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ABSTRACT

Groundwater potential assessment is essential for optimum utilization and recharge of groundwater resources for
the proper development and management of an area. The main aim of this study is to develop an
accurate groundwater potential map of the Dak Nong province (Vietnam) using hybrid artificial intelligence models,
which are a combination of Random Forest (RF) and its Ensemble Framework (AdaBoost - ABRF, Bagging - BRF
and LogitBoost - LBRF).In this study, twelve conditioning factors, namely topography (aspect, elevation,
Topographic Wetness Index - TWI, slope, and curvature), hydrology (infiltration and river density, rainfall, Sediment
Transport Index - STI, Stream Power Index - SPI), land use, and soil were used to develop the models. Well, yield
data was also utilized to develop and validate potential groundwater zones.

One Rule (R) feature selection method was utilized to prioritize the importance of groundwater potential affecting
parameters. The results indicated that the Average Merit (AM) of the rainfall factor was the highest (68.039), and
river density was the lowest (53,969). Performance evaluation of ML models was done using standard statistical
indicators, including Area Under the Receiver Operating Characteristic (ROC) curve (AUC). The results showed that
all the four models performed well in the training (AUC>0.967) and testing (AUC>0.734) phases, but the
performance of the ABRF (AUC=0.992) model is the best in the training phase, whereas LBRF is the best
in the testing phase (AUC=0.776). The present model study would be helpful in the proper groundwater potential
assessment and management of groundwater resources for sustainable development.

Keywords: Groundwater potential mapping, Random Forest, artificial intelligence, hybrid models, Vietnam.

1. Introduction water, especially in semi-arid and arid
regions (Jha et al., 2009). Recently, due to the
increase in population and climate change
effect, surface water resources cannot meet

*Corresponding author, Email: huongntt@utt.edu.vn the requirement of fresh water for irrigation,

Groundwater is a reliable source of fresh
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drinking, and industrial use, thus increasing
pressure on the utilization of groundwater
resources (Jha et al, 2007). This has
necessitated the systematic mapping of
groundwater resources by using modern
technology for proper groundwater potential
assessment of an area for its optimum
utilization and management in conjunction

with  surface  water for  sustainable
development.
Traditional methods of groundwater

assessment based on field mapping and
exploration require a great deal of time and
cost (Bonham-Carter, 2014; Chen et al.,
2017). Therefore, newer statistical methods
were utilized with GIS:  Geographic
Information System for developing potential
groundwater maps (Arkoprovo et al.,
2012; Lee et al., 2012). GIS and Remote
Sensing technologies were utilized to
map potential groundwater areas in the Musi
watershed using thematic geo-environmental
maps (Ganapuram et al., 2009). In Mul et al.
(2007), the potential groundwater area of the
South Pare Mountains Tanzania was
identified using a geology map and spring
chemical analysis data. Saraf et al
(2004) used a topographic map based on
Digital Elevation Model (DEM) to analyze the
groundwater potential in selected areas of
West Bengal and Madhya Pradesh, India.
They showed the relationship of groundwater
potential with the intersection of drainage.

In recent decades, new artificial
intelligence methods including Machine
Learning (ML) have been developed and
utilized to explore the potential of
groundwater, the most popular of which are:
Support Vector Machine (SVM) (Lee et al.,
2018), Artificial Neural Network (ANN) (Lee
et al.,, 2018), Classification and Regression
Tree (CRT) (Naghibi et al., 2016), K-Nearest
Neighbor (KNN) (Naghibi and Dashtpagerdi,
2017), Maximum Entropy (ME) (Rahmati et
al., 2016), Functional Tree (FT) (Chen et al.,
2018), Fisher's Linear Discriminant Function

Analysis (FLDA) (Chen et al., 2019b), and

Boosted Regression Tree (BRT) (Mousavi et
al., 2017). Nowadays, hybrid ML approaches
are being used more widely for the assessment
and mapping of groundwater potential as the
performance of these models is better in many
cases in comparison to single ML models.
Miraki et al. (Miraki et al., 2019) utilized a
novel hybrid method, namely RF based on
Random subspace to construct the map of
groundwater potential of Qorveh-Dehgolan
plain, Iran. The results showed that the hybrid
method had a more precise predictive capacity
for the groundwater potential than single ML
models (Logistic Regression - LR, RF, and
Naive Bayes). Chen et al. (Chen et al.,
2019a) applied a hybrid model based on
FLDA with Bagging (BFLDA) and Rotation
forest (RFLDA) to assess the potential of
groundwater in the Ningtiaota area (China).
The results indicated that the BFLDA model
was better than the other FRLDA and FLDA
models. Hossein et al. (Rizeei et al.,
2019) applied a novel hybrid method based on
MABLR - Multi-Adaptive Boosting Logistic
Regression to build the map of the
groundwater potential of the Gyeongsangbuk-
do basin (South Korea) and compared the
results with other models: LR, Multiple-Layer
Perception (MPL), and SVM methods. The
results indicated that the MABLR model was
efficient in mapping the potential of
groundwater.

