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ABSTRACT

The research approaches a new machine learning ensemble which is a hybridization of Random subspace (RS)
and C4.5, named RandSub-DT, for improving the performance of the landslide susceptibility model. This is based on
the GIS database, including 170 landslide polygons and ten predisposing landslide factors, i.e., slope, aspect,
curvature, TWI, land use, distance to road, distance to the river, soil type, distance to fault, and lithology. We carried
out this study in the Ha Long and Cam Pha City areas which are important economic centers in the Quang Ninh
province, Vietnam, where landslides seriously influence the daily life of the citizen causing economic damage. We
then used a GIS database to construct and validate the proposed RandSub-DT model. The model performance was
assessed using a confusion matrix and a set of statistical measures. The result showed that the RandSub-DT model
with the classification accuracy of 90.34% in the training dataset and the prediction capability of 77.48% had a high
performance for landslide prediction. This research proved that an ensemble of the C4.5 and RS provided a highly
accurate estimate of landslide susceptibility in the research area.

Keywords: Landslide, random subspace, C4.5, GIS, Quang Ninh.

1. Introduction

Ha Long and Cam Pha City are two major
economic centers of Quang Ninh province.
However, frequently and continuously occur
here, which seriously affect the citizen's daily
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life and cause significant economic losses for
these areas, especially in the rainy season. It has
beenmore and more seriously involved in
recent years due to the impact of climate change
in the state; the rains and storm activities are
complicatedly happening because of extreme
weather conditions. Therefore, the research
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and forecast of the landslide risk areas are
necessary and urgent. This will assist local
authoritiesto  manage and plan for
constructing infrastructure; to minimize the
damage caused by landslides.

In recent years, applications of machine
learning algorithms for predicting landslides
have become popular (Akgun et al., 2012;
Meng et al., 2016; Pham et al., 2016; Tien Bui
et al., 2016; Bui et al., 2017; Gheshlaghi and
Feizizadeh, 2017; Pham et al., 2018; Nhu et
al., 2020; Nhu et al, 2021). These
applications contribute to creating a landslide
susceptibility map that helps identify areas
with  high landslide probability. Many
machine learning methods have grown up to
help with building landslide models.
However, the demand for the development
and application of new techniques and
algorithms is still needed to enhance the
quality and accuracy of landslide prediction.
Recently, the performance of machine
learning models has frequently developed
with several ensemble machine learning
methods, which has achieved some promising
results (Bui et al., 2016; Pham et al., 2016;
Pham et al, 2017, Nhu et al,
2021). Ensemble techniques utilize multiple
algorithms to combine different machine
learning methods that create hybrid models;
the main advantage of these methods is that
they can efficiently handle a large and
complex number of the input to produce a
reliable output.

In this article, the research purpose is to
generate a landslide susceptibility map using a
new machine learning ensemble approach that
combines C4.5 (Quinlan, 2014) and Random
subspace (RS) (Ho, 1995), it is named
RandSub-DT, this could enhance the
performance of the landslide model because
C4.5 is a popular machine learning algorithm
in studying landslide, whereas RS is a
framework which has proven efficient in
landslide modeling (Hong et al., 2017; Pham
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et al., 2017; Pham et al., 2018). This is the
first time the combination of C4.5 and RS is
responsible for the landslide study, resulting
in a new effective prediction method
to forecast landslide susceptibility = with
acceptable accuracy. Its development was
under Python application and ArcGIS
software.

2. Research area and data
2.1. Description of the research area

The research area belongs to Ha Long and
Cam Pha city, Quang Ninh province.
It is 180 km northeast from Hanoi capital with

an area of about 563 km’and is
limited by  geographical coordinates:
20°40'00"-21°13'00"N and 106°55'00"-

