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ABSTRACT

Floods are among the most frequent highly disastrous hazards affecting life, property, and the environment
worldwide. While various models are available to predict flood susceptibility, no model is accurate enough to be used for
all flood-prone areas. Model development using different algorithms is a continuous process to improve the prediction
accuracy of flood susceptibility. In the study, we used the Radial Basis Function and Fisher’s linear discriminant
function to develop a flood susceptibility map for a case study of Quang Binh Province. The model development used
ten variables (elevation, slope, curvature, river density, distance from river, geomorphology, land use, flow
accumulation, flow direction, and rainfall). For model training and validation, input data was split into a 70:30 ratio
according to flood locations. Statistical indexes were used to evaluate model performance such as Receiver Operating
Characteristic, the Area Under the ROC Curve, Root Mean Square Error, Accuracy, Sensitivity, Specificity, and Kappa
index. Results indicated that the radial basis function classifier model had better performance in predicting flood
susceptible areas based on the statistical measures (PPV = 92.00%, NPV = 87.00%, SST = 87.62%, SPF = 91.58%,
ACC = 89.50%, Kappa = 0.790, MAE = 0.204, RMSE = 0.292 and AUC = 0.957. Therefore, the radial basis function
classifier algorithm model is appropriate for predicting flood susceptibility in Quang Binh Province.

Keywords: Radial Basis Function Classifier, Fisher’s linear discriminant function, Important variables, floods,
Quang Binh.

1. Introduction hazards that frequently occur worldwide as a
result of heavy rainfall, storm surge on land,

Floods are the most destructive natural tropical cyclone and tsunami in coastal areas.
In recent years, more than 89% of the world’s

"Corresponding author, Email: binhpt@utt.edu.vn natural hazards, such as ﬂOOdS, dI'OllghtS,
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hurricanes, have been proven to be related to
climate change (Convertino et al., 2019). The
consequences of flooding have either short- or
long-term impacts on human societies. Floods
also cause severe damage to the environment
and economic losses to individuals,
communities, and government (Choubin et al.,
2019). Floods pose a challenge to decision-
makers and planners to better manage this
hazard to prevent damages (Whan et al.,
2020).

Several factors exacerbate flooding in an
area. High and monsoon rains, tropical
cyclones, rapid snowmelt, and insufficient
drainage systems are all examples of these
complex and interconnected variables.
Different spatial and temporal dimensions of
rainfall are the primary and severe causes of
floods. In addition to the above factors, socio-
economic and ecological conditions can
significantly increase the impact of floods
(Halgamuge & Nirmalathas, 2017).

Complete flood risk prevention is
unreasonable and impossible, but predicting
flood susceptibility can significantly reduce
flood damage. Recently, floods in residential
areas and other human-made structures are
creating many challenges for flood
management (Lyu et al., 2019). Therefore,
flood-affected areas must be identified, and
the destructive effects of floods should be
reduced. For this purpose, it is required to
identify flood affecting parameters and flood
susceptible areas using modern technology
(Qiao et al., 2017). Flood susceptibility
assessments are usually done by statistical
methods or by physical models of
precipitation and run-off (McCuen, 2016).
The statistical methods include weights of
evidence, frequency ratio, certainty factor,
statistical index, and evidential belief function
(Romulus Costache & Zaharia, 2017,
Khosravi et al.,, 2016; Siahkamari et al.,
2018). In addition, multi-criteria decision-
making techniques have yielded successful
results in flood assessment such as Analytical
Hierarchy Process (AHP), Analytical Network
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Process (ANP), Technique for Order of
Preference by Similarity to Ideal Solution
(TOPSIS), and VIKOR (Dano et al., 2019;
Khosravi et al., 2019; W. Yang et al., 2018).
Recently, remote sensing technology and GIS
methods have been increasingly used in flood
prediction and management (Das, 2019).
Several programs are used for run-off rainfall
modeling, including HEC-RAS and MIKE
(Brunner, 1995; Zhou et al., 2012). However,
these hydrological models require long
monitoring of meteorological and
geoenvironmental data (Kim et al., 2015).