In general, hybrid/ensemble ML models
have shown better prediction of potential
groundwater zones compared to  single ML
models. However, no known ML method can
solve all groundwater problems, especially the
assessment of groundwater potential in
different regions (Bui et al., 2020). Therefore,
an attempt has been made to apply advanced
hybrid ML methods such as Random Forest
(RF) and its Ensemble Framework
(AdaBoost-ABRF, Bagging-BRF, and
LogitBoost-LBRF) for the development
of potential ~ groundwater maps  of  the
DakNong province, Vietnam,as model
development is a continuous process for
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improving predictive performance. This work
is the first time LogitBoost ensemble with RF
to develop a hybrid method for mapping the
potential of groundwater. Weka and ArcGIS
software was utilized for data processing and
modeling.

2. Study area

The study area is the DakNong
province, located between 11°45‘to 12°50°N
latitude and 107°13’to 108°10°E longitude
(Fig. 1), covering two sub-regions of the
southeastern and central part of Vietnam.
The region's topography is relatively flat, with
alternating highlands (plateau) divided by
high mountains and low valleys running along
the Serepok and Krong rivers. The average

altitude of this region is approximately 650 m
above sea level, and the highest is 1982 m.
The area's climate is of tropical equatorial
monsoon type with two main seasons: rainy
season (April to November) and dry season
(December to March next year). The mean
temperature is 22-23°C, and the highest
temperature is 35°C. The total annual
precipitation in this area is about 2513 mm.
Groundwater occurs in the DakNong province
in three types of geological formations:
Pliocene-Pleistocene Basalt Complex.
Quaternary formation (alluvium), and Jurassic
sedimentary rocks (Ha et al., 2021; Nguyen et
al., 2020d). Following is a brief description of
these three types of aquifer:
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Figure 1. The study area with well locations

(i) The Quaternary alluvium aquifers
(sand, grit, pebbles, gravel, and clay) occupy
an area of about 27.16 square kilometers
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along major rivers and large waterways
unconfined type. The average thickness of the
aquifer is 5 to 7 m and a maximum of 20 m.
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Water table depth ranges from 0.0 to 10.7 m,
with an average depth of 2 to 4 m which
varies with rainfall fluctuation. Water in the
aquifer dries out during the dry season in
many places. Water bearing capacity of the
aquifer is limited, which is moderate to
weak, and thus it can be used only for small
residential areas.

(i1) The aquifer of the Pliocene-Pleistocene
basalt complex includes basalt rocks that
occupy around 3936.53 km? area, Its thickness
ranges between 27 and 502 meters, and the
mean thickness is approximately
100 m. Water in the Basalt Complex flows
along with flow contacts, cracks, vesicles, and
interconnected  cavities in  weathered
basalt. Groundwater in this type of aquifer
occurs mainly under confined conditions at
moderate depth. Groundwater quality is good.

(iii)The Jurassic formation (sandstone,
siltstone, limestone, and shale) aquifer
covers an area of  approximately
2116.78 km’. Aquifer thickness varies from
17.5 to 79.6 m, with a mean thickness of
40 m. the water flows through cracks and flow
contacts. The permeability of this aquifer and
water quality are poor.

3. Materials and methods
3.1. Building groundwater database

The groundwater inventory map of this
research region was prepared from the spatial
data of 72 wells (location, vyield, aquifer
characteristics, etc.) in conjunction with
different thematic maps developed from the
Digital Elevation Model (DEM), land use,
geology, soil, and rainfall data obtained from
various agencies and by conducting field
surveys. Groundwater well data from 72 wells
were used for the training and testing of the
ML models in a 70:30 ratio (Chen et al.,
2018; Oh et al., 2011). In this study, we have
used the excellent yield of 0.001 m’/s as a
threshold value for the classification of high
groundwater and lowly groundwater locations
based on the expert analysis of the local
groundwater (Ha et al., 2021; Nguyen et al.,
2020d). Based on the local geo-environmental
condition and data availability, twelve

groundwater potential affecting factors
(aspect, elevation, Sediment Transport Index
(STI), Stream Power Index  (SPI),

Topographic Wetness Index (TWI), slope,
curvature, soil, infiltration, land use, river
density, and rainfall) were considered in the
model study along with well yield data for
groundwater modeling (Ha et al.,
2021; Nguyen et al., 2020d; Senanayake et al.,
2016; Souissi et al., 2018).

