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ABSTRACT

We applied the automatic detection and picking of P- and S-wave to one-year continuous raw seismic data from
17 seismic stations in the Muong Te area, northwestern Vietnam. The deep learning picker, Earthquake Transformer,
has performed automatic picking of P- and S-waves, and phase association, then we located the earthquakes using
Hypoinverse and NonLinLoc programs. The newly derived catalog consisted of 893 events, which is significantly
higher than the number of events in the manual catalog. From this new catalog, we can observe more earthquakes
related to the Muong Te My 4.9 earthquake on June 16, 2020, and the earthquake activity in other faults such as the
Dien Bien Phu and Muong Nhe faults. The extended catalog can further study the seismogenesis and the seismic
velocity structure of the crust beneath northwestern Vietnam.

Keywords: Muong Te earthquake, machine learning, EQ Tranformer, Dien Bien Phu fault, upstream Da river

fault, earthquake monitoring.

1. Introduction

In recent years, the rapid development of
machine learning algorithms, especially
neural networks and deep learning, has
allowed for new improvements in various
fields of science. Recent advances in machine
learning algorithms have also been applied to
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the seismological aspects, as outlined by
Kong et al.(2019). Among the various
applications of neural networks and deep
learning, automatic earthquake detection and
phase picking are significant problems in
modern seismology, which are currently
attracting  attention from seismologists.
Earthquake detection and phase picking can
be considered one of the first subjects of
seismology study since digital seismometers
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were used, with the first algorithm being the
well-known  short-term  average/long-term
average (STA/LTA) method (Allen, 1978).
This algorithm is still widely used because of
its effectiveness and ease of application to
seismic data compared to other methods
(Trnkoczy, 2009). Other traditional pickers
follow a similar approach to detect
earthquakes: define a function to represent the
features of incoming earthquake signals and
use a preexisting threshold to detect and pick
the phase (Baer and Kradolfer, 1987; Baillard
et al., 2014; Cichowicz, 1993; Saragiotis et
al., 2002; Sleeman and Van Eck, 1999).

In contrast to these methods, machine
learning pickers, which use deep learning in
the algorithm, do not define a specific
function but rely on the “training” process
from a large amount of data, i.e., hundreds of
thousands to millions of waveforms. The three
notable deep learning pickers are a general
phase generalized seismic phase detection
(GPD) (Ross et al., 2018), PhaseNet (Zhu and
Beroza, 2019), and the current state-of-the-art
Earthquake Transformer (EQT) (Mousavi et
al., 2020). These deep-learning-based pickers
have improved the quantity and quality of
earthquake detection, and phase picks in
various studies (Liu et al., 2020; Wang et al.,
2020; Xiao et al., 2021; Zhou et al., 2021).
Moreover, a new study evaluating the
performance of deep learning pickers
indicated that the Earthquake Transformer
could be considered the most reliable picker
for local earthquakes within an epicentral
distance of about 350 km (Miinchmeyer et al.,
2021). In addition to machine learning pickers
using global datasets, a neural-network-based
picker was developed using the local seismic
data in the Lai Chau area, northwestern
Vietnam. However, owing to the small
number of events, the model shows a
relatively low accurate positive accuracy
(Wiszniowski et al., 2021).

On 16 June 2020, a moderate-sized

earthquake of local magnitude (M) 4.9 struck
the Muong Te area, located in the
northwestern part of Vietnam. According to
the compiled seismicity catalog in the
Vietnam region (Nguyen et al., 2019), this
was one of the strongest earthquakes in the
Muong Te block over 100 years ago. The
main shock has caused some damage to
infrastructure and public panic in the area near
the source (Fig. 1). This earthquake was
preceded and followed by several foreshocks
and aftershocks with magnitudes greater than
1.0. The earthquake sequence was close to the
junction of the Upstream Da River fault,
Muong Te fault, and several sub-meridian
faults (Fig. 1). In the Muong Te block, the
most notable fault in the region is the N-S
trending Dien Bien Phu fault which is
considered a boundary between the Simao and
Indochina blocks. In addition, the Muong Te
region comprises three other remarkable rank
Il faults, including the Upstream Da River
fault, Muong Te fault, and Muong Nhe fault
(Nguyen et al., 2019). Owing to the presence
of these faults, a more completed earthquake
catalog is needed to deepen the understanding
of seismogenic fault zones in the Muong Te
block and adjacent areas.