Nowadays, spatial modeling is done using
Machine Learning (ML) approach for flood
susceptibility modeling due to their high
efficiency, accuracy, and predictability
(Ahmadlou et al., 2019). ML algorithms often
used for flood susceptibility modeling include
Support Vector Machine (Tehrany et al.,
2014), Logistic Regression (Pham et al,
2020), Artificial Neural Network (R. Costache
et al., 2020), Bayesian Logistic Regression
(Vogel et al., 2014), Decision Tree, Random
Forest, Alternating Decision Tree, Logistic
Model Tree, Naive Bayes tree (Pham et al.,
2020), Reduced Error Pruning Tree (W. Chen
et al., 2019), k-nearest neighbor, and Deep
Learning Neural Networks (Panahi et al.,
2021).

In the present study, we used Radial Basis
Function Classifier and Fisher’s linear
discriminant function to develop a flood
susceptibility map for the case study of Quang
Binh Province. The models were evaluated
using standard statistical methods. The data
analysis and visualization were carried out
using Weka and ArcGIS software.

2. Methods used
2.1. Radial basis function classifier

Radial Based Function Classifier (RBFC)
is a type of Artificial Neural Network with a
much faster training process than Multi-Layer
Perceptron (MLP) for the function
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approximation and classification problems
(Yue Wu et al., 2012). The task of the RBF
Classifier algorithm is to model classification
or grouping problems. In general, this
algorithm is used for different applications in
various fields of science (Savitha et al., 2012).
These systems generally use local-based
functions, such as Gaussians or inverted
quadrants, to solve the grouping problems
(Ince et al., 2012). RBF classifiers include the
compatibility of kernel-based classifiers that
utilize a constant variance for each RBF
kernel and select RBF centers from the input
dataset (He et al., 2019). RBF is a function of
actual value, whether it belongs to the
distance from the source. Accordingly, the
relation @ (x) = @ (Ixl) can be expressed. If it
belongs on another distance, such as spot c,
we will have a relationship @(x, ¢) = 0 (Ix —
cl). It should be noted that any function
named “¢” that creates the attribute @ (x) = @
(IxI) is a radial function (Li et al., 2002). One
of the main tasks of the RBF is to solve real
multivariate interpolation (MI) problems
(Frank, 2014; Shastry et al., 2017). Amongst
the different types of RBF methods, one of the
most important and most used is the
“Gaussian” subordinate, which is expressed as
the following equation (Young-Sup & Sung-
Yang, 1997):

@ (x)=exp (-|x-c[/ 26%), &> 0 (1)
where O is the Gaussian function scatter. The
value O defines the Gaussian function
expansion and controls interpolation.

2.2. Fisher’s linear discriminant function

The Fisher Linear Discriminant Function
Algorithm (FLDA) 1is a technique for
dimensionality reduction before classification
that involves finding a linear combination of
characteristics to describe or distinguish two
or more classes of objects or events. In this
analysis, the idea is to maximize a function to
provide a significant separation between the
projected class means to minimize the class

overlap for better classification with the slight
variance within each category.

Fisher’s linear discriminant algorithm is
widely used for 2-instances of natural
multivariate data. The central concept for its
credibility and validity is that the variances
matrices/ matrixes of 2-innate groups are
equivalent. It is crucial to study the attributes
of FLDA in cases where the variance matrices
are not identical (Roh et al., 2019). FLDA is
used in attribute selection to decrease
dimensions and to differentiate various
categories. Data subsets are located in the N
by M matrix. Thus, the total scattering matrix
is defined as below (Arahal & Berenguel,
1998; Saastamoinen et al., 1998):

St: Z(Xn' Xmean) (Xn' Xmean)T (2)

In the above formula, X ... 1S the total
vector, X represents the results of classes for
rows of X, vectors. S; illustrates the scatter
(S;) within the X matrix for class j obtained
from the following equation:

Si: Z(Xn' Xi.mean) (Xn' >(i.mean)T (3)
where X shows the average vector for the
susceptibility results category j; T is
mentioned to the relocation. If J is the total
number of categories outstanding for the data
as a total, the within-category distribute (Sy,)
to the matrix is:

