Vietnam Journal of Earth Sciences, 44(4), 470-480, https://doi.org/10.15625/2615-9783/17177

Vietnam Academy of Science and Technology EARTH SCIENCES

Vietnam Journal of Earth Sciences ﬁ

http://www.vjs.ac.vn/index.php/jse

Estimation of load-bearing capacity of bored piles using machine
learning models

Pham Thai Binh, Dam Duc Nguyen! Quynh-Anh Thi Bui}, Manh Duc Nguyen2,
Thanh Tien Vus3, Indra Prakash4

"University of Transport and Technology, Hanoi, Vietnam

’Department of Geotechnical Engineering, University of Transport and Communications, Hanoi, Vietnam
*Department of Technology, Smart Construction Group, Hanoi, Vietnam

‘DDG (R) Geological Survey of India, Gandhinagar 382010, India

Received 29 March 2022; Received in revised form 05 May 2022; Accepted 15 May 2022

ABSTRACT

The load-bearing capacity of bored piles is an essential parameter in the foundation design of a structure. In the
present study, three Machine Learning (ML) methods, namely Adaptive Neuro-Fuzzy Inference System (ANFIS),
Support Vector Machine (SVM), and Artificial Neural Network (ANN), were utilized to estimate the load-bearing
capacity of bored piles based on limited engineering parameters of pile and soil obtained from 75 test sites in
Vietnam. These parameters include pile diameter, pile length, the tensile strength of the main longitudinal steel bar,
compressive strength of concrete, average SPT index at the tip of the pile, and average SPT index at the pile body.
Validation of the methods was verified using standard statistical metrics, namely Root Mean Square Error (RMSE)
and Correlation coefficient (R). The results show that all the proposed models have a good potential in predicting
correctly the load-bearing capacity of bored piles on training data (R>0.93) and on testing data (R>0.88). Still, the
performance of the SVM model is the best (R=0.985 for training and R=0.958 for testing). Thus, the SVM model can
accurately predict the load-bearing capacity of bored piles for properly designing the civil engineering structure
foundation.

Keywords: Load-bearing capacity, bored pile, machine learning, ANN, ANFIS, SVM.

1. Introduction deep competent strata. There are two main
types of pile foundations: bored piles and
driven piles. The most common type of pile
used in bridge and building constructions is a
bored pile which has the advantage of easy
and quick construction with equipment in all

Pile foundations are a good solution with
high reliability where it is impossible to
construct structures on shallow foundations.
Pile foundations are designed where the soil is

of low bearing capacity, stratified, or has a kinds of thout d . di
low strength layer at depth (De Kuiter and ™95 © strata without damaging surrounding

Beringen, 1979). Piles can also be used to grounds (Burland et al., 1978). One of the

transfer the load of the superstructure on the ~MOst important parameters in the design of
bored piles is the load-bearing capacity, which

*Corresponding author, Email: binhpt@utt.edu.vn is determined using experimental or empirical
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methods (Birid, 2021). The common field
experimental methods include Static Pile
Load (SPL) and Pile Dynamics Analyzer
(PDA). These methods are costly and thus can
be conducted in limited numbers at the
site (Koizumi and ITo, 1967).

Moreover, the SPL method takes a long
testing time, whereas the PDA test can give
large errors as waveform analysis depending
on many factors (Budi et al., 2015; Momeni et
al., 2014). Many studies have proposed
empirical formulas for the load-bearing
capacity calculation based on different soil
properties and geometrical parameters of
piles (Bond et al., 2013; Meyerhof, 1976;
Poulos, 1989; Schmertmann, 1978). Other
methods include Standard Penetration Tests
(SPT), which are conducted to calculate the
load-bearing capacity of piles, mainly for
sandy soils (Bazaraa and Kurkur 1986;
Shariatmadari et al. 2008; Shooshpasha et al.
2020; Shioi and Fukui 2021).

In general, the empirical formulas allow a
quick determination of the load-bearing
capacity of piles based on the dimension of
the piles (diameter and length), geo-
mechanical properties and types of soils, and
SPT values of each soil layer (Poulos, 1989).
However, these methods have drawbacks,
including inappropriate parameter selection
and calculation errors (Pham et al., 2020).
Numerical modeling methods are also used to
calculate the load-bearing capacity of piles,
but these methods are susceptible to the input
parameters (Ata et al., 2015; Chow and Small,
2005; Elsherbiny and El Naggar, 2013;
Jozefiak et al., 2015; Shooshpasha et al.,
2020). Thus, numerical methods may lead to
large variations in the results if parameters
and models are not  appropriately
selected (Elsherbiny and El Naggar, 2013).
Therefore, there is a great need to develop
suitable load-bearing capacity prediction
accurate models for designing pile

foundations with limited, easily determined
parameters.