In this study, we applied a deep-learning
picker - the EQT phase picker (Mousavi et al.,
2020) to build a more completed earthquake
catalog for the Muong Te region. The picker
was applied to continuous waveform data, and
the phase picks were associated with forming
an event, followed by locating the event using
traditional locating methods. The number of
earthquakes in the new catalog has increased
by at least 13 times compared to the original
catalog, which reveals that the fault system
was more active than in previous findings. In
a further study, the new catalog provides an
opportunity to study in more detail the
seismogenic structure, fault geometry, and
seismic hazard assessment for northwestern
Vietnam.

431



Vietnam Journal of Earth Sciences, 43(3), 430-446

23°00'N 1%

22°45'N .

22°30N M52

22°15'N 4

22°00'N ¥ 4

21°45'N ¢

| — Rank Il fault
Rank Ill+ fault
Seismic station A
M4.9 Muong Te Eq. | # f’

o S (; A )

21°30'N 4§

102°15'E 102°30'E

102°00'E

1 1
1500

2000 2500 3000

3500

Elevation (m)

Figure 1. Map showing the study region; the faults and their ranks are from Nguyen et al. (2019); black
triangles indicate the seismic stations used in this study

2. Data and Method
2.1. Data
2.1.1. Seismic data

We have collected the 3-component
seismic waveforms from 17 Muong Te area
seismic stations from January to December
2020 (Fig. 1 and Table 1). Among these
seismic stations, three stations are equipped
with  highly  short-period seismometers
(CNUD, MMOD, MLAYV), while the rest are
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equipped with broadband seismometers (MTE,
MTE2, MLVB, CCA, NNA, NNU, MLVB,
and stations start with “VN”). Most seismic
stations were permanently or temporarily
deployed before the Muong Te earthquake, so
they operated for the entire experiment time.
In contrast, station MTE2 was deployed after
the earthquake by the Institute of Geophysics
(IGP) - Vietnam Academy of Science and
Technology (VAST). As described by

Mousavi et al. (2020), the EQT phase picker
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was built using data from various types of
seismometers, including those used in our

Table 1. List of the seismic stations used in this study

study, so the selector would be expected to
work well with our data.

No Station |Seismometer| Latitude | Longitude [Elevation Total Arrival AIT (%) Distance from the
"| name type (degree) | (degree) (m) |detections (T) | picks (A) mainshock (km)

1 CCA | Broadband | 21.971 | 102.868 435 7608 518 6.81 61

2 | CNUD |Short period | 22.194 | 103.154 237 765 746 97.52 65

3 | MLAV |Short period | 22.042 | 103.154 232 573 212 37.00 74

4 |MLVB*| Broadband | 22.042 | 103.154 232 1241 495 39.89 74

5 | MMOD | Short period | 22.207 | 102.938 395 1360 266 19.56 46

6 MTE | Broadband | 22.379 | 102.825 349 9617 876 9.11 26

7 | MTE2 | Broadband | 22.486 | 102.618 244 4115 330 8.02 4

8 | NNA | Broadband | 22.291 | 103.16 281 9286 1194 12.86 62

9 | NNU | Broadband | 22.144 | 103.00 330 7242 1017 14.04 55

10 | VNOI | Broadband | 22.565 | 102.515 373 1265 89 7.04 14

11 |VNO2**| Broadband | 22.379 | 102.824 329 253 1 0.40 26

12 | VNO3 | Broadband | 22.393 | 102.954 544 73 47 64.38 38

13 | VNO4 | Broadband | 22.358 | 103.495 755 1318 282 21.40 94

14 | VNOS | Broadband | 22.292 | 102.834 38 67 6 8.96 31

15 | VNO7 | Broadband | 22.136 | 103.162 751 2410 475 19.71 69

16 | VNO8 | Broadband | 22.175 | 103.715 499 872 255 29.24 120

17 | VNI11 | Broadband | 21.67 | 103.635 231 895 73 8.16 139

Total 41807 7006 16.76

* same location with station MLAV
** same location with station MTE

2.1.2. Earthquake catalog

Before this study, the IGP monitored
seismicity in the region and compiled an
earthquake catalog. The catalog was built
using a routine workflow consisting of three
main steps: (1) earthquake detection,
(2) manual phase picking and storing the data
in the SEISAN format (Havskov and
Ottemoller, 1999), and 3) locating the
earthquake using traditional locating methods,
e. g. Hypoinverse (Klein, 2002) or Hypo71
(Lee and Lahr, 1972). The catalog consists of
67 events with local magnitudes (Mp) of
1.0 < ML < 4.9. To distinguish this catalog
from the resulting earthquake catalog from
this study, we named this catalog MTMAN,
whereas the new catalog was named MTEQT.
To analyze the use of the new method in
creating the earthquake catalog, it is necessary
to compare MTMAN and MTEQT based on
the following criteria: the number of
earthquakes, the source parameters (location