Sw=2.5; “4)

The among-category distribute (S,) for
matrix X is:

Sb: Zni (Xi.mean - Xmean) (Xi.mean - Xmean)T (5)
where nj is the whole observations within the
category j; the whole -distribute (S,) matrix as:

S&= Swt Sy (6)

Finally, the first FLDA vector is shown
below:

Max w'; Syw/ W'; Sywi

The second FLDA vector (wy) can also be
created that maximizes. The diffuse among
the J categories but together minimizes the
diffuse within each category. The FLDA
vectors demonstrate the special vectors w of
the universal special value presentation:
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Sp Wi= 7»j SwWic @)

A demonstrates the measure of throughout
segregation between the j categories.
2.3. Validation methods

2.3.1. Receiver Operating Characteristic
(ROC) curve

One of the most common and well-known
evaluation statistical indicators is the Receiver
Operating Characteristics (ROC) curve. The
specific results of ROC can be generalized
and trusted. The ROC technique is a
probabilistic ~ approach  for  evaluating
algorithms over a wide range of thresholds
(Avand et al., 2020). The ROC graph consists
of two axes x and y. Each of these represents
the characteristics of specificity and
sensitivity, respectively (Jaafari, 2018). The
Area Under the ROC curve (AUC) is usually
used as a criterion for measuring the
predictive accuracy of algorithms. The AUC
value varies between “0.5-1”. A value of 0.5
indicates the poor performance of algorithms
in predicting susceptibility to natural hazards
such as floods and landslides. A value of
AUC 1 indicates the strong performance of
algorithms in predicting flood and landslide
susceptibility. In general, the closer the AUC
value is to 1, the higher the accuracy of the
algorithm, whereas the closer to 0.5, the lower
the algorithm’s accuracy (Wei Chen et al.,
2019). The equation of the evaluation method
using the AUC method is as follows:

YE+YI (8)

A+B

where the “E” illustrates the numeral of the
exactly categorized flood happens, “I”” defines
the numeral of the false categorized flood
happens, “A” defines the whole numeral of
non-flood samples, and “B” defines the whole
numeral of flood samples.

AUC =

2.3.2. Statistical Indexes

Statistical indicators are used to evaluate
the performance of the models, including
ROC, AUC, Positive Predictive Value (PPV),
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Negative Predictive Value (NPV), Mean
Absolute Error (MAE), Root Mean Square
Error (RMSE) (Pham et al., 2021; Tran and
Prakash, 2020; Van Phong et al., 2020),
Accuracy, Sensitivity, Specificity, and Kappa
index (K). The PPV and NPV criteria are the
probabilities of correctly grouped pixels as
“flood” and “non-flood”. The Sensitivity
indicator shows the ratio of flood pixels, while
the Specificity shows the proportion of non-
flood pixels. The K indicator is a useful
statistic that may be used to assess random
agreement among categorization variables. K
varies between 1 and -1. If K values are close
to 1, it indicates the high credibility and
reliability of the algorithm in predicting flood
susceptibility. The  Accuracy criterion
estimates the ratio of accurate flood forecast
to total flood forecast (De Rosa et al., 2019;
Pravalie & Costache, 2014). The RMSE
denotes the difference between observed and
calculated data. The MAE is an extent of
errors among binary observations. The higher
values of SPF, PPV, NPV, ACC, SST, and K
and lower RMSE and MAE denote the higher
performance of the model in predicting flood
susceptibility. The evaluation criteria’
equations are given in published works (Singh
et al., 2018; Yanli Wu et al., 2020).

3. Study area

Quang Binh is a North Central coastal
province, located at latitude 16°56°20” to
18°5°12” North and longitude 105°36°55” to
106°59°37” East (Fig. 1). This province was
chosen for the research because it is one of
Vietnam’s most flood-prone regions (Luu et
al., 2019).