United  States  Geological  Survey
Aster DEM at the resolution of 30 m
(https://earthexplorer.usgs.gov) was utilized
for the extraction of topographical features
(i.e., slope, aspect, curvature, and elevation)
and hydrological features (STL, TWIL, and SPI)
and development of thematic maps. Soil and
land use maps were compiled from the
DakNong Ministry of Natural Resources and
Environment and modified from Google Earth
images. A rainfall map was prepared from the
data of the Meteorology Department of
Vietnam. Following is a brief description of
the characteristics of these factors:

3.1.2. Topographic factors

The elevation isan essential factor for
controlling the rainfall, soil formation,
weathering, vegetation, and depth of
percolation infiltration. Elevation in the area
varies from 153 to 1973 m (Fig. 2). Slope
(degree) controls the runoff thus infiltration in
the aquifers (Chen et al., 2018). The study
region varies from 0 to 60.32 degrees (Fig. 2).
The aspect map indicates the direction of the
slope face. It is related to groundwater
potential because it determines the solar
radiation amount falling on the surface of the
Earth and impacts the precipitation. The
aspect map was prepared from DEM and
divided into categories (Fig. 2). Profile
curvature and plan curvature maps were built
from DEM as curvature influences runoff and
infiltration (Shirzadi et al., 2017). A concave
surface is more appropriate for storing
surface  water, thus helping infiltration/
recharge (Nguyen et al., 2020d). The
curvature map of the region varies from
-18.78 to 15.56 (Fig. 2).
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Figure 2. Maps of groundwater conditioning factors: (a) Aspect, (b) Curvature, (c) Elevation, (d) Slope,
(e) Infiltration, (f) Rainfall, (g) River density, (h) SPI, (i) STI, (j) TWI, (k) Land use, (1) Soil

3.1.3 Hydrology factors

TWI is utilized to assess the effect of
topography on water infiltration in the ground.
It helps in quantifying the flow control and
accumulation of the surface runoff
(hydrological  processes) (Elmahdy  and
Mohamed, 2014; Mokarram et al., 2015). In
this study region, TWI ranges from 6.33 to
19.58 (Fig. 2).

SPI and STI help understand erosive
processes resulting from the surface runoff
and are proxies for the mid-scale topography
(slope, valley bottom, or ridge) and the
landscape flow capacity (Bourque and Bayat,
2015). In general, areas with higher STI and
SPI values have a higher potential for
groundwater potential as they indicate a
higher water table. SPI and STI values vary
from 0 to 1210930 and from 0 to 9397.92,

respectively (Fig. 2). River density is a
measure of the draining of watershed by
stream channels. It is defined as the total
drainage (river and streams) length per total
drainage basin area. The river density map
was classified from 0 to 6.25 km/km? (Fig. 2).

3.1.4. Other geo-environmental factors

Land use patterns affect the infiltration and
consumption of water resources due to
anthropological activities (Mafi-Gholami et
al., 2019). The land use map of the region was
divided into 17 classes based on types of
cultivation, vegetation, land and built up,
vegetation (rice, rice, and plant, annual plants,
coffee, rubber, cashew, pepper, tea,
cocoa, other perennials cultivation, upland
rice), meadow, specialized land, unused
land, production forests, protection
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forest, particular use forest, and residential
areas (Fig. 2).
The soil
assessing the potential of groundwater in an
area (Naghibi et al., 2017). In this study, a soil
map was extracted from the data of the Soil
Survey Department and classified into 12

characteristics are essential in

types of soil: coarse grained soil, gray sandy
soil with clay, red yellow humus clay-rich
soil, black clay soil, dark brown silty clay soil,
gray, acidic silty soil, alluvial soil with more
clay, red-yellow acid humus soil, yellow
sandy soil with clay, predominantly sandy
soil, alluvial soil with little clay, and gravelly
soil (Fig. 2). Infiltration depends on the
characteristics of groundmass, including
permeability and porosity of the underlying
strata influencing the movement of surface
water downward (Moghaddam et al., 2015).
The ground permeability in this area varies
from 0.15 to 0.48 m/day (Fig. 2). Rainfall
directly helps recharge the groundwater
through infiltration surface water in the
groundmass. Recharge depends on the
average annual rainfall of an area (Zaidi et al.,
2015). The study region's daily rainfall ranges
from 5.07 to 7.18 mm/day (Fig. 2).

