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ABSTRACT

Weather and Climatological studies are critical in assessing atmospheric conditions like storms and cyclones.
Integrated water vapor (IWV) is an important greenhouse gas in the atmosphere responsible for the Earth's radiative
balance. Global Positioning System (GPS) observations have been used for monitoring the IWV variability. The IWV
estimations are carried out using ground-based GPS observations at Hyderabad (17.4°N, 78.46°E), India using GAMIT
software. GAMIT is GPS analysis software developed by MIT, USA. It takes input as GPS observation data containing
pseudo ranges, navigation data containing ephemeris, clock errors, g-files with orbital information, and meteorological
data like pressure, temperature, and relative humidity to calculate IWV. However, estimating IWV for forecasting
applications is impossible with a GPS system. This paper introduces a methodology to predict IWV during normal days
and severe cyclonic events using machine learning (ML) techniques. Rational quadratic Gaussian process regression
(RQ-GPR) and neural network (NN) algorithms are considered for identifying suitable ML prediction algorithms over
tropical conditions. Meteorological surface data like Pressure, Temperature, and relative humidity are given as input to
the machine learning models. The IWV values computed from GPS are compared with the model's predicted values.
RQ-GPR model is showing good accuracy with the IWV values calculated from GPS against the NN model. The
correlation coefficient (p) achieved for RQ-GPR is 0.93, and 0.86 is obtained for the NN model.

The RMSE (Root Mean Square Error) of the predicted IWV value with RQ-GPR is better than the NN model. We have
obtained mean square error (MSE) and mean absolute error (MAE) as 18.146 kg/m” and 3.0762 kg/m? for RQ-GPR and
27.509 kg/m* and 3.9102 kg/m’ for the NN model which is showing RQ-GPR is a suitable model for forecasting
applications. The HUDHUD cyclonic event that occurred in October 2014 is considered for testing the proposed ML
algorithms. RQ-GPR model has better results in the Prediction of IWV than the NN model. The RMSE value obtained is
2.837 kg/m® for RQ-GPR and 3.327 kg/m” obtained from the NN model. The results indicate that the RQ-GPR model has
more accuracy than the other IWV prediction models. The prediction results are helpful for meteorology, weather, and
climatology studies and useful to improve the accuracy of the regional numerical weather prediction models.

Keywords: Integrated water vapor, machine learning, prediction, rational quadratic Gaussian process regression,
neural networks.

1. Introduction atmosphere, radio waves get delayed due to

While traveling through the Earth's refraction (Lanyi, 1984). Water vapor, an
essential constituent of the troposphere, is

*Corresponding author, Email: sridhar.m@kluniversity.in respon51b1e for the delay of the 51gnals. The
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study of detailed analysis of water vapor in
the atmosphere results in a better estimate of
precipitation, leading to improved -climate
change analysis (Duan et al., 1995).

The presence of water vapor in the
atmosphere strongly affects the Earth's
radiation budget and temperature. Global
mean temperature increases with CO, and
other greenhouse gases in the atmosphere (Dai
et al., 2001). Warming becomes double the
available water vapor if the CO, doubles in
the atmosphere (Houghton et al., 2001).
However, in comparison with other
greenhouse gases, water vapor is highly
variable (Held and Soden, 2000; Dai et al.,
2000; Trenberth et al., 2003). Integrated water
vapor (IWV) is the total atmospheric water
vapor in a vertical column from the Earth's
surface to the top of the atmosphere. IWV is
expressed in kg/m2 (Ruckstuhl et al., 2007).

It is well known that Integrated Water
Vapor (IWV) influences weather and climate
significantly and is responsible for global
warming, changes in the water cycle, etc.
(Kiehl and Trenberth, 1997). The evolution of
the Global positioning system (GPS) and
Global Navigation Satellite System (GNSS)
receivers improved the accuracy in measuring
integrated water vapor in the atmosphere
compared to conventional methods like water
vapor radiometers, radiosondes, etc. Many
researchers have used GPS/GNSS receivers to
estimate IWV (Bevis et al., 1992). Hong et al.
(2015) studied the distribution of precipitable
water vapor using 952 GNSS stations spread
over China. Diurnal and semi-diurnal
harmonic variations of IWV using 16 GPS
stations over Russia were studied by Kalinkov
and Khutorova (2017). The study of
integrated water vapor (IWV) using
observations of a GPS receiver located at
VBIT, Hyderabad, India, has been analyzed
by Nirmala Bai et al. (2019).