and original time) of the earthquakes that are
in both catalogs, and the phase pick. This
information and the result of this comparison
will be presented in the discussion part.

2.2. Method
2.2.1. The EQT picker

The EQT is a complicated deep learning
model for earthquake detection and phase
picking with excellent performance when
applied to local earthquakes (Mousavi et al.,
2020). The model was built using the
STanford EArthquake Dataset (STEAD),
which contains millions of labeled waveforms
that recorded local earthquakes within about
300 km from various instruments (Mousavi et
al., 2019). In this study, the network structure
of the EQT model is summarized and
simplified in Fig. 2, which includes a
multilayer encoder and three different
decoders. The encoder transforms the three-
component waveforms into high-level data
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that the model can recognize, while the
decoders are used to extract the features and
return the output. In this model, the output is
expressed in the form of three distinct
probabilities: earthquake detection, P-phase,
and S-phase. Readers may refer to Ross et al.
(2018), Zhu and Beroza (2019), and Mousavi
et al. (2020) for further detailed explanations
of how the neural network is designed to
process the seismic waveform data. In short,
the neural network used in these studies is

inspired by the neural network commonly
used in 1image processing, e.g., the
convolution neural network (CNN) (LeCun
and Bengio, 1995), long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
and transformer-attention (Vaswani et al.,
2017) because, in computer science, three-
component seismic waveforms (vertical and
two horizontal components) can be processed

similarly to RGB (red, green, blue) images.

7-layer Convolution 1D
|
Decoder 5-layer Res CNN
3-layer LSTM
)
2-layer Transformer
, v
LSTM - Attention LSTM - Attention
\J | !
7-layer 7-layer 7-layer
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Detection

Picking P-phase Picking S-phase

Figure 2. Simplified the network structure of the EQT model;
an explanation of the network structure is described in the text

The EQT is specialized in detecting and
picking the local earthquakes, therefore is
suitable for seismic waveforms recorded close
to the ecarthquakes with a distance to the
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hypocenters of less than 300 km. The training
data of the EQT model is the STEAD dataset,
in which the authors have used approximately
1 million earthquake waveforms and 300
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thousand noises recorded by seismic stations
with a variety of the source mechanisms,
tectonic regions, focal depths, magnitude sizes,
and seismic instrument types (Mousavi et al.,
2019). 113 thousand test waveforms have been
used to evaluate the detection ability of the
EQT phase picker, which resulted in 1 false
positive and O false negatives. In addition, the
model also showed minimal differences in P-
and S-phase picks compared to manual picking
(Mousavi et al., 2020). Based on these results
and characteristics, we chose the EQT model to
detect and pick the seismic phase from the
local seismic network in the Muong Te area in

4 1/2020 data

4 2/2020 data

one year for this study.
2.2.2. Data processing workflow

To apply the phase picker to detect Muong
Te earthquakes, we followed a process
illustrated in Fig. 3. The workflow includes 7
steps: (1)  collect waveform  data;
(2) preprocessing; (3) divide the data into
smaller sets (monthly data); (4) model
parameter calibration; (5) automatic picking;
(6) phase association and quality control, and
(7) locate the earthquakes and build the
catalog. We will briefly describe these steps in
the following.