Nowadays, Machine Learning (ML)
methods are being utilized in many fields,
including civil engineering (Le et al., 2020;
Pham et al., 2021a; Van Phong et al,
2020) related to construction and foundation
designs such as piles (Ghorbani et al., 2018;
Momeni et al., 2014; Pham et al.,, 2018;
Shahin, 2010). In the foundation design of the
piles, most ML methods mainly focus on the
prediction of the bearing strength of driven
piles (Chen et al., 2020; Ghorbani et al., 2018;
Kardani et al.,, 2020; Lee and Lee, 1996;
Moayedi and Hayati, 2019; Momeni et al.,
2014, 2013; Pham et al., 2020; Shahin, 2010;
Zhang et al., 2021) and very few on bored
piles (Al-Atroush et al., 2021; Alkroosh et al.,
2015). Furthermore, these studies used Cone
Penetration Test (CPT) experimental data for
bearing prediction of bored piles. However,
the SPT is widely used worldwide to test for
bored piles load-bearing capacity
prediction (Albusoda et al., 2021; Putra, 2021;
Seo et al., 2021). In the present study, we
have attempted to develop ML methods that
can accurately estimate the load-bearing
capacity of bored pile foundations. We have
used three existing well-known models,
namely Support Vector Machine (SVM),
Adaptive Neuro-Fuzzy Inference System
(ANFIS), and Artificial Neural Network
(ANN), to estimate the pile load-bearing
capacity based on SPL test results as output
and soil properties, SPT values, dimensions of
piles as input parameters. To the author's
knowledge, this is the first study to develop
ML models based on SPL and SPT results to
estimate the load-bearing capacity of bored
piles. Therefore, this will be a new
contribution or an approach for estimating the
load-bearing capacity of bored piles
efficiently, accurately, and economically.

The models were validated using standard
statistical indexes: Root Mean Square Error
(RMSE) and Correlation coefficient (R) to
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select the best model to be used for designing
the bore file foundation. The software used in
the model development is Matlab version
2014a.

2. Materials and Methods
2.1. Data used

Literature survey indicated that physical
and geo-mechanical properties of soil,
including SPT values and also dimensions of
piles, are essential factors that have a
significant influence on the load-bearing
capacity of bored piles (Birid, 2021; Briaud
and Tucker, 1988; Meyerhof, 1976; Ng et al.,
2021; Nogueira et al., 2022; Poulos, 1989;
Shooshpasha et al., 2020). In the present
model's study, we have used six input
parameters: pile length (L), pile diameter (D),
the tensile strength of the main longitudinal
steel bar (fs), compressive strength of

0 580 17400 25 50 75 0 160320480440 880

concrete (Mb), average SPT index at the tip of
the pile (N_tip), average SPT index at the pile
body (N_shaft) for the prediction of the load-
bearing capacity of the piles (Q_test). The
data used to construct a model for estimating
bored pile load-bearing capacity was obtained
from 75 test sites in Vietnam. Q_test data was
obtained from the tested SPL experiments.

To minimize bias during model simulation,
the parameter values of the data set were
normalized in the range [0, 1]. The correlation
coefficient (r) of input and output variables
was determined through a 7x7 symmetric
matrix; as shown in Fig. 1, the value of the r
of the variables varies from -1 to 1. Negative r
values show a negative correlation, and
positive r values show a positive correlation.
The analysis of correlation properties of input
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Figure 1. Correlation matrix analysis among variables
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Table 1. Initial analysis of the input and output variables

Variables | Abbreviation | Unit | Min | Max | Average | median | StD
Inputs

D mm 300 2000 1169.333 1500 483.784

L m 13.2 85 55.873 57 24.849

Mb Mpa 30 500 307.347 400 182.142

fs Mpa 400 1670 512.667 400 314.567

N_tip 11.00 100.00 53.04 50 27.58

N_shaft 1.00 56.00 25.17 21.80 12.578
Output

| Q test | ton | 45 [ 6600 | 2089.827 | 2200 [ 1476.621

0.0 02 04 06 0.8

Values
Figure 2. Correlation attribute evaluation of input
variables with output variable

2.2. Methods used
The main steps of the methodology include

(1) Data preparation: field test results of 75
SPL, experimental results of piles, and soil
engineering properties. The data set was
randomly split into two parts: testing (30%)
and training (70%), (2) Model construction:
the training dataset was utilized to construct
the ML models: SVM, ANFIS, and ANN,
(3) Model validation: the testing part data was
used to evaluate the proposed models.
Statistical metrics: R and RMSE were utilized
to validate the models' performance to select
the best model for accurately estimating the

load-bearing capacity of bored piles (Fig. 3).