Machine learning techniques  were
effectively implemented to develop models
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catering to the needs of predicting various
meteorological phenomena that occur in
nonlinear combinations of several processes
in the Earth's atmosphere (Bengio et al.,
2013).

Ghosh (2010) proposed an optimization
model, a machine learning technique called
Support Vector Machine (SVM), coupled with
a Probabilistic Global Search Algorithm
(PGSL) for statistical downscaling and
predicted monsoon rainfall of North-Eastern
India. A gradient boosting algorithm is
implemented to correct the satellite-derived
column water vapor error (Just et al., 2020).
Jain et al. (2020) researched precipitable
water vapor using the LSTMs algorithm and
found an RMSE of 0.098 mm. Senkal et al.
(2012)  investigated the modeling of
precipitable water vapor using the ANN
algorithm over Turkey. They achieved a
correlation coefficient between predicted and
actual values of 94% for training data and
91.84% for testing data. Benevides et al.
(2019) worked on predicting rainfall using
GNSS precipitable water vapor by applying a
neural network algorithm and found a better
correlation from 63% to 72%. In contrast, the
inaccurate positive rate is 36%, down to 21%.

Compared to ANN, Gaussian Process
Regression (GPR) technique was an effective
tool for handling nonlinear, complex
classification and regression problems and,
hence, attracted significant attention in the
machine learning domain in recent years
(Hong et al., 2015).

Moreover, the GPR model was proved to
be the better method when compared to the
particle filter (P.F.) method for bearing
remaining life prediction (Hong et al., 2015).
As an alternative to GPS, Suparta and Alhasa
(2016) developed a model using an Adaptive
Neuro-Fuzzy Inference System (ANFIS)
technique and estimated precipitable water
vapor (PWV) with a 99% confidence level
over peninsular Malaysia. Gao et al. (2017)
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reported that the GPR squared exponential
model showed 94.8% accuracy, while other
GPR models were less accurate in estimating
rock fragmentation (Gao et al, 2017). In
addition, studies of six-year rainfall data in
South Tengerang, Indonesia, Suparta, and
Samah (2020) predicted rainfall using the
ANFIS time-series technique with 80% data
validity.

2. Data and Methodology

A NOVATEL dual-frequency GPS
receiver GSV4004VB is available at Vignana
Bharathi Institute of Technology (VBIT),
Hyderabad
(https://www.navtechgps.com/novatel _gpstati
on_6 series receiver/). This works in
L- band. Two GPS signals are transmitted on
L1 = 1575.42 MHz and L2 = 1227.60 MHz
frequencies. The raw data from the receiver is
converted into  Receiver  Independent
Exchange (RINEX) format using Convert4
software. The receiver worked from the year
2013 to 2016. The 2014 year's GPS data is
considered for this work. A Mini boundary
layer mast (MBLM) is available at VBIT.
Hourly values of Pressure (P), Temperature
(T), and Relative Humidity (R.H.) are taken
from the MBLM. The data description is
explained in Nirmala Bai et al. (2019). The
meteorological data between December 2013
and November 2014 were obtained from Mini
Boundary Layer Mast (MBLM), operating on
the same campus. The P, T, and R.H. are used
as input to the models, and IWV is the target
output. GPS analysis at MIT (GAMIT)
software version 10.61 estimates IWV values
http://geoweb.mit.edu/gg/. GAMIT software
consists of a collection of programs that
works on phase data to estimate three-

dimensional relative positions of ground
stations and satellite orbits, atmospheric
zenith  delays, and earth orientation

parameters. The software is designed to run
under UNIX operating system. We have used

LINUX 14.04 LTS operating system for
GAMIT software. GAMIT software inputs
GPS and meteorological data and calculates
tropospheric dry, wet delays, and P.W values.
IWYV values are calculated in Nirmala Bai et
al. (2019).