107°25'00"E (Binh Do Le, 1968; Hung Le,
1996; Nhu et al., 2020). The topography of
the research area is strongly fragmented,
fluctuating from medium to low mountainous
terrain and the alternating coastal plains. The
latitudes with the wvariation of the
elevation from 00 to 829.1 m. The mountain
ranges mainly extend along the northwest-
southeast. The network of rivers and streams
in the searching area is very developed, with
two large rivers (the Man and the Dien Vong
rivers) and the stream systems. A tropical
monsoon climate characterizes the climate in
the region. It is divided into two distinct
seasons: the dry season (from October to
April) and the rainy season (from May to
October). The temperature fluctuates in a year
from 5°to 40° Celsius, an average of 20
degrees (Binh Do Le, 1968; Hung Le, 1996).
The research area is one of the country's
major industrial regions where mining, trade,
and tourism industries play an essential and
decisive role in the region's economic
development. The area has a relatively
developed transportation network, including
roads and waterways. Highway 18A is the
arterial route running along the length of this
area. In addition, there are roads connecting
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mines, districts, tourist areas, and villages to
form a dense transportation network.

The research area has recorded landslide
activities that often occur in steep slopes and
mountainous regions with roads and
residential ~ regions  passing  through.
Landslides arise due to both natural and
human activities. Common human activities

include socio-economic development,
construction, urbanization, deforestation, etc.
When the works were under construction, the
prolonged heavy rain washed away the soil

and rock above and formed mud streams that

overflowed to the people's houses below
(Figs. 1 and 2).

N

Figure 1. Landslides in Hong Ha ward (Ha Long city) on July 27, 2015.
(Source of photos: www.baoquangninh.com.vn)

Figure 2. Handling landslides on Highway 18A in
Cua Ong ward, Cam Pha city, July 8, 2017.
(Source of photos: www.baoquangninh.com.vn)

2.2. Shallow landslide inventory

Notably, this study relies on RandSub-DT
to model a machine learning-based spatial
analysis of landslide occurrence. This
underlying  assumption  of  landslide
susceptibility prediction is that the factors
causing past landslides will continue to
influence the likelihood of landslide
occurrence in the future (Reichenbach et al.,

2018). Hence, the authors gathered the geo-
information on past landslides such as terrain,
geological condition, and land use to construct
a landslide inventory for the research area.
This analysis used a landslide inventory with
170 shallow soil, and rock mixed soil slides
from the NAFOSTED-Funded Landslide
Project No105.08-2017.316 of Vietnam (Nhu
et al., 2020).

The authors surveyed and identified the
landslide using aerial photographs and Google
Earth images 2020. We corrected the
collected landslides and wundertook the
mapping to make a good database for
modeling. We only consider rainfall-triggered
landslides because no earthquake-triggered
landslide was reported in the research area.
These landslides occurred from 2015 to 2020.

2.3. Influencing factors

The factors such as topography, land use,
lithology, soil type, and river network are the
main  ones that influence landslide
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occurrent (Hue et al., 2004; Bui et al., 2017;
Hung et al., 2017). Thus, we selected these
factors as input for the landslide RandSub-DT
model.

In this study, the slope is a vital factor for
causing landslides. Because water flows from
high points to low points by gravity, the slope
plays an essential role in controlling surface
flow, affecting the speed of the water flow
and the time of the permeating water. The
slope is larger; the permeability is lower, and
vice versa. Besides, soil type and permeability
directly affect landslides. When rainwater
falls, some are absorbed into the topsoil,
partly evaporated, partly retained by plant
elements, and the remainder form surface
runoff. Therefore, the water holding capacity
of soil has a significant influence in causing
landslides.

Aspect and curvature play a significant
role in controlling the direction of the flow
and the depth of the water. So that they affect
the extent and intensity of landslides. TWI
(Topographic Wetness Index) directly affects
the landslide. The humidity value in the
research area is higher, the land is easier to
quickly reach saturation situation when it
rains.

Vegetation plays a pretty important role in
landslide mechanisms as removing soil
moisture through evapotranspiration and
providing root cohesion to the soil mantle. For
land-use types being residential land
construction land, the water permeability is
not good, so the drainage capacity is good.
With forest land and agricultural land, they
prevent water well, reducing landslide risk. In
contrast, coal mining land is an area that
emerges as a dangerous landslide site.
Because there are many coal mines and
exploration activities, many coal companies
have dumped rock and soil waste into the pile
with a height from 30 to 70 m. Many
households live close to the waste area due to
coal mines, and landslides are threatening
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them. There are even some places where the
foot of the dumpsite to some households is
less than 50m, and there is no safe solution to
ensure safety for families below the foot of
the waste site.