Step 5

+ Automatic picking |

» Automatic picking |
Step 6 Step 7
Phase Locate the

. association Egﬁ} earthquakes

7 and quality and build the
control catalogue

» Automatic picking |

* Automatic picking |

» Automatic picking :

112/2020 data

Step 1
Collect Step 2 ‘,Step 3
waveform Data Divide the
data: preprocessing: whole-
+CCA + Normalize data into
+ NNU @ + Setsampling = monthly
+NNA rate to 20 Hz data
+ MTE
Step 4,
Model parameter
calibration

» Automatic picking |

Figure 3. Data processing workflow to apply the phase picker to Muong Te seismic data

The first step is to collect the waveform
data from 17 seismic stations from January to
December 2020. We collected the 3-
component seismic waveforms: the vertical
component Z and two horizontal components,
N and E. All components in one station (BH*,
EH*, and HH*) were collected to have
maximum available data. Among 17 seismic
stations, two pairs share the same location:
station MLAV and station MLVB; station
MTE and station VNO2 (Table 1 and Fig. 1).
Although the stations share the same places,
they were deployed at different times and
belonged to various projects, therefore, in our
seismic processing steps, we need to keep the
original name of the stations.

The collected data was in the raw format
without any processing. Therefore, we need to
preprocess the data (Fig. 4). The preprocessing

step includes 3 main techniques: bandpass filter
set the sampling rate of 20 Hz and
normalization. Figure 4a illustrates a one-day
waveform before and after applying a 2 Hz-5
Hz bandpass filter. As shown in the figure, the
seismic signals have been enhanced, and more
phases can be observed. Figure 4b shows an
example of the downsampling rate of a
waveform from 100 Hz to 20 Hz; generally, the
waveform does not show much difference after
downsampling. However, this step is necessary
to decrease the data size and fit the phase
picker's criteria. Lastly, we normalized the
waveform by demean (correct by the average
value) and detrended (correct the data trend)
techniques. Thus the maximum and minimum
value on the y-axis was changed (Fig. 4c).
These techniques are very common and
frequently used to process seismic data.
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Figure 4. Data preprocessing for the raw seismic waveforms; (a) bandpass filter in 2 Hz-5 Hz; note that
the figures show 1-day long seismic waveform, which include both noise and earthquake signals;
(b) Downsampling rate to 20 Hz; ¢) normalization (detrend and demean)

After being preprocessed, all the
waveforms were cut into one-day files and
grouped into subsets of one-month data. To
choose the appropriate model parameter for
the phase picker and check if the picker
worked properly, we used a small number of
data to do test runs. In this step, several one-
day waveforms were chosen to be applied
EQT picker, and then we modified the model
parameter accordingly. Compared to the
traditional pickers, the model parameters in
the deep learning model have less impact on
the result. The calibrated parameters include
the overlap between two waveforms to
prevent disruption of the data, detection
threshold, and P- and S-phase picking
threshold. These thresholds are the minimum
probability that the model accepts whether the
signal is an earthquake or detected as a P- or
S-phase. These minimum probabilities are
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chosen to be between 0 and 1. After several
trials, we selected the model parameters as
shown in Table 2. These optimized
parameters were similar to the suggestion
from the model description (Mousavi et al.,
2020), with an overlap of 0.2, an earthquake
detection threshold of 0.1, and the P- and S-
pick thresholds of 0.2.

Table 2. Final model parameters of the EQT picker

Parameters Value
Overlap 0.2
Detection threshold 0.1
P pick threshold 0.2
S pick threshold 0.2

The phase picker then processed the
waveforms. In this step, the EQT model
reads 3-component waveforms and outputs
the probability of earthquake detection,
P-pick, and S-pick every 15 seconds. When
a signal has a higher probability than the set
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threshold, the time of the seismic phase will  detected earthquakes, P- and S-phase pick
be recorded and plotted in spectrogram with their corresponding spectrogram
images. Figure 5 shows examples of images.
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Figure 5. Examples of earthquake detection and phase picking using the EQT model. The raw waveforms
are plotted without a bandpass filter. The spectrograms result from applying the Short Time Fourier
Transform (STFT) for the time-series waveform. Cyan lines mark the P arrivals, while purple lines mark
the S arrivals
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The phase picks were then associated and
grouped into events that were consequently
located using traditional earthquake location
methods: Hypoinverse (Klein, 2002) and
NonLinLoc (Lomax et al., 2009). We also
checked the quality of the phase picks and
detection by inspecting the visualization of
phase picks and the earthquake locations.
Figure 6 illustrates the performance of
earthquake detection on the day of the Muong
Te earthquake (16/6/2020) for stations VNO4
showing a side-by-side comparison between
the manually picked events and automatically
detected events. We can see that the automatic
method could detect all the events included in

VN.VNO4..HHZ Manual picking

the manual catalog, plus a significant number
of newly detected events. The seismic signals
have been identified accurately; we will
present more analysis based on a comparison
with the original catalog MTMAN to examine
the quality of the method. We also determined
the local magnitude of newly earthquake
catalog by applying the equation from Hutton
and Boore (1987):
M; =logAy_4 + 1.11log1o(r) + 0.00189r
- 2.09

In which, the Aw.o is the Wood-Anderson
zero-to-peak amplitude (mm) of the horizontal
seismogram; 7 is the epicentral distance (km);
and M is the local magnitude of the event.