3.2. Methods used
3.2.1. Random Forest (RF)

In an RF algorithm for the formation of
each tree, a different set of available patterns
is determined, taking into account the
replacement of each selected pattern (Liaw
and Wiener, 2002). The size of this sampled
sample will equal the total number of
available patterns. The random forest was
described in 2001 by Breiman as a way
of  developing new  decision-making
trees, combining several unique algorithms'
predictions using standard rules (Breiman,
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2001). The general principles of group
training techniques have relied on the
assumption that their accuracy of them is
higher than other training algorithms because
the combination of various prediction models
is more accurately than one single model, and
groups increase the strength of individual and
specific sets of classes, and they reduce class
weaknesses at the same time (Avand et al,
2019; Shahabi et al., 2019b).

3.2.2. AdaBoost ensemble

AdaBoost is an ML algorithm with
supervision. AdaBoost can combine a large
number of learning algorithms with improving
performance. The basic classifier used for the
AdaBoost algorithm is only better than the
random classifier, thus increasing the
algorithm's ~ performance  with  more
repetitions. Even classifiers with an error
higher than the random classifier improve
overall performance by taking a negative
coefficient. This method is sensitive to noisy
data, has separate sections, and 1is less
sensitive to over-adaptation issues than other
learning algorithms (Pham et al., 2020). The
basic idea of this algorithm is that each
training sample is assigned a specific
weight. First, the weight of all samples is the
same, but in each iteration, the poorly trained
structure provides classification, and the
weight of the samples incorrectly classified by
that class is increased. Thus, the focus of the
algorithm is on hard-to-class samples. The
final classification is made by a majority vote
on the classifiers, in which the less erroneous
classes are given more weight (An and Kim,
2010).

3.2.3. Bagging Ensemble

To improve the accuracy of basic methods
such as decision trees, it is recommended to
use integrated methods. It has been proven
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that a combined method's correctness is often
better than any of the components (Breiman,
1996; Opitz and Maclin, 1999). One of the
proposed methods in the field of data mining
is the Bagging method. In this method, several
categories of data, for example, several
decision trees, are created from the data, and
all announce their opinions. The final decision
is based on a majority vote (Maclin and Opitz,
1998). More specifically, if the D data set,
which includes groundwater information, is
considered, the Bearing method works so that
it forms the base number of N categories, each
of which is denoted by Ci (1 ). In repeating i,
the algorithm selects the Di training set with
the help of sampling by replacing the D
set (Nhu et al., 2020). Because the sampling
method is alternative,
location is repeated several times in sample
Di, while in others, they may not be present in
this sample. Di is then generated as a training
set for the Ci model i used and showed its
vote for the test data. This is done for all i.
Then, the test data class is determined on the
base of the maximum number of votes cast
(presence or absence of groundwater). Of
course, this is done once for each test data to
determine the target class for all of
them (Avand et al.,, 2020a; Barzegar et al.,
2019).

3.2.4. LogitBoost Ensemble

some groundwater

Boosting is presented to combine several
algorithms and improve predictive
performance. The structure of this model is a
logical and generalized structure of the
famous multiple logit model, which can
estimate any model with random desirability,
and the three significant shortcomings of the
multiple logit model considering random
disagreement, unlimited succession pattern,
and dependence on unseen factors in time
have passed (Avand et al., 2020a). It notes

that this model, unlike the standard Logit and
Probit models, is not limited to a specific
distribution and can find heterogeneity in
factors and the source of this heterogeneity. In
the case of discrete selection modeling, the
desirability function defined for the n decision
maker is defined as Equation 1 to select i
option from the available selection set (Jou et
al., 2011; Li et al., 2010).
Uni = Vi + &ni €Y

V., is defined as the specific desirability
(observable) of option i for person n and is
defined as the indefinite and random
(invisible) part of the desirability of option i
for person n. In the ensemble logit model, the
invisible part of the utility function ()
includes two parts. The first part includes a
custom distribution, and the second one, like
the standard Logit model, consists of the
distribution of a limit value with independent
and identical distribution, so it imposes fewer
assumptions on the data (Hess, 2005; Train,
2009). The general form of the combined logit
model is as follows:

Ppi = anl(ﬂ)f(ﬂ)dB (2)
where, P,; is defined as the probability of the
choice of option i by the individual n, and
L,;is the probability of the choice of the
option i by the person n in the Logit model.

3.2.5. Validation methods

Various criteria are used to evaluate the
ML models (Avand et al., 2019); (Janizadeh
et al., 2019). One of the most important
criteria used for the validation is the confusion
matrix (Table 1). This matrix shows how the
categorization algorithm works according to
the input data set by the different categories of
the categorization problem (Visa et al., 2011).