Tropospheric delay of the signal is caused
due to the changing refractive index along the
signal's path, which depends on the
meteorological parameters. The transmission
delay in the zenith path, Zenith Total Delay
(ZTD) present in the troposphere contains two
parts: dry or hydrostatic delay (ZHD) is of all
atmospheric constituents except water vapor,
and wet delay is produced with the water
vapor present in the lower troposphere
(ZWD). ZTD is obtained from the GPS data
by using the Vienna mapping function. ZHD
is calculated using three models, e.g., the
Saastamoinen model, the Hopefield model,
and the Black model (Saastamoinen, 1973;
Hopfield, 1971; Black, 1978). GAMIT
software incorporates the most widely used
Saastamoinen model for data processing. (Bai
and Feng, 2003) has suggested the following
equations for the delay calculation using this
model (Ds).

Ds = 0.2277 F(:'H) (1)

F(o,H) =1 —0.0026Cos(2¢) — 0.00028H (2)
where the latitude of the station (radian) is
represented by ¢, H is the height from the
mean sea level (km), and the pressure is
represented by P (hPa). Using Z7D, the wet
delay (ZWD) is calculated from the following
equation,
ZWD =ZTD — ZHD 3)
From equation (3) PWV can be calculated

as

PWV =[I(T,,)ZWD 4
where, [[(Ty) is a dimensionless quantity. 7,
is the weighted mean temperature of the
atmosphere which is helpful for the
computation of [[(7,). Error in the surface
influences PWV

pressure measurements
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values computed with the Saastamoinen
model and is ~1.01 mm (Bai and Feng, 2003).

A default 10° angle has been taken for the
data processing in the GAMIT software for
the zenith cut-off angle. If the angle is more
than 10° gives dry bias in the PWV
calculation (Emardson et al., 1998). Following
equation (5) the IWV values are obtained from
the PWV as,

IWV =PWV xd

(6))

where d is the density of liquid water.

The obtained IWV wvalues can then be
compared with the prediction's RQ-GPR
model and NN model.

3. Gaussian Process Regression (GPR)

A neural network is a group of neurons in
many layers. A neural network is also called
an artificial neural network (ANN). ANN is
an artificial adaptive system. They can think
like human brains. ANN networks can change
their operation based on the required
application. Here we have chosen a medium
neural network that works with increasing
first layer setting.

Neural network-based algorithms are
widely used in engineering to improve the
prediction problem's solutions (Wang and
Alrueyemi, 2021). However, the main
drawback of using this algorithm is overfitting
which can be solved with weight adjustments
(Williams, 1998; Uusitalo, 2007).

The Bayesian network could be the better
option for the neural network solution, which
uses the Bayesian interface to evaluate the
probability (Recknow, 1999). But this method
shows uncertainty.

Gaussian process regression shows a better
solution to this uncertainty. Advantages of the
RQ-GPR  method over Bayesian are
simplicity, nonlinearity, and straightforward
generalization (Wang and  Alruyemi,
2021). Gaussian process (G.P.) is a random
process containing arbitrary parameters with
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fixed numbers that carry a joint Gaussian
distribution. A GP is described by mean
function p(x) and covariance function C(x, x’).
The equations used in this study are taken
from the following (Hong et al., 2015).
f)~GP(u(x),C(x,x"))  (6)
u(x) = E[f (x)] (7)
Clx,x") = E[(f () — @) (F (x") — ux"N] (8)
where (x, x") € X are random variables. X
represents the input parameters like Pressure,
Temperature, Relative Humidity, IWV, etc.,
applied to the machine learning algorithms.

Given priori information related to the GP
and a sequence of training points

D= {(x, fix))|i=1,2,......n}, ;€ R(n
is dataset number. Rassmusen and Williams
(2006) have given the posterior distribution by
applying the limitation on joint priori
distribution. A GP model, along with noise,

yi=f(x) +e ©)
where e, ¢ is called additive Gaussian noise N
(0, o).