VN.VNO4..HHZ Autopicking

9:59 -+

0 15 30 45 60 0

time in minutes N
s manual picks

automatic picks

Figure 6. The Z-component seismic waveform of station VNO4, when the M;4.9 Muong Te earthquake
occurred with the phase picks from the manual catalog (left) and automatic catalog (right). The red stars denote
the manually detected events; the yellow stars denote the events detected by the EQT model. This figure shows
that the automatic picker could detect all the events in the manual catalog, plus several new events

3. Result

3.1. Result of the earthquake detection and
Dphase picking

After the automatic picking step and phase
association, we have obtained a total of 1198
events with 4983 P picks and 4761 S picks.
Figure 7 shows examples of phase picking for
2 events (the Muong Te mainshock and an
earthquake with Mg 2.5) after we have
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associated the phases. Fig. 7a, ¢ shows a
typical case of the earthquake in which the
phases are pretty clear. In this case, the picks
obtained from automatic and manual picking
are very close, with the different times in most
stations being less than 0.5 seconds. On the
other hand, Fig. 7b, d shows a case not
detected in the manual catalog MTMAN,
mostly due to the waveforms being very
unclear with a high noise level. In fact, in the
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case of the Muong Te earthquake, most
earthquakes are quite small, with magnitudes
smaller than 4. Therefore, the signals are often
weak and missed under manual processing

a EQ 20200616061227 ML = 4.6 Raw

20

e |.L.«, m‘a[,fg.m,‘.,-v.w(.«,v\,x,.w\»- N R

|.-»~w~w .

404
MmMoD [

while they can be detected using the EQT.
This proves that the automatic deep-learning
picker is necessary and valuable to extend the
earthquake catalog.

EQ 20200712172132 ML = 2.5 Raw

’;ﬁ:‘f{ ,"‘l w\"‘ T

) wleawtea-sasi it W)
|
I

M

Figure 7. Examples of the phase picks for two events: the Muong Te earthquake (a) and an earthquake
with My = 2.5 (b, d). Figure a) and b) show the waveforms before applying the bandpass filter, while
figures ¢ and d show the waveforms under the bandpass filter of 2 Hz. In the first event, the manual picks

are marked with circles

The number of detections, which indicates
the event detection for each station, is plotted
in Fig. 8. From the figure, we can observe 4
stations with a high number of detections:
NNU, CCA, NNA, and MTE, in which each
station detects more than 8000 detections.
These four stations are located quite close to
the Muong Te earthquake, thus suggesting the
high number of detections relating to the
Muong Te earthquake sequence. This number
of detections is much lower than the number
of events due to an increased number of
detections that cannot be associated with other
phases from other stations, thus preventing the
formation of an event. The lower number of
detections in other stations might be due to the
further distance from the event. Therefore, the
signals would be too weak, the incomplete
record of the data, and a high noise level.

To validate our results, we applied a
strategy used by Cianetti et al. (2021) to
estimate the number of false detections
indirectly: compare the total number of the
phase picks (T) versus the number of phases
picks that can be associated with arrivals (A).
The ratio of A/T is a proxy to evaluate the
model prediction, with A/T close to 1
meaning that most of the picks can be
associated with an earthquake event. In
contrast, A/T close to 0 might indicate a high
number of mispredicted signals. However,
interpretation of low A/T needs to consider
that the picks which are not associated could
be true earthquake signals of unlocated small
events detected near too few seismic stations.