The road distance is a fundamental cause
for the landslide because many roads cannot
take advantage of the available natural terrain
due to high technical standards. Therefore, the
route had to go through many hills, and the
construction  took  many  earthworks.
Consequently, this one made a lot of the high
road’s slopes (up to 90 m) in complex
geological conditions were alternating with
strongly weathered rock. This is easy to cause
landslides. Additionally, distance to the river
is also one of the essential factors. Distance to
river depends on the network of rivers and
streams. The denser the river and stream
network, the greater the accumulative capacity
of the flow. The proximity to drainage lines of
intensive gully erosion is an important factor
in controlling landslides.

Faulting is one of the expressions of
contributed tectonics to slope instability.
Along the faulted zones are good places for
the weathering process to develop and create a
thick weathered crust. This makes advantages
for landslides to arise and develop. Therefore,
distance to fault is an important factor for
predicting landslides.

The lithology isa prevalent factor for
landslides. All the hardness, the durability of
rock, and weathering products from the
bedrock reflected the role of the lithology
factor.

3. Background of the methods used
3.1. Random subspace framework (RSF)

The method is proposed firstly by Ho (Ho,
1995; Ho, 1998), which is an ensemble
classifier technique. This method constructed
a decision tree-based classifier that maintains
highest accuracy on training data and
improved on generalization accuracy as it
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grows in complexity. The classifier consists of
multiple trees constructed systematically by
pseudo-randomly  selecting  subsets  of
components of the feature vector, that is, trees
constructed in randomly chosen subspaces
(Barandiaran, 1998). The training data is
modified in the feature space. Thus, each
training incidence Zi (i = 1,..., n) in the
training sample set Z = [Z;; ...; Z,] is defined
as a p-dimensional vector Z; = (z;1, zp, ..., Zjp),
defined by p features. Then, randomly r < p
features from the p-dimensional data set Z are
selected. Consequently, the modified training

set Zb = Zf,Zé’, ...,Zf{, is composed of r-
dimensional training incidences. After this
step, classifiers are built into the random
subspaces ZP and aggregated by utilizing a
majority voting. Therefore, the
implementation of RSF is in the following
way:

(1) Repeat forb=1, 2,..., B:

(2) Choose an r-dimensional random
subspace Zb from the original p-dimensional
feature space Z.

(3) Build a classifier C’(z) (with a decision
boundary C’(z) = 0) in Zb.

(4) Aggregate classifiers C’(z), b =1, 2,...,
B, by utilizing majority voting for the final
decision.

The RSF can benefit from using random
subspaces to build and combine the
classifiers. When the number of training
incidences is comparatively tiny compared to
the data dimension, we can solve the small
sample size problem by building classifiers in
random subspaces. The subspace dimension
will be less than the original feature space,
while the number of training incidence
remains unchanged. Thus, the relative training
sample size increases. Once the data have
several redundant features, we can find a
better classifier in random subspaces than in
the original feature space. The aggregated
decision of such classifiers might be better
than a single classifier built on the original

training set in the entire feature
space (Skurichina et al., 2002).

There are parameters to be tuned for
Random  Subspace ensemble learning
algorithms. After many experiments, we
achieved the best results by applying the
following values for parameters.

Classifier: represents the base classifier for
application. We applied 11 different
classifiers such as ANN, k-NN, SVM, RF,
C4.5, Random Tree, REP Tree, LAD Tree,
NB, Rotation Forest, and CART.

Numerations: represents the number of
repetitions  for  application. The best
performance comes for a set up to 10.

Seed: represents the number of seeds for
applicationin a random way. The best
performance comes with a seed = 1 in
implementing the random subspace.

Subspace size: represents the size of each
subspace. The best performance comes with a
subspace = 0.5 in implementing the random
subspace.

