry one (247 m³.s⁻¹) (VASI, 2011).
This area experiences two seasons: the rainy one (May October); and the dry one (November next April). The average annual rainfall and tidal amplitude were approximately 1700-1800 mm yr⁻¹ and 1.6-1.7 m, respectively (GSO, 2020; Nguyen et al., 2020).

2.2. Methodology

Four samplings were organized in 2020 (November and December, the dry season; and August and September, the rainy season) at the Ba Lat estuary (20°18’07.6”N, 106°32’25.4”E) of the Red River (Fig. 1). A Van Veen grab sampler was used to take three separate sediment sub-samples (about 0-30 cm from the river’s banks and middle stream). Then the sub-samples were thoroughly mixed to ensure a representative sample was obtained for analysis. Sediment samples were preserved in aluminum foil bags for microplastic analysis and polyethylene bags for analysis of other variables (pH, metals, organic carbon, and nutrients). All samples were delivered to the laboratory on the day they were collected.

In the laboratory, the representative sample was triplicate analyzed, and the results shown here were the average values. The representative samples were dried in an oven at 40°C. The following step was passing 30 grams of the dried sample through a 1 mm
sieve to eliminate the chunks too big to pass. The sieved sample was then placed in a 500 ml glass bottle, where it was heated in a 30% H$_2$O$_2$ solution for 3 hours at 40°C on a heating plate (Strady et al., 2021). After that, a saturated NaCl solution was used to separate microplastics in sediment samples (Thompson et al., 2004), and an overflow technique was implemented (Hidalgo-Ruz et al., 2012). The glassware filtration unit was then used to filter the microplastic-laden overflow solution via Whatman GF/A filters (pore diameters of 1.6 μm).

Petri dishes were used to store filter papers until they could be examined with an Olympus microscope (model SZX16, Japan) with 690x maximum magnification, connected to a camera and computer. Microplastics' characteristics (concentration, shape, and color) were measured on OLYMPUS Stream image analysis software with a maximum zoom ratio of 16:4:1.

The suspect microplastic items from each sample were taken out and added to a vial. Add pure ethanol to the vial, followed by sonification for 3 min, and then pour them into a 50 mL beaker. Rinse the vial 3 times with pure alcohol until no item is visible on the vial's bottom or walls. Filter the solution through a 0.1 m Anodisc filter (25 mm in diameter), and tightly cover the beaker until it is dry at room temperature.

Then, the polymer type of the sediment sample on the Anodisc filter was determined by an FT-IR microscope (Thermo iN10-MX, Waltham, MA, USA) equipped with the software OMNICPICTA 1.8 (about 600,000 spectrums per one filter). Microplastics were analyzed using an imaging detector in automatic mode. The measurement was carried out with a resolution of 8 cm$^{-1}$ while operating in transmission mode in the 4000-1200 cm$^{-1}$. The spectrum was analyzed by the software siMPle, version beta 1.1, with the spectrum reference of MP_Library_Extended_Grouped_1_5.

Approximately 20% of the total items suspected of microplastics were randomly analyzed.

Our previous study presented the analysis methods for different sediment sample variables (Le et al., 2022b).

2.3. Statistical methods

Student t-tests were used for all statistical and analytical results to confirm the variation in microplastic amounts between the rainy and dry seasons. Calculated probabilities (p) were judged statistically significant at the p value of 0.05.

The Pearson correlation and Principal Component Analyses (PCA) were used based on the statistical package SPSS for Windows, version 20, and XLSTAT ver. 2019.2.2.59614 to determine the correlation between microplastic amounts and different environmental variables.

3. Results and Discussion

3.1. Evaluation of microplastic amounts in the Ba Lat sediment

Microplastic amounts in the Ba Lat sediment varied from 800 items.kg$^{-1}$ dw (in August 2020, the rainy season) to 3,817 items.kg$^{-1}$ dw (in December 2020, the dry season), averaging 2,188±1,499 items.kg$^{-1}$ dw for all four sampling campaigns (Fig. 2). A slightly higher value of microplastic concentration in the dry season (averaging 2,425±1,968 items.kg$^{-1}$ dw) than in the rainy one (1,950±1,626 items.kg$^{-1}$ dw) was observed (Fig. 2). Still, the statistical results did not show a significant seasonal difference ($p >0.05$).
3.2. Typical features of microplastics in the Ba Lat sediment

3.2.1. Microplastic form and dimensions

The results of microscope observation indicated that microplastics in the Ba Lat sediment samples were mainly fiber and fragment shapes (Fig. 3). The fiber form has the highest frequency (94%), whereas fragment one was insignificant (6%) in four observation times in both wet and dry seasons. Seasonally, 90% of the fibers and 10% of the fragments were found during the wet season, whereas 97% of the fibers and 3% of the fragments were detected in the dry one (Fig. 4a).