A new test input x*, training output y and
test output y* can be created with Joint
Gaussian priori distribution as

2 X
[~ (0[5 L5 ) a0
where, C(X, X) is n - order symmetric positive
definite covariance matrix, C(X, x*) is the n x
1 covariance matrix of the test input x* and
the training input X and covariance C(x*, x*)
is the covariance matrix of the test input x*.

From the posterior probability formula for
a given input x* and the training set D, the GP
can evaluate output y*

y*|x*,D ~N (uy,00+) (11)
py =Cx*, X)) (CX,X)+ aiD7 'y =
ia; C(xt x*) (12)
where, u,+ o,+ are expectation and variance of
y* and a = (C + o°,)'y, where I is the
identity matrix. A covariance function is the
main parameter responsible for creating the
functions used to provide the relationship

between the data.
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There are many covariance functions like
Squared  Exponential  (S.Q.), Rational
Quadratic (R.Q.), and Matern class of
covariance (Rassmussen and Williams, 2006;
Liu et al., 2009). In the present study, R.Q.
covariance function is used. It is described
below

i 2\
Cro(xi,x)) = o7 (1 T La) ) (13)

where a, 1,62, M are hyperparameters, i and j
represent the i and ;™ vector in the input
matrix [X].

The performance of the selected methods
can be estimated by using Mean Squared
Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and
R-Squared (R?). Formulas are described
below, following (Alghamdi et al., 2020).

MSE =~ %I, (v; - 9)° (14)
RMSE = |Zm10i=90? (15)
MAE = Zmlfd (16)
MAPE =23V, |yl'y;fix100% (17)
R2=1 — 200 (18)

Y (vi—y)?
where y; is the observed IWV, ¥; is the
predicted IWV, y; is the mean IWV, and N is
the number of data samples.

The covariance matrix C (x, x") contains
the IWV data derived from the GPS
measurements containing no. of hours of the
day and day of the year. The mean function
u(x) represents the average value of the taken
IWV data and covariance function C (x, x')
have been derived using IWV data. The
covariance function derives the IWV points
that are the same as predicted IWV value and
have similar outputs.

4. Results and Discussion

We have used the Rational Quadratic GPR
(RQ-GPR) model and the Medium Neural

network (NN) to predict IWV. Meteorological
data of Hyderabad station is given as input
and output as IWV values to the models as
mentioned above. The met data includes Year,
DOY, Hour, Pressure, Temperature, Relative
Humidity, and IWV. The cross-validation data
splitting method is adopted in our analysis to
validate the proposed model accurately and to
overcome the shortcomings of the bootstrap
method (Burman (1989); Kohavi (1995); Kim
(2009)). The data samples considered as input
to the proposed model during 2014 (January
to December) are split into training and
testing data samples using the cross-validation
method, respectively, with 85% and 15%. The
methodology implemented with different
algorithms is illustrated in the flowchart, as
shown in Fig. 1.

Figure 2 shows the details of the input data
and output data. GPS data from the GPS
receiver and meteorological data from the
MBLM are considered to calculate WV
values at the VBIT station. The met data used
for the processing of IWV are Pressure,
Temperature, and Relative Humidity have
been taken as input. Fig. 2 contains (a) Time
series plot of the pressure data from the
MBLM for 2014. (b) Time series plot of the
Temperature data from the MBLM data for
2014. (c) Time series plot of the Relative
Humidity for the year 2014. (d) GPS-derived
IWV values with meteorological data for
The year 2014. MBLM gives pressure,
temperature, and relative humidity data every
hour.  Pressure
summer time and

data is low during
high  during
Temperature is high during pre-summer and
summer. Low relative humidity is observed
during summer. IWYV values were observed

winter.

high during summer compared to other
seasons.
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Generate RQ GPR

Load

Training
/ Test
vector

Input Pre-processing data
Data samples
Surface Met » gathering
data
Year , DOY,
Hour, Min, v o
Sec, Pressure,
Temperature,
Relative
Humidity v v
Training Testing
GPS derived vector vector
IWYV time
series data v 1
Normalized
data

Training
completed
9

v \

Kernel selection and

5-fold cross validation Predicted
Initialization IWV values
A

Figure 1. Flowchart for estimation of PWV using RQ-GPR and NN algorithm

Figure 3 shows the predicted IWV values
plotted with the RQ-GPR and NN models.
IWV values predicted from the RQ-GPR
model show minor deviation from the NN
model-derived IWV values. Green color gives
RQ-GPR predicted IWV values, and the NN
model predicted IWV values are represented
with black. Both the models show high IWV
values during the summer compared to other
seasons.