Table 1. Confusion matrix used

Predicted
= Positive Negative
£ | Positive TP FN
< Negative FP TN
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Where TP (True Positive) indicates the
number of records whose real category is
positive and the classification algorithm
correctly identifies their category, TN (True
Negative) is the number of records whose real
category is negative. The classification
algorithm has correctly identified their
category, FN (False Negative) indicates the
number of records whose actual category is
positive and their category categorization
algorithm misdiagnosis has given, FP (False
Positive) indicates the number of records
whose real category is negative and the
category  categorization algorithm  has
misdiagnosed them  positively.  Other
statistical criteria used to evaluate model
results include: Accuracy (ACC), Specificity
(SPF), Negative Predictive Value (NPV),
Sensitivity (SST), and Positive Predictive
Value (PPV), whose equations are as follows:

CC = (TP + TN)/(TP + FN + FP + TN) (3)

SST = TP/TP + FN (4)
SPF = TN/FP + TN (5)
PPV = TP/TP + FP (6)
NPV = TN/FN + TN (7)

Root Mean Square Error (RMSE) which
measures the error rate between two data sets,
was also utilized to evaluate and compare the
proposed models (Hadzima-Nyarko and
Trinh, 2022; Kumar, 2022; Tran et al., 2022).
This parameter usually compares the
predicted values and the measured values (Le
et al,, 2020). RMSE number represents the
mean of the available errors, and when our
goal is to evaluate the accuracy of the total
data, this number can be used as an important
indicator (Chai and Draxler, 2014), and its
equation is as follows:

RMSE = \[%Zéil(xi — %) ®)

1 . :
where - Y performs the averaging operation

and (x; — £,)? calculates the square error of
each data.
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Kappa is used to evaluate the percentage of
agreement between two people when
assessing a certain phenomenon after
eliminating the role of luck factors. If both
agree on the idea in all cases, k = + 1. If the
observed agreement rate between the two >
the expected agree rate then k > 0. If the
observed agreed rate is less than or equal to
the chance by chance then k < 0 (Chen et al.,
2019b; Nguyen et al., 2020c). It can be
calculated by following equation:

K = Pp_ Pexp (9)

1-P exp
where P, is defined as the rate of instances
predicted correctly for groundwater or non-
groundwater. P, is defined as expected
agreements.

ROC curve: One of the most important
criteria for determining the efficiency of a
category is the use of the level criterion below
the ROC curve. The AUC is the area below
the ROC, and the higher the value of the
AUC, the more optimal performance of the
model (Shahabi et al., 2019a). ROC curve is a
way to evaluate ML models' performance
quantitatively (McClish, 1989). The value of
AUC for a category that randomly determines
the sample category is 0.5. Also the maximum
value of this criterion is equal to one, and it
occurs for a situation where the category is
ideal and can detect all positive samples
without any false alarms (Nguyen et al.,
2020a; Nhu et al., 2020).

3.2.6. OneR feature selection

OneR is an abbreviation of "One Rule"
that generates a rule for each predictor in the
dataset and then selects the rule with the least
total error as its "one rule" (Morariu et al.,
2005). Using machine learning methods
increases the quality of selected features and
also increases the quality of learning. In this
method, each feature is evaluated separately
using 1R classifier. In this classification, the
rules are expressed based on the value of the
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property and the subject (Avand et al., 2020a).
If only those features are used to classify the
data, it will cause an error. Then, the feature
that has the lowest error value will be
selected. So, this method sorts the properties
(each feature independently) based on their

|-

Topographic factors

error value and finally selects the most
important ones (Nguyen et al., 2020a).

3.2.7. Research methodology

In this research, the methodological steps
of potential groundwater maps are described
briefly below (Fig. 3):

(4) Validation of the models
(ROC, ACC, NPV, PPV, RMSE,
Kappa, SST, SPF)

(5) Groundwater potential mapping

A

Validation dataset
30%

(3) Model development

Subset | Subset 2 Subset n

11 1
AA N

8
w0
i
S —>
Ly 2R
| £
= Classifier |~ Classifier2  Classifiern
(used RF)  (used RF) (used RF)

Hybrid models (ABRF, BRF, and LBRF)

Figure 3. Methodological flow chart

Collection of geospatial data of
groundwater wells, meteorology, and other
thematic maps was done from various
government and non-government
organizations, websites, and field works. The
geospatial database was divided into two parts
at 70:30 for generating training and testing
datasets for building and validating models,
respectively. The yield of 0.001 cubic meters
per second was used as a threshold value to
differentiate potential and mnon-potential
groundwater groups.

Feature selection: The oneR method was
utilized to evaluate the input factors'
importance and choose the suitable factors for
modeling groundwater potential.