Microplastic sizes were found mainly in the range of < 500 µm (69%) for fibers and mostly in the range of 1,378-38,5691 µm² for fragments. Regarding seasonal variation, in the rainy season, fiber microplastics with the sizes of 500-1000 µm dominated, whereas those with small sizes (<500 µm) appeared mainly in the dry one (Fig. 4b).
3.2.2. Color of microplastics

The microplastic colors observed at the Ba Lat site during the four sampling campaigns were white, blue, red, yellow, gray, purple, black, and green. The primary colors were blue (36%), white (21%), and red (11%). The least encountered color was green (3%) (Fig. 5).

Seasonal variation was observed for microplastic colors in this study. In the rainy season, white (37%) was predominant, and blue and yellow colors equally accounted for 16%. In the dry season, blue color was the primary color, accounting for 45%, and red color was for 15% (Fig. 5).

3.2.3. Chemical nature of microplastics

The µFTIR analysis showed the presence of numerous common plastics, including PE, PS, PA, and PU (Fig. 6). Among the different plastics found, PE accounted for 44%, PP for 43%, PS for 7%, and PA and PU equally accounted for 3%.

3.3. Discussion of microplastic contamination in the Ba Lat estuary’s surface sediment

3.3.1. Discussion of microplastic contamination level

Microplastics pose a significant environmental concern, as has been demonstrated by numerous studies examining their presence in the hydro-systems of many countries. Table 2 lists the relative amounts of microplastics found in the sediment of the Ba Lat estuary and other rivers worldwide. The finding showed that the microplastic amounts in the Ba Lat sediment averaged $2,188 \pm 1,499$.
items.kg\(^{-1}\) dw, was far greater than that of the Nakdong river, Korea (Eo et al., 2019), but lower than that of some rivers in China, such as the Wen-Rui Tang (Wang et al., 2018), the Liangfeng (Xia et al., 2021) (Table 2). Some previous studies (Dris et al., 2015; Phuong et al., 2022) revealed that the difference in microplastic concentrations in different hydro-systems probably depends on study sites, meteorological-hydrological characteristics, microplastic sources, and the sampling and analysis methods used for microplastics. For example, microplastics in the riverine sediment of the To Lich, one of the Red River Delta’s urban tributaries, reached a high value of 55,950±10,111 items.kg\(^{-1}\) as a result of Hanoi city’s untreated sewage (which amounted to roughly 960,000 m\(^3\) every day) (Duong et al., 2022).

Regarding microplastic form, fiber microplastics dominated in the Ba Lat sediment. Fiber microplastics were also the predominant form in some sediments and river waters of Vietnam, including the To Lich - Nhue River and the Day River (Doan et al., 2021a; Duong et al., 2022), or in some other regions (Strady et al., 2021). In many rivers in the world, fiber microplastics appeared with great frequency in the sediment of some rivers such as the Ciwalengke, Indonesia (Alam et al., 2019), the Pearl (Lin et al., 2018), the Wei (Ding et al., 2019) and the Changjiang, China (Peng et al., 2017), and the Ottawa, Canada (Vermaire et al., 2017) (Table 2).

Concerning microplastic chemical nature, various polymers, including PP, PE, PS, PU, and PA, of which PE and PP accounted for 87%, were found in the sediment samples of the Ba Lat estuary. Different polymers were also detected in riverine sediments worldwide, depending on the microplastic sources (Table 2).