Quang Binh has an area of 800 km® and a
coast length of 116.04 km. The population of
the province is 887,600 in 2018. The
topography of the area is adulatory with steep
hills and mountains. Rivers and streams in this
area are of short length. Thus, floods occur
with high intensity, raising the floodwater
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quickly in the river valleys and low-lying

floods have recently occurred in this region in

areas. Floods and storms occur mainly from 1995, 1999, 2007, 2008, 2010, 2016, and
August to November. Severe storms and 2020.
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Figure 1. The research area’s location and historical flood points

4. Data used
4.1. Flood inventory

The flood inventory database was
developed from the historical flood record,
remote sensing, and field survey. Flood
inventory is required for developing flood
susceptibility maps. The flood inventory

database used in this research contains 321
historical flooded sites from 2007, 2010, and
2016 (Figs. 1, 2). This data was collected
from the Quang Binh Center for Hydro-
Meteorological Forecasting department and
used to develop flood susceptibility maps in

the present study.

Figure 2. Flooding photos of the study area (Source: https://www.quangbinh.gov.vn)

59


https://www.quangbinh.gov.vn/

Chinh Luu et al.

4.2. Flood influencing factors

This study selected ten flood influencing
factors: elevation, slope, curvature, river
density, distance from the river, geology,
flow accumulation, flow direction, land use,
and rainfall (Fig. 3 and Table 1). The
selection of these factors is based on the
geo-environmental conditions of the study

area and literature review of many studies
relating to flood susceptibility modeling
(Dottori et al., 2018; Gonzalez-Arqueros et
al., 2018). The data used in this study were
also used in other works (Luu et al., 2021).
Figure 4 shows the frequency ratio analysis
of the affecting factors with flood inventory
of the study area.
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Figure 3. Flood affecting variables are shown in thematic maps (Luu et al., 2021)
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Figure 3. Continue

Table 1. Flood susceptibility modeling spatial variables and datasets (Luu et al., 2021)

Factors Sources Spatial resolution Years
[Elevation IEARTHDATA SEARCH 30m 2013
Slope EARTHDATA SEARCH 30m 2013
Curvature EARTHDATA SEARCH 30m 2013
[Flow direction IEARTHDATA SEARCH 30m 2013
[Flow accumulation IEARTHDATA SEARCH 30m 2013
Rainfall 16 rainfall stations 30m Yearly, 1986-2016
River density River network map 1:50,000 2015
Distance from river River network map 1:50,000 2015
ILand-use ILand-use categories map 1:50,000 2015
Geology Geological map 1:50,000 2015

4.2.1. Elevation

The elevation has a significant impact on
the flood situation (Razavi Termeh et al.,
2018). Water flows from higher altitudes and
collects at lower elevations in flat areas,
producing floods in river valleys, flood plains,
and rvier banks. The elevation map was
generated from the DEM of the research

region and categorized into seven class
intervals  using the natural  breaks
classification technique.

4.2.2. Slope

Steep slopes result in higher surface run-
off and soil erosion, whereas gentle slopes
cause accumulation of the water (Agassi et al.,
1990). The DEM was used to create the slope
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angle map, which was split into seven groups.
The values of the slope angle vary from 0 to
77.52°.

4.2.3. Curvature

Another topographic element derived from
the DEM map is curvature. Curvature splits
the surface into three types of slopes: convex,
concave, and flat (Shafizadeh-Moghadam et
al., 2018). The run-off will be more on the
convex surface in comparison to the concave
surface. Accumulation of the water would be
on the flat surfaces. The natural break
classification technique was used to divide the
raster map into seven groups.

4.2.4. River density

Most Quang Binh rivers and streams
originate in the province’s territory and then
flow into the sea. Rainfall in the river basins
determines the flood regime in rivers. The
higher density of the river creates more run-
off, but it also results in flooding of the larger
areas of territory occupied by several river
basins. The river density map was derived
from a river network map using the Dissolve
tool in ArcGIS Pro.

4.2.5. Distance from the river

The Euclidean Distance tool in ArcGIS Pro
is used to determine distance from the river
using river network data. Due to an excess of
water from river banks, inundation zones are
often seen around rivers (Santangelo et al.,
2011). The distance from the river was
divided into five class intervals in this
research using the manual categorization
technique.