Development of the models: RF and its
ensembles (BRF, ABRF, and LBRF) were
developed wusing a training dataset for
groundwater potential modeling and mapping.
Out of these models, BRF was constructed by
combing RF and Bagging, which Bagging
utilized to optimize the training dataset for the
classification of groundwater and non-potential
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groundwater classes. ABRF was built
by searching RF and AdaBoost ensemble,
which AdaBoost used to optimize the training
dataset for classifying groundwater and non-
potential groundwater classes. LBRF was
constructed by combing RF and LogitBoost
ensemble, which LogitBoost was used to
optimize the training dataset for classification
of potential groundwater and non-potential
groundwater classes.

Evaluation of the models:
Statistical indices  including SST, SPF,
PPV, NPV, AUC, RMSE, and Kappa were
calculated using the values obtained from the
confusion matrix utilized to evaluate and
compare the predictive capability of the
proposed models on both training and testing

datasets.
Construction of potential ~ groundwater
maps: Utilizing the trained models, the

groundwater potential maps were constructed
with various classes namely very low, low,
moderate, high, and very high zones.

4. Results

4.1. Importance of input variables using One
Rule method

Significant and insignificant factors
in predicting potential
using different models were validated based
on the One Rule algorithm (Table 2). The
results show that rainfall is the
most critical factor (AM: 68.039), whereas
river density is the least important factor
(AM: 53.969) in building the models. Other
factors (soil, SPI, infiltration, STI, land use,
curvature, TWI, aspect, slope degree, and
elevation) ranked second to eleventh,

respectively, in the importance of variable

groundwater  zones

factors for the generation groundwater

potential zone maps.
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Table 2. Selection of attribute feature using One R
attribute evaluation method

Rank Average Merit | Error attribute
1 68.039 4411 Rainfall
2 65.659 3.582 Soil
3 62.878 3.73 SPI
4 61.298 5.201 Infiltration
5 59.89 6.391 STI
6 59.906 3.952 Landuse
7 58.737 6.002 Curvature
8 58.302 6.428 TWI
9 55.973 8.883 Aspect
10 55.78 6.595 Slope
11 55.141 4.707 Elevation
12 53.969 6.282 River density

4.2. Validation of model performance

The predictive capability of the
models was evaluated wusing different
statistical indexes for predicting potential

groundwater zones. In the training step, LBRF
and RF algorithms have almost the same
values in all indexes. However, the accuracy
of the RF model is higher based on RMSE
(0.929) and K (0.227) indices. In comparison
to ABRF and BRF models, the ABRF has the
highest NPV (96.55) and SST (96.15) value,
thus better model performance (Table 3). In
the testing phase, the LBRF has the lowest
RMSE (0.459) and the highest PPV (72.73),
NPV (84.62), SST (80.00), SPF (78.57), ACC
(79.17), and K (0.459) (Table 4). Therefore,
the LBRF has the highest accuracy among
other models used in the present study in the
validation phase.

Table 3. Validation of the models using training
dataset

No | Parameters | ABRF BRF | LBRF RF

1 TP 25 26 27 27

2 TN 28 25 27 27

3 FP 2 1 0 0

4 FN 1 4 2 2

5 PPV (%) 92.59 | 96.30 | 100.00 | 100.00
6 NPV (%) 96.55 | 86.21 | 93.10 | 93.10
7 SST (%) 96.15 | 86.67 | 93.10 | 93.10
8 SPF (%) 9333 | 96.15 | 100.00 | 100.00
9 ACC (%) 94.64 | 91.07 | 96.43 | 9643
10 K 0.8926 |0.8219 | 0.9287 | 0.929
11 RMSE 0.1986 |0.2806 | 0.2436 | 0.227
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Table 4. Validation of the models using testing
dataset

Analysis of the ROC curve in this study
indicates that all four models: RF (0.987),

No | P t ABRF | BRF | LBRF RF
T B S s 3 ABRF (0.992), BRF (0.967), and LBRF
2 TN 11 9 11 9 (0.976) models have excellent predictive
3 FP 4 4 3 5 accuracy in the training phase, whereas, on
4 FN 2 4 2 4 S .
5 T PPV (%) | 63.64 | 63.64 | 72.73 | 54.55 vahc?aj[mn Qatasets, jche. LBREF has the }.nghest
6 | NPV (%) | 84.62 | 69.23 | 84.62 | 69.23 precision in predicting the potential of
7 SST (%) | 77.78 | 63.64 | 80.00 | 60.00 groundwater with a value of AUC, grr= 0.776,
8 SPF (%) 73.33 | 69.23 | 78.57 | 64.29 foll h r f the ABRF
9 ACC (%) | 75.00 | 66.67 | 79.17 | 62.50 0 ow_ed by the accu acy_ of the
10 K 0489 | 0329 | 0.578 | 02394 | (AUC= 0.766), BRF (AUC= 0.745) and RF
11 | RMSE [ 0475 | 0.466 | 0.459 | 0.478 (AUC= 0.734) models (Fig. 4).
100 [~ ﬁéﬂAl,ﬂg_/l 100 %
80 H g0 |- ]