The results of the estimation of A/T are
shown in Table 1 and Fig. 8b, which indicate
a total A/T for the whole data set of 16.76%.
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For each station, the A/T ranges from 0.4% to
97.52%, with most stations in the range of
8.02% to 39.89%. Compared with the distance
from the mainshock, except for three stations,
VNO02, VNO3, and CNUD, we can see a linear
trend of A/T with the distance (Fig. 4), which
can be a proof that unlocated small
earthquakes are occurring near the mainshock.
The A/T drop for station VNI11 could be

a  zooNgg
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1°00N . A
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interpreted as small events occurring near this
particular station that belong to another fault
(note the location of this station in Figure 1 of
the manuscript). From this result, we can
expect average minimum positive accuracy of
16.65%, which is comparable with those
reported in Cianetti et al. (2021) and higher
than the accurate positive accuracy report in
Wiszniowski et al. (2021).
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Figure 8. (a) The number of detections for each station in the map view; (b) The graph showing the ratio
of associated picks (arrivals) versus the number of total picks by distance from the mainshock

3.2. Result of earthquake location and
catalog compilation

After locating the earthquake, we applied
quality control of the earthquakes by
discarding duplicate events. We set the quality
control as follows: two events with the
original time difference of less than 5 s and a
distance of less than 10 km are considered one
event. This step is necessary because, in the
automatic detection process, the EQT model
will try different combinations in linking the
phases into one event. The result of the
quality control process is that the number of
events decreased from 1198 events to 893
events, meaning that 305 events were
discarded. Finally, we have obtained a total of
893 events with 3615 P phase and 3391 S-
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phase. The local magnitude of the earthquakes
was also calculated in this part. The locations
of the earthquakes from the new catalog are
shown in Fig. 9a, while Fig. 9b shows the
locations of the earthquakes from the manual
catalog for comparison. From the figure, we
can see that most of the earthquakes are
located in the Muong Te earthquake source
zone. Overall, most earthquakes occurred at a
shallow depth between 5 to 20 km, which is
not clear in the manual catalog. In the cross-
section plot cutting perpendicular to the
Upstream Da River fault, we can see that the
earthquakes are concentrated near the fault.

Figure 10 shows the distribution of
earthquakes with time in the new catalog. A
significant increase in the number of
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earthquakes can be seen in 6/2020, which
corresponds to the time of the Muong Te
earthquake, followed by a slight increase of
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Figure 9. The earthquakes with location from the manual catalog MTMAN (a) and the new catalog
MTEQT (b). The cross-section is perpendicular to the Upstream Da River AA’ in the manual catalog (c)

and the latest catalog (d)
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4. Discussions

4.1. Comparison between automatic and
manual catalog

We first compare the automatic catalog
MTEQT and the manual catalog MTMAN on
quantity and quality. First of all, the number
of the events from automated picking is
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approximately 13 times that in the manual
catalog (893 events compared with 67 events),
with the minimum local magnitude of -0.7 in
MTEQT, while the minimum local magnitude
of MTEQT is 1.0. Furthermore, the
processing time using the EQT phase picker
was much shortened compared to the manual
way. The total processing time of the building
catalog using the deep learning phase picker
was estimated to be about one day. In
contrast, the manual-processing time for 1-
year data with 17 stations could probably take
a month.

On the other hand, we compared the quality

Average 0.02 s, std 0.18 s

20 A

16 4

12 A

Count

-0.4 -0.2 0.0 0.2 0.4
P diff. (s)

of picks between the two methods. Fig. 11
shows the histogram of the time difference for
the P and S-picks, respectively. In general, the
result shows a remarkable concordance; the
average difference and standard deviation of P
picks are 0.02 s and 0.18s, respectively, while
the average difference and standard deviation
of S picks are -0.04 s and 0.05 s. These
measurements of picking quality are quite
similar to those reported for the model in the
EQT paper (Mousavi et al., 2020), which
implies that the picker performance for our
data is consistent with the data used to make
the EQT picker.

Average -0.04 s, std 0.05 s

Count

-0.4 -0.2 0.0 0.2 0.4
S diff. (s)

Figure 11. Histogram comparison of the phase picks between automatic catalog MTEQT and manual
catalog MTMAN. The x-axis shows the time difference between automated picking and manual picking.
The positive value means the picking by EQT is later than the manual picking and vice versa