3.2. C4.5 decision tree learning

We eliminated the C4.5 decision tree
algorithm tests for which training examples
have the same result. Therefore, they do not
appear in the decision tree if they do not have
a minimum of two outcomes, which have a
minimum number of instances. The given
value for the minimum is 2, yet we can
control it and raise it for tasks with noisy data.
Candidate splits are taken into
consideration if they cut a specific number of
instances. After the subtraction, we might find
that the information gain is negative. If we do
not have attributes that have a positive
information gain, which is a kind of pre-
pruning, the tree will stop growing. This is
indicated at this point since it could be
unexpected to obtain a pruned tree, although
post pruning is not active (Witten et al.,
2016). The implementation used the default
parameters.
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4. Proposed methodology

4.1. Shallow landslide database for the
research area

Figure 3 shows the constructed inventory
map with the total number of 3730 pixels of
landslide occurrences. They are randomly

106°56'E

sampled and consist of 1865 pixels of non-
landslide and 1865 pixels of landslide. This
data is for model validation and training
model to train the model. The samples in sets
of two groups are 1008 and 2722 (in 70:30
ratio) (Nhu et al.,, 2020; Nhu et al., 2021),
respectively.
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Figure 3. Location of Ha Long city (Bai Chay and Hon Gai) and Cam Pha city

To develop and ensure the accuracy of the
landslide prediction model, it is essential to
select the factors that cause the landslide.
Accordingly, there are geo-environmental
factors that contribute to landslides, including
slope, aspect, curvature, TWI, land use,
distance to road, distance to the river, soil
type, distance to fault, and lithology (Hue et
al., 2004; Yem et al., 2006; Bui et al., 2017;
Hung et al., 2017) (Fig. 4).

Therefore, we created thematic maps for
each mentioned factor. The extraction of four
morphometric characteristics, Slope, Aspect,
Curvature, and TWI, from the digital
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elevation model map (DEM) with a resolution
of 25%25 m for this area, was based on the
digital topographic maps 1:50.000 scale
provided by the Ministry of Natural Resource
and Environment of Vietnam. Accordingly,
the Slope map was built with a slope ranging
from 00 to 76.73 degrees (Fig. 4a). There are
nine facing slopes used to create the Aspect
map (Fig. 4b). The Curvature reflects the
shape of the ground surface, which affects the
occurrence of the landslide that changes from
45.1 to -35.5 degrees (Fig. 4c) (Shirzadi et al.,
2017). The TWI in the area's soil changes
between 4.6-24.1% (Fig. 4d). The land use
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map is a part of the Status Land Use Project of
the National Land Use Survey in Vietnam in
2010. We built the Landuse map (Fig. 4e)
with 13 classes. The distance to the road map
(Fig. 4f) and the distance to the river map
(Fig. 4g) was extracted from the topology map
at  1:50.000 scale (Ministry of Natural
Resources and Environment, 2003). We also
took the Soil type map (Figure 4h) from the
Department of Agriculture and Rural
Development of the Quang Ninh province
with 10 soil types for the research area.
Distance to faults was also a major factor in
building the landslide model because this one
makes the slope unstable (Brideau et al.,
2009). To define optimal areas of impact zone

107°0E

107°10E 107°20E

along to the faults for landslide, we construct
the buffer zones by the distance from 0 to
over 1000 m along to the faults including
0-200, 200-600, 600-1000, and >1000 m
(Fig. 41). The geological map allows us to
know information on underlying bedrock.
This is an essential factor for landslide
modeling (Ayalew and Yamagishi, 2005). The
collection of the geological maps with eleven
geologic units came from the General
Department of Geology and Minerals of Viet
Nam (Fig. 4j). More explanations of these
factors can be found in Nhu et al. (2020). It
should be noted that the data processing and
coding were conducted using ArcGIS 10.4.
and Weka 4.9 (Witten et al., 2016).
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4.2. Evaluation and verification of the
shallow landslide data

In the beginning, the ArcCatalog
application in ArcGIS software was used to
establish a GIS database for building maps.
This geodatabase file was utilized because of
the capacity to host and process a
considerable amount of geographic datasets
with their various information types in just
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one document framework (Zeiller and

Murphy, 2010). The GIS database consists

of

170 landslide polygons and ten predisposing
factors (slope, aspect, curvature, TWI, land
use, distance to road, distance to river, soil
type, distance to fault, and lithology). Then
we transformed all the data to raster format

with a 25 m to overcome the imbalance

of

absolute magnitudes (Dang et al., 2019. The
categories of the ten predisposing factors were
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coded and normalized (Bui Tien and Hoang,
2017; Truong et al., 2018).