Table 2. Microplastics in sediments of some rivers in the World

<table>
<thead>
<tr>
<th>Location</th>
<th>Microplastic concentration (items.kg(^{-1}) dw)</th>
<th>Dominated shape</th>
<th>Chemical nature</th>
<th>Sources of pollution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red River, Scotland, UK</td>
<td>161-432</td>
<td>Pellet, fiber, fragment</td>
<td>PP, PE</td>
<td>Domestic wastewater</td>
<td>(Blair et al., 2019)</td>
</tr>
<tr>
<td>River Thames, England</td>
<td>185,939 to 660,777</td>
<td>Fragment (91%)</td>
<td>PP, PE</td>
<td>Urban wastewater</td>
<td>(Horvitz et al., 2017)</td>
</tr>
<tr>
<td>Danube River, the Black Sea</td>
<td>159.2</td>
<td>Fiber, fragment, pellets</td>
<td>PET, PP, PS</td>
<td>Industrial and urban wastewater</td>
<td>(Pijoń et al., 2021)</td>
</tr>
<tr>
<td>Shanghai River, China</td>
<td>2019</td>
<td>Fiber, film, fragments</td>
<td>-</td>
<td>Domestic wastewater</td>
<td>(Vermiere et al., 2017)</td>
</tr>
<tr>
<td>Hohai River, Korean</td>
<td>14.1-186.5</td>
<td>Fiber, film, fragments</td>
<td>-</td>
<td>Urban wastewater and agricultural activities</td>
<td>(Blom et al., 2020)</td>
</tr>
<tr>
<td>Ganges River, India</td>
<td>96</td>
<td>Fragment (94.4%)</td>
<td>PE, PET, PP</td>
<td>Domestic wastewater, pilgrims</td>
<td>(Amaruths et al., 2020)</td>
</tr>
<tr>
<td>Ciwalengke river, Indonesia</td>
<td>58,543-2,888</td>
<td>Fiber</td>
<td>PE, PA</td>
<td>Domestic wastewater, industrial activities</td>
<td>(Alam et al., 2019)</td>
</tr>
<tr>
<td>Nakdong River, Korea</td>
<td>1,370,062</td>
<td>Fragment (44%)</td>
<td>PP</td>
<td>Domestic wastewater</td>
<td>(Hit et al., 2019)</td>
</tr>
<tr>
<td>Fuhe River, Bayanglang Wetland, Northern China</td>
<td>17-36</td>
<td>Fragment, fragment, fiber, pellets</td>
<td>PE, PP</td>
<td>Waste generated by people, factories, domestic wastewater</td>
<td>(Zhou et al., 2021)</td>
</tr>
<tr>
<td>Chao Phraya River, Thailand</td>
<td>91,431</td>
<td>Fragment, fiber</td>
<td>PP, PE, PS</td>
<td>Activities of residents and tourists</td>
<td>(Yu and Raki, 2020)</td>
</tr>
<tr>
<td>Shanghia River, China</td>
<td>852,894</td>
<td>Pellet (88.8%)</td>
<td>PP</td>
<td>Urban wastewater, industrial waste</td>
<td>(Peng et al., 2018)</td>
</tr>
<tr>
<td>Changjiang River, China</td>
<td>121,957 (20-340)</td>
<td>Fragment (95%)</td>
<td>PE, PP, PA, PMMA</td>
<td>Cloth washing wastewater</td>
<td>(Peng et al., 2017)</td>
</tr>
<tr>
<td>Won-Rui Tang, China</td>
<td>32,947±15,342</td>
<td>Fragment (45.5%) and foam (29.5%)</td>
<td>PE, PP, PS, PES</td>
<td>Industrial activities, domestic wastewater</td>
<td>(Wang et al., 2018)</td>
</tr>
<tr>
<td>Wei River, China</td>
<td>380-1,320</td>
<td>Fragment (42.25% - 53.20%)</td>
<td>PE, PVC, PS</td>
<td>Agricultural activities, domestic wastewater</td>
<td>(Ding et al., 2019)</td>
</tr>
<tr>
<td>Pearl River, China</td>
<td>80-9,937</td>
<td>Fiber</td>
<td>PP, PE</td>
<td>Urban wastewater, domestic waste</td>
<td>(Lin et al., 2018)</td>
</tr>
<tr>
<td>Liangfeng River, China</td>
<td>6,950-149,300</td>
<td>Fiber, film, fragment</td>
<td>PE</td>
<td>Domestic wastewater of river interchanges, transportation activities</td>
<td>(Xia et al., 2021)</td>
</tr>
<tr>
<td>Kavery River, India</td>
<td>308,746.4</td>
<td>Fragment, film, foam</td>
<td>PE, PA, PCV, PS, PEE</td>
<td>Agricultural activities, domestic wastewater</td>
<td>(Maheswaran et al., 2022)</td>
</tr>
<tr>
<td>Nui-Hi River, Vietnam</td>
<td>1,555-4,550</td>
<td>Fragment, film</td>
<td>PET, PVC, PS</td>
<td>Domestic, industrial wastewater</td>
<td>(Hoa et al., 2022)</td>
</tr>
<tr>
<td>Day River, Vietnam</td>
<td>1,450±1,450</td>
<td>Fiber, fragment</td>
<td>PE, PVC</td>
<td>Domestic, industrial wastewater</td>
<td>(Dinh et al., 2022)</td>
</tr>
<tr>
<td>Dong Lach estuary, Red River, Vietnam</td>
<td>800-3,817</td>
<td>Fiber, fragment</td>
<td>PP, PE, PS, PA, PU</td>
<td>Domestic, industrial wastewater, sporadical runoff</td>
<td>This study</td>
</tr>
</tbody>
</table>