; (a) : = (b)

=601 5 60

40 H

: —— ABRF (AUC = 0.992)

| —— BRF (AUC = 0.967) — ABRF (AUC = 0.766)
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Figure 4. Plots of the ROC curves of the models a: training datasets and b: validation datasets

4.3. Groundwater potential mapping

Groundwater potential
constructed using one single (RF) and three
ensemble models (ABRF, BRF, and LBRF).

classified

maps were

Developed maps were into

various possible categories: shallow, low,
moderate, high, and very high (Fig. 5) using a
natural break method (El-Hoz et al., 2014). In
Fig. 6, the highest percentage of wells with
higher yield (yield> 0.001 m?/s) falls in the
high category of groundwater potential zones

map developed from the ABRF model

compared to LBRF, ABRF, BRF, and RF
models, respectively. In contrast, the opposite
is the case of wells having lesser yield (yield
< 0.001 m’/s). The maps were validated using
the frequency ratio of wells with higher yield
(yield > 0.001 m’/s) falling in potentially very
high groundwater classes. It can be stated that
the accuracy of the groundwater zones in the
maps developed by models is good.
Therefore, the constructed maps could be used
for water resource management in the study
area.
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Figure 5. Maps of groundwater potential generated from the models: (a) ABRF, (b) BRF, (c) LBRF, (d) RF

5. Discussions

Overexploitation of ground resources due
to increasing population, industrial growth,
and urbanization necessitates a systematic
assessment of groundwater potential for
optimum utilization by proper
management (Seenipandi et al., 2013). The
development of accurate groundwater
potential zone maps (Vadiati et al.,
2018) using new technologies such as
advanced hybrid/ensemble ML methods is an
essential step.
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In the model study, twelve influencing
factors (e.g., soil, TWI, infiltration, curvature,
land use, aspect, river density, slope, SPI, STI,
elevation, and rainfall) were considered.
Their importance was evaluated using the
One Rule methods wvaluetoshow that
rainfall (average daily), soil, and
SPI, with values of 68.039, 65.659, and
62.878, respectively, are the critical factors
for mapping groundwater potential (Table 2).
River density (53.969) is the
most negligible significant factor. Generally,
factors with the highest AM values are
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the most critical and essential variables for
developing groundwater models (Vadiati et
al., 2018). However, other factors with lower
AM values can also be helpful for model
development. Thus, based on the evaluation of
parameters, we decided to utilize all factors
for the groundwater modeling. A review of
the relevant literature shows that the
importance of groundwater influencing
factors depends on the local ground conditions
and geo-environmental conditioning
factors, which may vary from one region to
another. However, the identification of the
minor critical variables by the One-R (AM
value) in the present study is in line
with Moeck et al. (2020) and Pourghasemi et
al. (Pourghasemi et al., 2020) and Nguyen et
al. (Nguyen et al., 2020b). Examples of
differences in the selection of the
most critical factors  influencing  different
results can be observed in many studies. Chen
et al. (2019a) presented that elevation, SPI,
and lithology were the most important factors
for mapping groundwater potential in the
Ningtiaota region (China). Avand et al
(2020Db) selected land wuse, lithology, and
rainfall as the essential factors in the Yasuj-
Dena area, Iran. The rainfall factor is directly
helpful in recharging the groundwater and is
thus very important in many studies (Zhang et
al., 2019) as in the present study.

Validation results of models revealed that
the LBRF method has high predictive
accuracy with the highest values of PPV
(72.73%), NPV (84.62%), SST (80.00%), SPF
(78.57%), ACC (79.17%), AUC (0.776) and
K (0.578) indices, and lowest RMSE (0.459),
followed by ABRF, BRF and RF methods.
Thus, the predictive capability of the LBRF
model is the best in mapping groundwater
potential compared to other models. In
general, the results show that hybrid ML
models have improved the predictive
capability of a single RF model. This is in line
with the results of the previous works of other
researchers (Nguyen et al.,, 2020b). The