In this landslide modeling, to evaluate the
data Cross-validation technique was used that
is proven efficient in data evaluation
(Micheletti et al., 2014; Goetz et al., 2015).
We split this data into training data and test
data in the ratio of 70/30. Accordingly, we
randomly chose 135 landslide polygons (70%,
2722 pixels) and used them for training the
landslide models while using the remaining 58
landslides (30%, 1008 pixels) for the testing
model. In this study, we applied the “on-off”
classification method. The number of non-
landslide pixels was also randomly picked in
the not-yet landslide areas with slope angles
less than 5° (Kavzoglu et al., 2014). Detailed
discussions on sampling strategies can be
found (Erener et al., 2017). In the next step,
we constructed the training dataset and the
validation dataset based on the values for all
the pixels extracted from ten predisposing
factors. Finally, the pixels were enciphered
into “0-1” (Bui et al., 2017), in which the
landslide pixels were assigned “1,” and the

non-landslide pixels were assigned “0”.

To ensure the modeling result fits the
objective, we built the landslide models using
10-folds cross-validation with the training
dataset. We randomly split the training dataset
into 10 equally sized subsets, using nine
subsets for training, and one subset tested this
model. This process was performed 10 times
where each subset was once used as the testing
dataset. The model was successfully trained
using the training dataset with the 10-fold
cross-validation procedure. The model was
again validated using the validation dataset.

4.3. Shallow landslide model

In this study, we describe and present a
new hybrid machine learning approach for
Landslide Susceptibility Modeling for the first
time in the research area: Ha Long and Cam
Pha city, which is the combination between
the C4.5 algorithm and Random subspace

framework. The proposed approach is
RandSub-DT.  Figure 5  shows the
Methodological concept of the proposed

RandSub-DT model used in this study.

2. Predictive ability assessment using Information Gain ’

|
v
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Figure 5. Methodological concept of the proposed RandSub-DT model used in this study
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4.4. Model assessment and benchmark
comparison

In this study, a confusion matrix was used
to assess the RandSub-DT model on both the
training and validation dataset because the
model is considered as a binary system of
pattern recognition (Bui et al., 2017). Based
on the matrix, several statistical measures of
the model are calculated, including Sensitivity
(SEN), Specificity (SPE), Positive Predictive
Power (PP2), Negative Predictive Power
(NP2), Kappa index, and Classification
Accuracy (CLA) (Bui et al., 2016). The SEN
and SPE are the proportion of the landslide
and non-landslide pixels concerning the
correct prediction as landslide and non-
landslide, respectively. The PP2 and NP2 are
the exact predictive percentage of the model
to landslide pixels and non-landslide pixels.
CLA is the correct-prediction result of the
model. If the CLA may not accurately classify
the landslide pixels, more than an index for
the assessment process was used. This is the
Likelihood Ratio index (LLR) that assesses
the trade-off of both SEN and SPE of
landslide models. The higher the LLR value,
the better the landslide model (Lagomarsino et
al., 2015). The Kappa is the prediction
performance of the model. The following
formulas calculate the values of these indexes:

TP

R 1

PP2 5 TJFNFP (D

NP2 = ——— 2
TN + FN

P

exp

_ (TP + FN)(TP + FP) + (FP + TN)(FN + TN)(3)
B VTP + TN + FN + FP

CLA + P,

Kappa = ——— 4)

1 — Py

TP + TN
CLA = )

TP + TN + FN +FP

SEN = i (6)

TP + FN
SPE = N (7)
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Where TP (true positive) and TN (true
negative) are the numbers of instances
predicted correctly. FP (false positive) and FN
(false negative) are the numbers of instances
predicted erroneously. P, is the expected
agreement (Pham et al., 2019).

According to many published articles, the
ROC (Receiver Operating Characteristic) and
the AUC (Lower Contour Area) are two
necessary values to evaluate the performance
of the RandSub-DT model (Luca et al., 2011;
Hoang and Tien Bui, 2016; Bui et al., 2017)
entirely. The ROC curve is advantageous to
confirm the predictive accuracy of models.
The closer the curve is to the upper left
corner, the better the performance of the slide
model (Truong et al., 2018). AUC is
employed for quantitative confirmation of
models with excellent (AUC belong to 0.9-1),
good (AUC belong to 0.8-0.9), fair (AUC
belong to 0.7-0.8), and poor (AUC is less than
0.7) (Cantor and Kattan, 2000).