4.2.6. Geomorphology

Geomorphology is considered in flood
susceptibility modeling since it affects the
water run-off and infiltration process (Bui et
al., 2019). Geomorphology is related to
landforms that are dependent on sub-surface
geology and erosional and depositional
processes. There are 35 geological formation
types in the study, and all data was obtained
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from the Quang Binh Department of Natural
Resources and Environment.

4.2.7. Lan duse

Land use is a significant variable in
research focusing on flood susceptibility
modeling (Panahi et al., 2021). Land use
categories affect the run-off and infiltration,
thus flooding. The land use map of Quang
Binh province is provided by the Department
of Natural Resources and Environment. It
consists of ten categories: agricultural areas,
residential areas, construction areas, plants in
residential areas, transportation, forest,
woodland, soil bare, water bodies, and mining
areas.

Land use is a major variable in research
focusing on flood wvulnerability modeling
(Panahi et al., 2021). Land usage in the region
has an impact on run-off and infiltration,
resulting in floods. The Department of Natural
Resources and Environment provided the land
use map for Quang Binh province.
Agricultural  areas, residential  areas,
construction areas, plants in residential areas,
transportation, forest, woodland, soil bare,
water bodies, and mining areas are the 10
categories on the land use map.

4.2.8. Flow accumulation

The flow accumulation is a metric that
shows how fast the river network is moving
(R. Costache et al., 2020). Using ArcGIS
software, the flow accumulation map was
created from the flow direction map by
calculating accumulated flow based on the
cumulative weight of all cells flowing from
upstream into every downward cell. The map
was created with seven class intervals Using
the natural break categorization technique.

4.2.9. Flow direction

Flow direction is a hydrological element
that indicates the flow’s direction. Flow
direction maps show the direction of surface
flow and represent the contribution of run-off
towards flooding. Flow direction maps depict
the direction of surface flow and the amount
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Dong Hoi, and Minh Hoa, with the
availability of continuous data from the year
study region. The
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There are ten rainfall stations in Quang Binh
province: Kien Giang, Le Thuy, Mai Hoa, Ba
1965-2016. The Inverse Distance Weighted
technique was used to create a rainfall map for

the
categorization technique was used to divide a

rainfall map into seven groups.
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Rainfall is a critical factor in modeling

generate the flow direction raster. The flow Don, Viet Trung, Trooc, Dong Tam, Tuyen
flood susceptibility (Y. Wang et al., 2019).

intervals using the natural break classification

of run-off that contributes to floods. The Arc
technique.

Hydro tool in ArcGIS Pro was used to
direction map was created with five class

4.2.10. Rainfall
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Figure 4. Frequency ratio of the flood influencing factors
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5. Methodology flowchart

The methodology adopted for modeling
and mapping flood susceptibility is shown in
Figure 5 and summarized in the following
steps:

Step 1: Selecting flood
variables from different sources.

Step 2: Recording flood events in the
study area and dividing them into two groups

influencing

DEM
Meteorological data
Land cover map
Google earth images

_—

Field survey and reports

|

i[ Trrairninrg 70% :

for model training (70% of data set) and
model validation (30% of data set).

Step 3: Predictive modeling of flood
susceptibility RBFC and FLDA. Table 2
shows the hyper-parameters used for each
model in this study.

Step 4: Evaluate the accuracy of the
algorithms’ performance mentioned in the
previous step using SPF, PPV, NPV, ACC,
MAE, RMSE, AUC, SST, and K indices.