Residual is described as the error between
the predicted data and the actual data. Figure
4 shows the residuals calculated by taking the
difference between each actual and estimated
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IWV value. The variation of the RQ-GPR
model shows between +12% to -23%,
whereas, for the NN model, the variation is
+15% to -29%. Thus, the RQ-GPR model is
showing minor errors compared to the NN
model.

In Fig. 4, the two models showed a low
positive residual, indicating that the observed
value is more than the predicted value. In
contrast, the negative residual indicates that
the observed value is less than the predicted
value. Thus, the RQ-GPR model has fewer
errors than the NN model.
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Figure 2. Time series plot of a) Pressure (Pink color), b) Temperature (Green color), ¢) Relative Humidity
(Blue color), and d) GPS-derived IWV (Red), for the year 2014, including Training and Testing period.

Data Available at VBIT, Hyderabad
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Figure 3. The time series plot of RQ-GPR predicted
IWV (Blue) and NN model (Black) for 2014
at VBIT, Hyderabad

Fig. 5 shows the time series plot of GPS-
derived IWV (Red), RQ-GPR-predicted IWV

15

&

Residual WV

o

20}

28y —— Rational Quadratic GPR |

= Neural Network

30t L s i
0 November December

True WV

October

Figure 4. Residual plot of RQ-GPR model (Blue)
and NN mode is with (Black) for the testing period
only i.e., from October, November and
December 2014 at VBIT Hyderabad

(Blue), and NN model predicted (Black) for
the year 2014 that including the training and
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testing period. Data from January to
December 2014 were divided into training and
testing periods. The training period is 85%,
and the testing is 15%. Fig. 5 shows the
predicted IWV values plotted with the RQ-
GPR model and NN model against GPS-
derived IWV values. Figure 5 indicates the
variation of IWV values during the testing
period. IWV values predicted from the RQ-
GPR model are followed by GPS-derived
IWYV values.

—GPS W
~——Rational Quadratic GPR
—Neural Network

IWV (kg/m?)

0 October November

2014 (Time)

Figure 5. Time series plot of GPS derived IWV
(Red), RQ-GPR predicted IWV (Blue), and NN
model predicted (Black) during the testing period,
i.e., during October, November, and December
2014 at VBIT, Hyderabad

NN model predicted IWV values show
some deviation from the actual IWV values.
The blue line represents the GPS-derived
IWYV values, whereas the green and red colors
give RQ-GPR predicted and NN model
predicted IWV values, respectively. It is
concluded that the RQ-GPR model is the most
suitable IWV prediction model using GPS
observations.

The validation of these models can also be
seen from the correlation plots in Fig. 6(a) and
Fig. 6(b). The details of the two models

December

are given in Table 1. The scatter plots of WV
values were predicted using RQ-GPR and NN
models, as illustrated in Fig. 6. The IWV
values estimated with the RQ-GPR model
match the actual data. On the other hand, the
NN model shows quite a deviation from the
actual data compared with the RQ-GPR
model. The correlation coefficient (p)
obtained with the RQ-GPR and NN model for
the testing set is 0.93 and 0.86, respectively.

The performance of the proposed model is
evaluated using the statistical analysis metrics
functions such as mean average error (MAE),
mean absolute percentage error (MAPE), root
mean squared error (RMSE), and R* (Gao et
al. (2017); Alghamdi et al. (2020); Wang and
Alruyemi (2021)). The MAE shows how
models overestimate or underestimate the
measured values. The RMSE describes the
average difference between the predicted
value and measured value, the MAPE defines
the accuracy of the models by error
percentage, and the coefficient of
determination R” describes the degree of
association between the predicted and the
measured values.