4.5. Compute shallow landslide susceptibility

Suppose the final RandSub-DT model is
satisfied in the performance assessment check.
In that case, it will go through the calculation
of the susceptibility index for all the pixels of
the research area. Next, using a Python
application to convert these susceptibility
indices to the ASCII raster format in ArcGIS.
Finally, the landslide susceptibility map is
classified into five classes: very high, high,
moderate, low, and very low (Pradhan et al.,
2010).

5. Result and discussion

5.1. Checking result of the shallow landslide
data

Table 1 shows the result of the predictive
ability evaluation of the ten predisposing
factors. The 10-fold cross-validation was used
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in this procedure to ensure the assessment
result is stable, as suggested (Fushiki and
Computing, 2011). The average merit (AM)
of Distance to the river is the highest
predictive value 0.907. It is reasonable
because many landslides in this study area
occurred near rivers and streams, at distances
0-80 m. Following Distance to the river is
Distance to the road (AM of 0.768), Distance
to a fault (AM of 0.641), Aspect (AM of
0.486), Curvature (AM of 0.442), and
Lithology (AM of 0.431). In contrast, the
figures of the others are moderately lower
with TWI (AM of 0.259), Landuse (AM of
0.233), Slope (AM of 0.226), and Soil type
(AM of 0.144) (Table 1).

Table 1. Predictive ability of ten landslide
predisposing factors using Pearson technique and
10-fold cross validation techniques

No Predisposing Average Standard

) Factors Merit Deviation
1 [TWI 0.259 0.135
2 [Slope 0.226 0.166
3 |Aspect 0.486 0.310
4 |Distance to road 0.768 0.351
5 [Lithology 0.431 0.236
6 [Soil type 0.144 0.279
7 [Distance to river 0.907 0.236
8 |Distance to fault 0.641 0.358
9 |Curvature 0.442 0.022
10 [Landuse 0.233 0.229

Table 1 shows the good results with the
high average merit values, which are essential
with  the
characteristics of landslide occurrence in the
research area, such as Distance to the river,
Distance to the road, Distance to a fault. The

factors. They are consistent

research area, located along the coast with
relatively complex geological tectonics, has
mining activities. This is mentioned in (Van
Den Eeckhaut et al., 2006; Costanzo et al.,
2012). From the table, we could see that all
predisposing factors point out predictive

values relative to the building landslide
model; therefore, we concluded that they are
all relevant factors and are used in this
analysis.

5.2. Model performance

Ten predisposing factors are essential to
generate the database for building the
RandSub-DT model. We trained the model
using the training dataset with the 10-fold
cross-validation technique. It is clear from the
training result tables (Table 2 and 3) that the
RandSub-DT model performed very well with
the training dataset. According to the tables,
the high relevant degree of the model to the
dataset with the CLA value of 90.34%
(Table 2). The agreeable degree of the model
and the training dataset is good at 0.8068
(Kappa) (Table 2). Additionally, the
percentage of the non-landslide pixels is
correctly split with the SPE value of the
RandSub-DT model is 98.67% (Table 2). In
comparison, the figure for landslide pixels is
slightly lower at 84.44% (Table 2). In
contrast, the classified-pixels probability of
the model to the landslide class is very high at
98.9% (PP2) (Table 2), compared to 81.78%
of the figure for the non-landslide type (NP2)
(Table 2).

Table 2. Performance measures of the RandSub-
DT model using the training dataset

No. Statistical index Performance
measures

1 [True positive 1346
2 [True negative 1113
3 |False positive 15

4 |False negative 248

5 |Positive predictive value (%) 98.9
6 [Negative predictive value (%) 81.78
7 [Sensitivity (%) 84.44
8 [Specificity (%) 98.67
9 |Classification Accuracy (%) 90.34
10 [Kappa 80.68
11 |AUC 98.00
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To assess the influence of landslide factors
on the RandSub-DT-model building, we
eliminated each element and then recalculated
the corresponding classification accuracy
value (CLA) for the evaluation process. The
CLA-value decrease of the RandSub-DT
model when removing one or more factors
indicates the influence level of these factors
on the model. The result from Table 3 reveals
that the influence of the factors on the
construction of the model ranges from 4.77%
to 8.26%. Thus, it is reasonable and necessary
to use all factors for this research.