@ |
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L utpu
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N_tip
N_shaft
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Models used
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Modeling results

h 4

Models comparison (R, RMSE)

Figure 3. Methodological flowchart of the models development and evaluation processes
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2.2.1. Support Vector Machines (SVM)

SVM proposed by Vapnik is an effective
and common model for classification and
regression problems with large dimensional
datasets (Chauhan et al., 2019). SVM finds
the optimal hyperplane to separate classes
traversing all data elements with minimum
standard deviation (e.). It wuses kernel
functions to solve many classification and
nonlinear regression problems (Hipni et al.,
2013). The basic theory of SVM can be
summarized as follows:

Given a training dataset {(x1,y1),.-.,(Xi,yi)
c XxR where X defines the input data
domain. The goal ofe-Support Vector
Regression is to find a decision function that
is as flat as possible, and at the same time, the
deviation on the y;of the whole training
dataset is not greater thane. For nonlinear

regression, the decision function is defined as:
1

(0 = ) (05— @) K, + b

i=1 (1)
where b is the constant that determines the
balance of error margin between the flatness
of and the amount of deviation & that is
accepted, o;, a*i are defined as the Lagrange
multipliers; and K(x;,x) is defined as a kernel
function as follows:

K(xi,x;) = (®(x;), 2(x;)) @
where ¢ is the attribute mapping for kernel K.
2.3.2. Artificial Neural Networks (ANN)

ANN is one of the most common models
in the family of ML algorithms. This model
was first introduced by McCulloch and
Pitts (Lee and Lee, 1996). ANN is a human
brain-based biological simulation technique
consisting of many artificial neurons
connected in a network for processing
information. It is a very effective technique
for solving complex problems that are
sometimes impossible to be solved by
traditional models (Pham et al., 2018). Thus,
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in recent decades, ANN has been commonly
used in various fields.

In ANN model, a network of nodes is
linked together by weights. An ANN consists
of at least 3 layers: the output layer, the
hidden layer, and the input layer (Fig. 4).
Such a neural network structure allows data to
transfer from the input layer to the output
layer in a single direction through the hidden
layer/layers. The size function is usually
nonlinear, enabling the predictive ability of
the model's nonlinear relationships (Pham et
al., 2018).

Hidden layer

Input layer Output layer

Figure 4. Typical ANN architecture

The process of training the ANN network
is to find a parameter vector where the loss
function has the smallest value, that is, the
output error of the ANN, and the objective
function is the smallest. The loss function is a
nonlinear function of many parameters. The
training algorithm stops when a specific
condition or criterion is satisfied (Abiodun et
al., 2018).

2.3.3. Adaptive Network-based Fuzzy Inference
System (ANFIS)

First introduced in 1990 by Jang, ANFIS is
an intelligent artificial prediction system that
utilizes a hybridization of ML techniques of
fuzzy logic systems and ANN networks (Van
Dao et al., 2022). The proposed ANFIS can
construct a fuzzy set of "if-then" rules with
suitable membership functions to generate
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pointed input-output pairs using the
associative learning process. In the succinct
form, fuzzy "if-then" rules are usually utilized
to capture imprecise modes of reasoning,
which play an essential role in human
decision-making under uncertainty and
inaccurate cases (Pham et al., 2021b). The
ANFIS structure (Fig. 5) includes the
following main 5 classes (Ly et al., 2019): (1)
Fuzzy class: This class includes membership
functions determined from input parameters.
The output is the value of the attribute
function computed based on a Gaussian
function. (2) Rule layer: Rule nodes are
included in this layer, and each output from
rule nodes is a product of input signals. (3)
Normalized class: This class has normalized
membership functions. Each node is a fixed
node, and the number of nodes is equal to
those in layer 2. (4) Layer of defuzzification:
it implements the resulting part of the fuzzy
rules, each node is an adaptive node, and the
number of nodes is equal to those in layer 3.
(5) Output layer: it is the sum of the outputs of
all adaptive nodes in the 4™ layer.

1st layer 2nd layer 3rd layer 4th layer

Sth layer

Input

Output

Figure 5. Typical ANFIS structure
2.3.5. Validation indicators

The statistical indicators used in this study
include Root Mean Square Error (RMSE) and
correlation coefficient (R) to evaluate the
accuracy of the used models in estimating the
bored pile load-bearing capacity. These are
the two most popular indexes to measure
errors in ML problems. The R-value is

utilized to evaluate the correlation between
the predicted and actual results, whose values
are in the range of [-1;1]. The RMSE
measures the average error between the actual
expected and actual outputs. Quantitatively,
the closer the absolute value of R is to 1, the
closer the RMSE is to 0, and the better the
model's accuracy. The equations determined
by RMSE and R are available in published
literature (Barnston, 1992; Ly et al.,, 2019;
Pham et al., 2018; 2020; Van Dao et al.,
2022).