3.3.2. Factors impacted microplastic accumulation

3.3.2.1. Environment factors

Some variables (pH, nutrients, organic carbon, and metals) of the sediment samples collected at the Ba Lat site in 2019 were analyzed and presented in our previous study (Le et al., 2022b). In this study, correlations between microplastic concentrations and other
Ba Lat sediment variables were checked by both Pearson and PCA analysis.

The Pearson analysis showed that within different variables observed, microplastic concentrations were positively correlated with organic carbon and total nitrogen (R²~0.6, p <0.05), whereas they were negatively correlated with some variables such as Cd, Hg, and Cr (Table 3).

Table 3. Pearson correlation between microplastics and other variables of sediment quality at Ba Lat estuary

<table>
<thead>
<tr>
<th>Variables</th>
<th>P</th>
<th>K</th>
<th>Si</th>
<th>OC</th>
<th>N</th>
<th>pH</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Fe</th>
<th>Cr</th>
<th>Mn</th>
<th>As</th>
<th>Hg</th>
<th>MPl</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-0.376</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>-0.443</td>
<td>-0.576</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OC</td>
<td>-0.132</td>
<td>-0.627</td>
<td>0.914</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.000</td>
<td>-0.552</td>
<td>0.801</td>
<td>0.973</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>0.662</td>
<td>0.388</td>
<td>-0.964</td>
<td>-0.789</td>
<td>-0.649</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>-0.263</td>
<td>0.682</td>
<td>-0.659</td>
<td>-0.902</td>
<td>0.954</td>
<td>0.446</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>-0.538</td>
<td>0.126</td>
<td>0.214</td>
<td>-0.182</td>
<td>-0.403</td>
<td>-0.372</td>
<td>0.497</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.554</td>
<td>0.505</td>
<td>-0.734</td>
<td>-0.423</td>
<td>-0.204</td>
<td>0.802</td>
<td>0.082</td>
<td>-0.813</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>-0.333</td>
<td>0.225</td>
<td>-0.316</td>
<td>-0.662</td>
<td>-0.816</td>
<td>0.132</td>
<td>0.848</td>
<td>0.857</td>
<td>-0.399</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.877</td>
<td>0.096</td>
<td>-0.813</td>
<td>-0.545</td>
<td>-0.386</td>
<td>0.938</td>
<td>0.129</td>
<td>-0.528</td>
<td>0.796</td>
<td>-0.112</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.997</td>
<td>-0.386</td>
<td>-0.463</td>
<td>-0.175</td>
<td>-0.054</td>
<td>0.675</td>
<td>-0.243</td>
<td>-0.473</td>
<td>0.519</td>
<td>-0.262</td>
<td>0.880</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
<td>0.716</td>
<td>-0.875</td>
<td>0.900</td>
<td>0.970</td>
<td>0.721</td>
<td>0.940</td>
<td>0.211</td>
<td>0.394</td>
<td>0.677</td>
<td>0.444</td>
<td>0.040</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>-0.328</td>
<td>0.964</td>
<td>-0.687</td>
<td>-0.796</td>
<td>-0.751</td>
<td>0.485</td>
<td>0.849</td>
<td>0.057</td>
<td>0.432</td>
<td>0.455</td>
<td>0.166</td>
<td>-0.318</td>
<td>0.869</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>-0.333</td>
<td>0.225</td>
<td>-0.316</td>
<td>-0.662</td>
<td>-0.816</td>
<td>0.132</td>
<td>0.848</td>
<td>0.857</td>
<td>-0.399</td>
<td>1.000</td>
<td>-0.112</td>
<td>-0.262</td>
<td>0.677</td>
<td>0.455</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MPl</td>
<td>0.513</td>
<td>0.284</td>
<td>0.493</td>
<td>0.568</td>
<td>0.626</td>
<td>0.526</td>
<td>-0.412</td>
<td>-0.411</td>
<td>0.061</td>
<td>-0.617</td>
<td>-0.524</td>
<td>-0.578</td>
<td>0.465</td>
<td>0.032</td>
<td>-0.617</td>
<td>1</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed).