The mean difference between the predicted
and measured values is described as RMSE
following (Gao et al., 2017). The RQ-GPR
model  calculated RMSE  value is
4.2598 kg/m’, less than the NN model with
5.2449 kg/m’. Estimation of the measured
values is given by Mean Absolute Error
(MAE). The MAE value obtained from RQ-
GPR is less than the NN model. The Mean
Square Error (MSE), MAPE, and R-squared
(R%) also give better accuracy than the NN
Model. The details of the parameters are
described in the Table 1.

Table. 1 IWV prediction using RQ-GPS and NN models

MODELS MSE (kg/m?) | RMSE (kg/m?) R’ MAE (kg/m®) | MAPE (%)
NN MODEL 27.509 5.2449 0.86 3.9109 13.45
Rational Quadratic GPR (RQ-GPR) 18.146 4.2598 0.93 3.0762 8.97
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Figure 6. Scatter plots of IWV values predicted using RQ-GPR and NN model for 2014 at VBIT, Hyderabad

4.1. Prediction of IWV during HUDHUD
cyclonic storm

Short-term changes in the IWV cause
severe effects in the atmosphere, leading to
rainstorms, snowstorms, cyclonic storms, and
depression. We have considered data on
HUDHUD cyclone that occurred in the year
2014. Hudhud was a severe cyclonic storm
that developed over the Bay of Bengal from
7"-14" October 2014. On 7" October, it
started with depression with a wind speed of
25-30 kt, and it changed its state to Cyclonic
Storm on 8" October with a wind speed of
40-45 kt. Then, the Severe Cyclonic Storm
(SCS) was observed with a 45-60 kt surface
wind speed on 9" October and Very Severe
Cyclonic Storm (VSCS) on 10" October and

11" October with a surface wind of 60-100kt.
Finally, it reached landfall on 12" October
2014, at Vishakhapatnam, with a surface wind
of 100-40kt. A detailed description of the
cyclone is described in Table 2.

HUDHUD cyclonic storm has been
analyzed by taking GPS and Met data for
August, September, and October 2014.
August and September data is considered
training data, and October data is testing. Fig.
7 shows the relationship between IWV and
wind values, indicating that the IWV and
wind values are against every day during the
event. The variation indicates that the cyclone
started on 7™ October 2014, with Deep
depression (DD). The IWV values varied
slowly, and there was an increment in the
wind data.
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Table 2. Hudhud cyclonic storm description

DAY Cyclone Intensity Number Surface Wind (kt) Cyclone Category
07" October,2014 1.5-2 25-30 D-DD
08™ October, 2014 2-3 30-45 DD-CS
09" October, 2014 3-3.5 45-55 CS-SCS
10™ October, 2014 3.5-4 60-75 SCS-VSCS
11™ October, 2014 4-5 75-100 VSCS
12" October, 2014 | - 100-40 VSCS-CS
13" October, 2014 | - 30-25 DD-D
14" October, 2014 | e 25-20 D-low pressure

Deep Depression (DD) turned into a
Severe Cyclone (SC) and severe cyclone
storm (SCS). The wind data also increased,
whereas IWV values decreased during the
Severe Cyclonic Storm (SCS). IWV values
were shallow during the Very Severe
Cyclonic Storm (VSSC), and the wind values

were tremendous. From the figure, it can be
concluded that the IWV and wind values
show opposite trends during cyclonic storms.
From Fig. 7, RQ-GPR model-derived IWV
values show good matching with the WV
data computed from GPS against NN derived
model.