Step 2: Flood inventory map

 Test 30%
Step 3: Flood modeling

Elevation
Slope
Curvature
Landuse
Geomorphology
Rainfall
River density
River district

w2
—_
[}
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Flow direction

Step 4: Validation and comparison

SPF, PPV, NPV, ACC, MAE, RMSE, AUC, SST |

Flood susceptibility mapping

E 3

.
and K }

Figure 5. Methodological framework of flood susceptibility modeling

Table 2. Hyper-parameters used for each model in this study

Models

No Hyper-parameters FLDA RBFC
1 Batch size 100 100
2 Debug False False
3 Do not check capabilities False False
4 Num decimal places 2 2
5 Ridge 1.0E-6 0.02
6 Num function - 2
7 Num threads - 1
8 Pool size - 1
9 Scale optimization option - Use scale per unit
10 Seed - 1
11 Tolerance - 1.0E-6
12 Use attribute weights False
13 Use CGD - False
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6. Results
6.1. Validation of the models

Table 3 shows the performance of both
RBFC and FLDA models overtraining and
validation phases. In the training phase, the
RBFC algorithm has higher performance
according to the PPV (97.37%), SPF
(89.66%), ACC (86.93%), SST (84.55%), and
NPV (83.49%). FLDA model has higher
performance in terms of PPV (88.99%), SPF
(88.52%), ACC (86.93%), SST (85.46%), and
NPV (84.86%). On the other hand, the FLDA
model has higher performance for K (0.739),
and RBFC has higher accuracy in MAE
(0.208). In the testing phase, the RBFC
algorithm has higher performance in terms of
PPV (92.00%), SPF (91.58%), ACC
(89.50%), SST (87.62%), and NPV (87.00%).
Accordingly, it has the highest accuracy in
predicting flood sensitivity. On the other
hand, the K indicator is higher in the RBFC
algorithm (0.790), and the MAE index is
higher in the RBFC algorithm (0.204).

RBFC model (RMSE =0.300)

Figure 6 shows the analysis of RMSE for 400
samples of training data. The index of RMSE
for the RBFC algorithm is 0.300 and for the
FLDA algorithm is 0.318, which indicates that
the RBFC algorithm is more accurate in
forecasting flood susceptibility in the study
area. Accordingly, Fig. 7 shows the RMSE
for test data with 200 randomly selected
samples of flood locations. The result shows
that the RBFC algorithm with a value of
RMSE 0.292 is more accurate than the FLDA
algorithm with a value of RMSE 0.313 on

predicting flood susceptibility. Therefore, the
RBFC model is more effective.

Table 3. Performance analysis of the models

No| Parameter Traning Validation

RBFC | FLDA | RBFC | FLDA
1| PPV (%) | 90.37 88.99 92.00 | 90.00
2 | NPV (%) | 83.49 84.86 87.00 | 88.00
3 | SST (%) 84.55 85.46 87.62 | 88.24
4 | SPF (%) 89.66 88.52 91.58 | 89.80
5 | ACC (%) | 86.93 86.93 89.50 | 89.00
6 | Kappa(k) | 0.379 0.739 0.790 | 0.780
7 MAE 0.208 0.246 0.204 | 0.243

FLDA model (RMSE = 0.318)
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Figure 6. RMSE of the models in training phase
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Figure 7. RMSE of the models in validation phase
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Figure 8, on the other hand, shows the
accuracy and precision of the algorithms used
by the AUC standard for training and testing
data. The results indicate that in the training
phase, the accuracy of the RBFC algorithm
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(AUC = 0.951) is higher than the accuracy of
the FLDA algorithm (AUC = 0.945). Also, in
the validating stage, the precision of the
RBFC algorithm (AUC = 0.957) is higher
than the FLDA algorithm (AUC = 0.948).
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Figure 8. AUC in the training (a) and validation (b) stages of the models

6.2. Construction of flood susceptibility maps

The flood susceptibility maps generated by
RBFC and FLDA algorithms are shown in
Figure 9. These maps were divided into 5
classes using Reclassify tool and Natural
Break method in ArcGIS software. Flood
susceptibility map using RBFC model include
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classes: Very low (0.001-0.12), low (0.12-
0.287), moderate (0.287-0.513), high (0.513-
0.751), and very high (0.751-0.993), whereas
map developed using the FLDA model
include classes: very low (0-0.126), low
(0.126-0.302), moderate (0.302-0.507), high
(0.507-0.726), and very high (0.726-0.998).
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Figure 9. Flood susceptibility maps developed using the RBFC (a) and FLDA (b) models
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Figure 10 shows the analysis of the
density of flood occurrence points in 5
classes of flood susceptibility using RBFC
and FLDA models. It can be seen that the
percentage of flood pixels in very low, low,
moderate, high, and very high classes is