advantage of the RF algorithm compared to
other individual algorithms is the ability to
deal with large amounts of data without
removing  covariates (Naghibi et  al.,
2017). During the training phase, the RF
algorithm uses the maximum set of specific
trees. Thus it can produce a large number of
classification trees for better modeling
performance (Catani et al., 2013). Moreover,
there are other advantages of hybrid models
more than a single simple model, such as
Naive  Bayes tree  integrated  with
Random Subspace (Shirzadi et al., 2017),
ADT combined with AdaBoost (Tien Bui et al.,
2019), FLDA integrated with Bagging (Miraki
et al, 2019), RF integrated with Random
Subspace (Binh Thai et al., 2019). Compared
with other similar studies (Ha et al.,
2021; Nguyen et al., 2020d) observed that the
LBREF algorithm has a higher performance than
another hybrid model such as
ABQDA (AUC=0.741) and  similar
performance to the RABANN model (AUC =
0.776). Therefore, our new study of
groundwater potential mapping using RF and
its ensemble/ hybrid frameworks (ABRF, BRF,
and LBRF) confirm the possible use of new
ensemble models in obtaining better predictive
accuracy in groundwater modeling for the
development of accurate maps of groundwater
potential (Fig. 6). The map constructed by the
ABRF model indicated that 42.47% of the area
is covered by a very high potential class,
representing that this part of the study area has
a higher potential for groundwater productivity,
which is consistent with the results of Pham et
al. (2019).

The potential intermediate class occupies
about 16% of the area,and the remaining
22.87% falls into the shallow likely class. The
reliability analysis of the maps was performed
using the frequency ratio method. The results
show that most of the high-performance well
yield areas can be correlated with very high
groundwater potential classes of the
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developed maps (Fig. 6). This indicates that accurate, which is in line with the other
groundwater potential zones classified based similar studies (Nguyen et al., 2020a; Pham et
on the hybrid models are reliable and al., 2019).

Models

I 2crr 0 srr [ LerF O RF

g 50 -
m
g 40 0
2 sl B
‘s 30 “ ‘3
Q
o Mol S9
- (=3 o ™ o
§ 10 — — % HI
= l "‘L
& 0 1 —© I
Very low Moderate High Very high
Groundwater potential classes
® 80
a2
@ E 60
3 § L
-
o o 40 —
S | 5 9 2
s A N D~ ~ 2] R IP: S o
EB20 S840 Oy o208 s
g2 0o N S ~ R
£ [IzlE 2ia HN:H &
o =t 1 R 1
Very low Low Moderate ngh Very high
Groundwater potential classes
I 2
2 X L
© E60| R o
2z [Zzls 0
© 9 40 0 o0
g S «e Py &
c V [ o i n n iy n
€32 = H E MBS W o
o 2 L y 2
[t}
£= [ R o
a
Very low Low Moderate High Very high
Groundwater potential classes
—~ 4
W
o o
§ £
- -
= S,
S o a 8853
(=) o~ a o <
gz [ §3m2 LGRS %483
[ J 9 N~ s (=Y =]
L CRaR .css HERE
0 ¢- —— . = =t
0.5 1 d5 2 2:5; 3 3.5 4 4.5 5 5.5
Groundwater potential classes
=8 8
o= B 9
g=3 £ <
e - 4
g8 | nM3 "
o by %)
g v 2 2 = § § m o~ — X~ o Ao
.- G el &id
= (=] =1 o S
=, | NS o - RS mSso
0.5 b i 1.S 2 2.5 3 35 4 45 5 5.5

Groundwater potential classes
Figure 6. Analysis of groundwater potential maps

424



Duong Hai Ha et al.

6. Concluding remarks

Water scarcity in this decade is
a significant challenge mainly due to
inadequate mapping, planning, and

management of groundwater resources. The
main aim of the present work was to map the
groundwater potential of the Dak Nong
Province, Vietnam using RF and its ensemble
framework, namely BRF, ABRF, and LBRF.
For this, twelve groundwater potential
conditioning  factors, namely  topography
(aspect, TWI, curvature, slope, and elevation),
soil, land-use, hydrology (infiltration and river
density, SPI, STI), and rainfall were used to
develop the models. Well, yield data was
usedto develop and validate different
groundwater potential zones. One-Method
was utilized to prioritize the importance of
groundwater potential affecting factors. In the
present work, rainfall isthe essential factor
(AM: 68.039), whereas river density is the
least important (AM: 53.969) in building the
models.

The performance of the proposed models
was evaluated and compared using various
statistical indexes on training and testing
phases for mapping groundwater potential.
The results showed that the hybrid models
(LBRF, BRF, and ABRF) outperform the
single RF model. Among those, the LBRF has
the highest precision in predicting the
potential of groundwater with a value of
AUC, grr= 0.776, followed by the accuracy of
the ABRF (AUC= 0.766), BRF (AUC =
0.745),and RF (AUC= 0.734) models.
Therefore, the hybrid model LBRF is a
promising tool for assessing the groundwater
potential in other regions.

The limitation of the study is that
geological factors have not been considered in
the model study, as the surface is
covered mainly by sandy soil. In
future research, sub-surface geology will

be regarded to refine the input parameters of
the models.
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