16 environmental variables in four sediment samples collected during wet and dry seasons were considered using a Principal Component Analysis (PCA) (Fig. 7). According to the PCA's results, the first two axes explained 84.3% of the variation, although the two cases couldn't be more different. The metals (As, Mn, Pb, Cd, Zn, and Hg) and Si of samples collected during the wet months were concentrated in the upper portion of the PCA plot, while those collected during the drier months were located in the lower region, where organic carbon, microplastics, and total nitrogen were more prevalent. The PCA may also suggest that organic carbon controls how and where microplastics are found in the Ba Lat estuary's sediment over time and space.

A previous study revealed that microplastic concentrations in hydro-systems were affected by seasonal changes, especially rainfall (Xia et al., 2021). In the rainy season, microplastics can be transported from the soil into the water, leading to significantly higher microplastic concentrations than in the dry season (Schmidt et al., 2018). Another study has shown the significant role of rainwater runoff in transporting microplastics to waterbodies (Cheung et al., 2019). In our research, in contrast, we found a slightly higher concentration of microplastics in the dry season (2,425 items.kg⁻¹ dw) than in the rainy one (1,950 items.kg⁻¹ dw). However, the statistical results from the student's test did not show an apparent seasonal variation of microplastic concentrations. That may suggest that microplastics from complex sources (both point and non-point sources) from the upstream Red River basin could end up in the sediment of the Ba Lat estuary.
3.3.2.2. Different sources of microplastics

Domestic waste

About 40 million people lived in the Red River watershed in 2019 (Wei et al., 2019). Many provinces and cities along the Red River discharge residential wastewater, but only around 30% of it is treated before being released into the hydro-system, as reported by the Vietnam Ministry of Natural Resources and Environment (MONRE, 2019). Domestic wastewater in urban areas, as is known, contains microplastics primarily from clothes washing or the use of cosmetic and beauty items (facial scrubs, shower gel, toothpaste, and so on). Furthermore, it could be noted that a great deal of solid plastic garbage from daily use is dumped into the environment, notably in the Delta. They are partially collected and transported to the landfill before being almost wholly burned or buried. During the retention time in the landfill, plastic waste may be degraded into microplastics and transferred into the hydro-system.

Solid waste and wastewater from industrial and craft village production

The Red River system may have pick up a lot of plastic and microplastics from near industrial zones. An estimated wastewater of 155,055 m³.day⁻¹ is discharged into the hydro-system by the industrial parks (chemical fertilizer, food processing, paper manufacturing, battery manufacturing, tanning, and textiles), which are present in numerous provinces and municipalities that make up the Red River Delta region (Nguyen et al., 2015; MONRE, 2009). As known most production companies already have wastewater treatment systems but cannot completely remove microplastics. Besides, plastics were used to make packaging and containers, especially single-use plastic products, and then discharged into the environment.

Craft villages, including silk weaving and fabric dyeing, and plastic recycling along the banks of the Red River system are also considered a significant microplastic source of the riverine environment when the wastewater
and solid waste do not have an effective treatment system. In addition, some craft villages are located in the middle of residential areas, making it difficult for the treatment process.