3. Results and discussion

The performance of three studied ML
models was evaluated to select the best
predictive model to predict accurately bored
pile  bearing capacity. Comparative
performance results of ANN, ANFIS, and
SVM models on training and testing datasets
are shown in Fig. 6a and Fig. 6b, respectively.
The horizontal axis represents the number of
samples in the datasets, and the vertical axis
represents the load-bearing capacity of the
bored pile. Experimental values are
represented by black lines and predicted
values obtained from these models are shown
in blue for the training dataset and red lines
for the testing dataset. The results show that
the expected load-bearing capacity of 50
training dataset samples is relatively
consistent with the model's prediction results.
Similarly, with the testing dataset, 25
experimental results are good with minor
errors. It shows that the estimated values of
the load-bearing capacity of piles obtained
from the proposed SVM model for both
datasets are close to the actual results.

Fig 7 shows the performance evaluation
results of SVM, ANN, and ANFIS models to
estimate the load-bearing capacity of bored
piles through R-value for both the testing and
training phases. For the training phase, all
three models have a good performance
(R>0.934), and the SVM model shows the
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best performance (R=0.985), followed by the
ANFIS model (R=0.98) and ANN (R=0.934),
respectively. Similarly, on the testing data set,

[ = Actual = Predicted| (a)
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4200

SVM

2100+ =

6300

4200

ANN

2100} Lf

6300 "

4200+

ANFIS

2100
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Number of sample

the SVM shows the best performance
(R=0.958), followed by ANN (R=0.948) and
ANFIS (R=0.88) models, respectively.
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Figure 6. Predicted and actual values of bored pile load-bearing capacity with (a) training and (b) testing data
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Figure 7. R values of the models
Results of the predictive model's horizontal axis represents the number of data

evaluation based on RMSE value for the
training and testing datasets are shown in
Figs. 8a, b, respectively, and in Table 2. The
vertical axis represents the RMSE value. The

Table 2 Analysis of error metrics of studied models

samples. We can see that the RMSE value of
SVM is the lowest, and the RMSE curve of
SVM is relatively stable compared with those
of ANN and ANFIS models (Table 2).

Statistical metrics Training Testing
ANFIS ANN SVM ANFIS ANN SVM
RMSE (ton) 294.577 536.96 246.205 871.372 444.545 483.177
Error mean 0.008 1.715 51.63 48.018 -92.662 -97.309
Error StD 890.523 444.552 243.035 48.018 -92.602 973
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Comparison of model results indicated that
the SVM is the best model in the prediction
of the load-bearing capacity of bored piles
compared with other models (ANN and
ANFIS), which is also in line with
published literature as SVM is a powerful
effective. ML  tool in  forecasting
problems (Chauhan et al., 2019; Shin et al.,
2005; Wang et al., 2008; Zhao et al., 20006).
The SVM algorithm performs well for large
data samples and often gives better results
than other classes of supervised learning
algorithms, especially in binary classification

problems (Chauhan et al., 2019). The ANN
and ANFIS models are also powerful tools for
solving real-world problems (Armaghani and
Asteris, 2021; Noori et al., 2010), but these
two models are quite sensitive to overfitting
data (Ghasemian et al., 2019). However, this
problem can be handled using a combination
of several optimization algorithms (Chen et
al., 2020; Seifi et al., 2020). In future studies,
ANN and ANFIS models may also be used to
assess the prediction accuracy of bored pile
load-bearing capacity along with SVM and
other ML models.
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Figure 8. Values of RMSE of the studied models with (a) training dataset and (b) testing dataset
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4. Conclusions

In this study, the load-bearing capacity
of the bore pile was predicted using three ML

models, namely SVM, ANN, and
ANFIS, based on the Six
parameters, including pile structure

dimensions and engineering properties of soil;
and concrete pile. The models were
validated using various statistical indicators,
namely R and RMSE. Results of this study
showed that all three proposed models: ANN,
ANFIS, and SVM, are good in estimating the
load-bearing capacity of bored piles, but the
performance of the SVM model is the best
(R=0.985 and RMSE=294.57). Thus, the
SVM model can be used to predict the load-
bearing capacity of bored piles used in the
design of the foundation of the bored piles,
even on different soil types. Other models
(ANFIS and ANN) can also be utilized for
predicting load-bearing capacity piles by
solving overfitting  problems using
optimization techniques. In the future, it is
proposed to develop new hybrid ML models
to enhance the prediction performance of the
studied and other models.
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