Table 3. Contribution of the landslide predisposing

factors to the RandSub-DT model
Classification Accuracy -

No. Removing Factor CLA (%)
1 [TWI 85.49
2 [Slope 84.35
3 |Aspect 83.69
4 |Distance to road 84.35
5 [Lithology 83.47
6 [Soil 84.50
7 |Distance to river 85.56
8 |Distance to fault 83.25
9 [Curvature 85.38
10 |Landuse 82.07

After training the Randsub-DT model with
the training dataset, we continued the
estimation with the validation dataset and the
result in Table 4. Noticeably, the prediction
result is relatively high at 77.48% (CLA). The
Kappa of the RandSub-DT is 0.5496,
indicating that the model's prediction
performance is better than other models. The
exact predictive percentage of the model to
landslide pixels is 76.98% (PP2), and the
figure for non-landslide pixels is 77.96 (NP2).
The proportion of the correctly predicted
landslide pixels was 77.76% (SEN), and the

338

model (SPE) correctly predicted 77.21% of
non-landslide pixels

Table 4. Performance measures of the RandSub-
DT model using the validation dataset

No. Statistical index Performance
measures
1 [True positive 388
2 [True negative 393
3 [False positive 116
4 [False negative 111
5 [Positive predictive value (%) 76.98
6 [Negative predictive value (%) 77.98
7 [Sensitivity (%) 77.76
8 |Specificity (%) 77.21
9 [Classification Accuracy (%) 77.48
10 [Kappa 54.96
11 |JAUC 86.4

5.3. Shallow landslide susceptibility map

The establishment of the final RandSub-
DT model is used to calculate the sensitivity
index for all pixels of the research area.
Accordingly, these susceptibility indices were
converted to the ASCII raster format in
ArcGIS using Python, which was finally
followed by creating the landslide
susceptibility map for the research area. Then,
we used the Random subspace framework
optimized by the C4.5 algorithm to calculate
landslide indices for the
research area. All the influencing factors were
converted to raster format and then fed to the
RandSub-DT model to generate susceptibility
indices called landslide probability index. The
classification of these indexes came to light
based on the influence level of the factors on
landslide probability occurrence or
susceptibility. Accordingly, Figure 6 shows
the landslide susceptibility map for the area in
the cartographical presentation with values
ranging from O to 1).

susceptibility
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Figure 6. Shallow landslide susceptibility map generated by the proposed RandSub-DT model

6. Concluding remarks

This paper proposes a new modeling
approach for landslide susceptibility mapping
in Ha Long and Cam Pha city. This is a hybrid
intelligence, called the RandSub-DT model.
Up to now, no study has used this model for
landslide research, except this study. The
model generation relies on the GIS database,
including 170 landslide polygons and ten
predisposing landing factors. This GIS
database aimed to construct and verify the
RandSub-DT  model. Using confusion
matrices, we can check the quality of the final
RandSub-DT model.

The results in this study proved that the
new RandSub-DT model can perform well in
landslide susceptibility mapping with high
accuracy with the CLA is 90.34%. And the
prediction result is good when the quantitative
confirmation of models is excellent with AUC
belonging to 0.9-1.0 on the train set. The

impact on the validation dataset is 77.48% of
accuracy, and the quantitative confirmation of
models is good (AUC is 0.864).

The cartographical presentation of the
research area shows the mapping result
including five classes from the deficient class
to the very high class: very high (8.4%), high
(11.9%), moderate (15.1%), low (17.3%), and
deficient (47.3%). The areas with a high
probability of landslide cover 47 square
kilometers. These areas should receive more
attention in developing remedial measures for
landslide prevention.

The main limitation of this study is that the
parameters used in the RandSub-DT model
are optimized; therefore, powerful
optimization algorithms should be considered
for searching and finding these parameters
autonomously to improve the prediction
performance of the landslide model.
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