Agricultural land

Microplastic pollution in hydro-systems has been linked to the usage of chemical fertilizers and pesticides in agricultural areas and the breakdown of agricultural equipment (Lv et al., 2019; Battulga et al., 2020; Lestari et al., 2020). Agriculture in the Red River Delta is focused mainly on rice and vegetables. Indeed, many empty bags and containers used to store chemical fertilizers and pesticides were discarded in the agricultural land. In addition, organic fertilizers made from sludge may contain microplastics, as reported for other agricultural regions (Zhang et al., 2020).

On the other hand, according to another study (Lv et al., 2019), film and foam microplastics have been found in extremely high levels in the water and sediment of places near significant farming or agricultural planting areas. Our investigation found that fibers and fragments were the most prevalent microplastic forms, indicating that agricultural operations have a lower influence on the environment than domestic and industrial waste.

Possible effect of microplastic pollution in the Ba Lat sediment

Many benthic organisms inhabit sediments. Microplastics are found abundantly in riverine sediments, considered reservoirs or sinks for microplastics (Hurley et al., 2018). It is challenging to decompose microplastics in the natural environment. Organisms can eat and ingest fine particles such as microplastics into their bodies, causing many health problems and indirectly affecting humans through the food chain (Silva et al., 2022; Van Cauwenberghe et al., 2015). In addition, in the production of plastic products, some additives are used, and the surface of microplastics is also a place to accumulate many toxic substances. Thus, they can cause illness or death to organisms.

In Vietnamese natural aquaculture ponds, microplastics were prevalent in bivalves. Doan et al. (2021b) reported microplastic amounts from 1.0-2.4 items.g⁻¹ in the green mussel in the three locations in North, Center, and South Vietnam (Nam Dinh province, Hue city, and Binh Dinh province). In contrast, Nam et al. (2019) found a value of 2.60 items.individual⁻¹ in *Perna Viridis* in Thanh Hoa province. Other studies revealed the microplastic concentrations in clam (*Meretrix Lyrata* Sowerby) (13.79±1.06 items.individual⁻¹) in the Mekong Delta River (Gia Hang et al., 2021) or the Red River clam (ranging from 0.25±0.16 to 0.67±2.98 items.individual⁻¹) (Hue et al., 2021).

The Ba Lat estuary is an essential North Vietnam aquacultural zone. Thus, microplastics in the Ba Lat sediment (2,188±1,499 items.kg⁻¹ dw) may affect aquacultural products. Our research highlights the need to observe microplastics for creatures, particularly in the Red River's prime aquaculture ground, and to limit the quantity of plastic waste released into the environment.

4. Conclusions

According to the data collected throughout four sampling campaigns in 2020, microplastic concentrations in the Ba Lat estuary's surface sediment were from 800 items.kg⁻¹ dw (August, wet season) to 3,817 items.kg⁻¹ dw (December, dry season), averaging 2,188±1,499 items.kg⁻¹ dw. It was discovered that microplastics fell into two main shape categories: fibers (94%) and fragments (6%). Microplastic sizes were found mainly in the range of < 500 µm (69%) for fibers, and mostly in the range of
1,378-38,5691 m² for fragments. Different microplastic colors were observed, of which blue (36%), white (21%), and red (11%) were the most abundant. In terms of polymer type composition, five types (PP, PE, PU, PA, and PS) were recognized, of which PE and PP were predominant.

Our results revealed an unclear seasonal variation of microplastic concentrations that may suggest complex microplastic sources at the Ba Lat site. Population growth and industrialization may strongly impact microplastic characteristics in the Ba Lat estuary's sediment, an important aquaculture zone. Our research highlighted the importance of monitoring organisms contaminated with microplastics, especially in the Red River aquaculture zone and Vietnam. Our findings further emphasized the importance of controlling plastic garbage discharged into the ecosystem.

Acknowledgments

The research fundings from the Graduate University of Science and Technology (Grant number: GUST.STS.DT 2020-MT01).

Credit authorship contribution statement

Le ND: Methodology, Sampling, analysis, Funding acquisition, writing for the draft. Hoang TTH: Sampling and analysis, data analysis, writing for the draft; Duong TT: Methodology, writing for the draft; Phuong NN: Formal analysis, writing for the draft; Le PT: writing for the draft; Nguyen TD: methodology; Formal analysis; writing for the draft; Phung TXB: data analysis; Le TMH: Sampling and analysis, Le TPQ: Methodology, sampling, analysis and writing for the draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