4.2. Extended catalog reveals hidden

earthquake

As we can see in Fig. 9 and discuss in 4.1.,
the number of earthquakes detected has
significantly increased in the area of the
Muong Te earthquake. The main reason for
this increase in the number of events is the
ability of the EQT model to detect small
hidden earthquakes, which are very unclear to
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detect manually. Take Fig. 7b, d as an
example. We can see that, before applying a
bandpass filter, the waveform is complicated
to recognize as a seismic event. The
improvement of the detection rate results
demonstrated that the new MTEQT catalog
provides a far more detailed picture of how
seismicity evolves in the Muong Te block in
2020.
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Another worth mentioning point is the
earthquake occurrence of other faults in the
study area. As shown in Fig. 9a, the
epicenters concentrated almost near the
Muong Te earthquake region, and very few
earthquakes were found outside the source
zone in the manual catalog. At the same time,
a high number of events were detected not
only in the Muong Te earthquake area but
also in other places in the automatic catalog
(Fig. 9b). Small earthquakes below magnitude
2.0 occur more often, in which people cannot
feel the shaking, and instruments can hardly
detect them. The MTEQT catalog revealed
the small earthquake activity in the study
area, especially the connected or blind faults
associated with the mainshock. This suggests
that there can be interactions between one
earthquake and another (Brodsky, 2019; Ross
etal., 2019).

4.3. Prospect study based on the extended
catalog

In seismological studies and especially
about the source, the
identification of earthquakes is the most

research seismic
critical task. Using the deep-learning phase
picker EQT, we have identified more events
than manual picking and saved time and
human resources on processing seismic data.
On top of that, the high-quality phase picking
can allow for a better constraint of earthquake
locations using absolute locating methods
(Hypoinverse, Nonlinloc). On the other hand,
a more completed earthquake catalog is
crucial for successfully applying relative
earthquake relocation, hypoDD (Waldhauser,
2001) or GrowClust (Trugman and Shearer,
2017) because these methods, earthquakes are
divided into clusters based on how close the

distance between each event. More events in
each cluster may contribute to better
relocation, while a single earthquake cannot
be relocated. The relative relocation methods
are very effective in tracing the fault from
seismicity, which reveals the seismogenesis
and quantifies the seismic hazards (Trugman
and Shearer, 2017; Waldhauser and Schaff,
2008). The extended catalog in our study
region with preliminary earthquake location
can now be used to apply earthquake
relocation, thus may provide a better
constraint of the earthquake process and
mechanism.

Another prospective study from our
extended catalog is studying the structure in
the Muong Te area, particularly by applying
seismic tomographic methods. We take travel
time seismic tomography as an example; in
this method, travel times from earthquake-
seismic stations are used to invert the velocity
structure of the region where ray paths cross
(Zhao, 2015). Fig. 12 shows the crossing ray
paths from earthquakes to the seismic stations
In this
significant increase in the number of ray paths
for both P- and S-wave in the MTEQT
catalog allows for

in the two catalogs. figure, a

seismic tomographic
studies for the Northwestern part of Vietnam.
A worth mentioning point in the extended
catalog is that the number of S-wave ray paths
(3391 S-phase) is almost the same as with the
P-wave ray path (3615 P phase). This can
improve the resolution of S-wave tomography
compared to seismic tomographic inversion
based on manual picking because the number
of S picks are often notably less than the
number of P picks due to inevitable large
errors in picking the S phase manually.
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Figure 12. Crossing ray paths of the P- and S-wave from the two catalogs. Note the significant
improvement of the ray paths in the automatic catalog compared MTEQT to the manual catalog MTMAN

5. Conclusions

In this study, we have applied the deep-
learning phase picker EQT to the 1-year
seismic data from 17 seismic stations in the
Muong Te region. The phase picks were then
grouped as events and located using
Hypoinverse and NonLinLoc, calculated for
the local magnitude, and compiled into an
extended catalog MTEQT. The new catalog
consists of 893 events, approximately 13 times
the number of events compared to the manual
catalog. This new method has allowed us a
more completed catalog with a dramatic
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increase in the number of phase picks and time-
saving. This improved catalog has opened up
for subsequent studies on the earthquake
genesis and structure of the study area.

From the detection of the hidden
earthquake events, we can determine the
location of the M; 4.9 Muong Te earthquake
and its aftershocks, which supports that the
earthquake is likely related to the activation of
the Upstream Da River fault. Moreover, we
have also identified small earthquakes along
the area's major faults, most notably the Dien

Bien Phu fault. Most of the events in
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northwestern Vietnam are determined to be 5
to 30 km in depth, suggesting that the fault
system in the area is active at the crustal level
depth.
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