50
—40 M
(3]
E

(=]
= 30
20
Rational Quadratic GPR vscs | vV
= Medium Neural Network
10 1 |
0 7 Oct 8 Oct 9 Oct 10 Oct 11 Oct 12 Oct 13 Oct 14 Oct
2014 (Time)
100 7 pp cs scs DD D |

80 - =
)
E' 60 _/—/JJ_ .
= J
2 40 _/-’_/_ 1

20 - VSCS |

———WIND
0 |
0 7 Oct 8 Oct 9 Oct 10 Oct 11 Oct 12 Oct 13 0ct 14 Oct
2014 (Time)

Figure 7. a) Time series plot of HUDHUD cyclone analysis from 7 October to 14 October over
Hyderabad using GPS calculated IWV (Red), RQ-GPR model predicted IWV (Blue), and NN model
IWV (Black). b) Wind values plotted during the HUDHUD cyclone
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Figure 8 shows the time series plot of all
three data sets. IWV data calculated from the
GPS is the actual data calculated using
GAMIT software used as the reference data.
August and September month IWV variations
are quiet. During the cyclone, the variation is
more before the peak moment of the cyclone.
When it reached the Very Severe Cyclonic
Storm (VSCS) due to the heavy rainfall, the
IWV values decreased drastically. Again,
during the depression and landfall time, the
IWV values have increased to the typical
values. Fig. 9 shows the scatter plot of the
variation of IWV during the HUDHUD
cyclonic storm. The data from August 2014 to
October 2014 were considered for the
analysis. 85% of the data is taken for training,
while the last 15% is considered for testing.
With this criterion, the HUDHUD cyclone has
been studied. The GPS-derived IWV values
correlate with the RQ-GPR model in Fig. 9 (a)
whereas GPS-derived IWV values correlate
with the NN model in Fig. 9 (b).

The correlation coefficients (p) obtained
for RQ-GPR and NN models) is 80% and
60%, respectively. With RQ-GPR, a

(a) RQ-GPR model

60

55

»
o
L

w
(2]
L

Predicted IWV (kg/m?)
B
o

20 1 R%=0.80

10 20 30 40 50 60
GPS derived IWV (kg/m?)

maximum matching can be seen with GPS-
derived IWV data during the cyclone period,
whereas only 60% correlation matching is
noticed for the NN model. RMSE error for the
RQ-GPR model is also less than the NN
model, as mentioned in Table 3.
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Figure 8. Time series plot of HUDHUD cyclone
analysis by taking 3 months data prior to the
cyclone and on the cyclone time (August,
September and October) over Hyderabad using
GPS calculated IWV (Red), RQ-GPR model
predicted IWV (Blue) and NN model IWV (Black)
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Figure 9. is the scatter plots of GPS-derived IWV values predicted by using the RQ-GPR and NN model
during HUDHUD cyclone
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Table 3. Prediction of IWV during HUDHUD
cyclonic event

MODELS RMSE (kg/m’) R’
Rational Quadratic GPR
(RQ-GPR) 2.837 0.80
NN MODEL 3.327 0.60

5. Conclusions

This study has shown the efficacy of the
GPR technique as a new model for forecasting
in climate and weather forecasting
applications, especially in predicting IWV.
This model is also helpful for the regions
where the weather is similar to us. We have
considered the Rational Quadratic GPR (RQ-
GPR) model, which correlates with the NN
model for predicting IWV. In the present
work, the analysis has been considered for the
year 2014. Data for January to December
months. The models' accuracy is evaluated
using performance prediction metrics like
MAE, MSE, RMSE, and R”. 1t is found that
the RQ-GPR model accuracy is better than the
NN model. Analysis shows that the RQ-GPR
model obtained an R* of 0.93, much higher
than the NN model's R* of 0.86.

RQ-GPR predicted values are very much
closer to actual data. Using the RQ-GPR and
NN model, we have taken the HUDHUD
cyclonic event to predict the IWV values. RQ-
GPR-derived IWV values show more
accuracy than the GPS-derived IWV values,
whereas; the NN model shows more
deviation. Correlation studies have been done
during HUDHUD cyclonic events. RQ-GPR
algorithm shows a good match of 80%
correlation with GPS-derived IWV. NN
model gives only a 60% correlation, which is
unsuitable for forecasting. Many researchers
have used other models like ANFIS model,
decision tree, and random forest, but they
have drawbacks when selecting the
parameters for better accuracy. In future work,
more atmospheric events will be investigated
for predicting IWV. The prediction results
would help to investigate the climate and
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weather conditions for providing necessary
weather alerts. If GPS data is unavailable in
remote areas, this model is constructive for
estimating IWV.
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