10.76%, respectively, according to the RBFC
algorithm. Also, according to the FLDA
algorithm, the percentage of flood occurrence
pixels is 39.67%, 21%, 15.3%, 13.28%, and
10.5%, respectively, in very low, low,
moderate, high, and very high classes of

45.08%, 22.77%, 11.68%, 9.96%, and the map.
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7. Discussions

Flood damage can be exacerbated by the
aggravating factors of population growth,
climate change, and land use. It is necessary
to identify flood-prone areas for risk
management and planning. Thus, flood
sensitivity zoning is a good option to solve
this problem (Shahabi et al., 2021). On the
other hand, more and more studies on the
extent and intensity of flood hazards

worldwide use modeling methods (Khosravi
et al.,, 2016). Accordingly, various models
have been developed to predict flood
sensitivity. However, accurate prediction of
flood sensitivity areas is still under discussion,
and different models should be used and
tested for this purpose. Some models, such as
physical and hydrological models, can not be
applied in areas where data is scarce or lacks
long-term monitoring data (Tien Bui et al.,
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2020). Instead, new emerged models and
algorithms such as ML algorithms can deal
with more popular data. In ML models, all
variables affecting flood susceptibility can be
used for spatial modeling. Therefore, it can
predict flood-prone areas more accurately
(Pham et al., 2017).

The selection of affecting variables is
essential, and it depends on the environmental
conditions and a specific region (Z. Yang et
al., 2020). For example, during heavy rainfall,
flash floods can occur in mountainous areas
due to the topography. On the other hand, bare
lands without vegetation can increase the
speed of floodwater and creating flash-flood.
In general, it can be said that the topography,
land use, and course of rivers affect the
occurrence and intensification of flood
susceptibility (Pandey et al., 2020; Q. Wang et
al., 2016). Due to the complexity of predicting
flood sensitivity wusing different spatial
modeling approaches, it is necessary to use
different algorithms and compare them, as
seen in many studies (Fu et al., 2020;
Zenggang et al., 2019; J. Zhu et al., 2018). In
this study, two of the practical ML models,
RBFC and FLDA, were selected for flood
susceptibility modeling. The advantage of
these models is to reduce the dimensions of
the problem and thus simplify and reach the
answer faster (Y. Zhu et al., 2018). The results
showed that the RBFC model had higher
quality and efficiency according to the AUC
criteria.

The results indicate that the two ML
models of RBFC and FLDA, with AUCs of
0.957 and 0.948, respectively, perform well
for flood susceptibility mapping in the study
region. In another research, Pham et al. (2020)
used RBFC algorism for flood susceptibility
modeling and had an AUC of 0.984.
According to the current study’s model
performance evaluation, the FBFC tree has
the greatest prediction ability, with an
accuracy of 89.5%. Pham et al. (2018) also
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used RBFC and combined it with other ML
models to estimate the flood susceptibility.
Thus, the flood susceptibility —maps
constructed by the RBFC and FLDA
techniques can provide helpful information
for disaster risk reduction activities, especially
in localities where real-time simulation
models have not been developed yet.

8. Conclusions

In the present study, two critical models,
namely RBFC and FLDA, were used for
modeling the flood susceptibility for a case
study of Quang Binh province. The statistical
analysis results indicated that the RBFC
algorithm has better performance and can
develop an accurate flood susceptible map of
the research area. The RBFC is a type of
Artificial Neural Network has shown good
prediction result of flood susceptibility model;
thus it can also be applied in other flood-prone
areas. In addition, the RFBC algorithm can be
combined with other ML algorithms to
develop more accurate mapping and
prediction models. The proposed approach
can be extended to other regions that have
available topography, hydrology, geology,
and land use. The limitation of this study is
that we applied single models for flood
susceptibility modeling; hybrid models should
be developed for mapping flood susceptibility
in the area for further studies. These validated
models could be used for other flood-prone
regions, taking into account the local geo-
environmental features.
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