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ABSTRACT

Understanding fluid flow in fractured porous media is of great importance in the fields of civil engineering in
general or in soil science particular. This study is devoted to the development and validation of a numerical tool
based on the use of the finite element method. To this aim, the problem of fluid flow in fractured porous media is
considered as a problem of coupling free fluid and fluid flow in porous media or coupling of the Stokes and Darcy
equations. The strong formulation of the problem is constructed, highlighting the condition at the free surface
between the Stokes and Darcy regions, following by the variational formulation and numerical integration using the
finite element method. Besides, the analytical solutions of the problem are constructed and compared with the
numerical solutions given by the finite element approach. Both local properties and macroscopic responses of the two
solutions are in excellent agreement, on condition that the porous media are sufficiently discretized by a certain level
of finesse. The developed finite element tool of this study could pave the way to investigate many interesting flow
problems in the field of soil science.
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1. Introduction desirable or undesirable, depending on
specific applications. The presence of

In many problems related to soil science, : . i _
y b fractures is unlikely, for instance, in the

characterizing fluid flow in fractured porous , ,
media is one of many challenges that storage of wastes in soils, rocks (Bachu,

researchers have to face (Auriault and Boutin, ?80(8))’ (;rl filtration fapphcatlons (I;ermg e,t ,al'i
1994, 1993, 1992; de Borst, 2017). 70). However, fractures can be a critica

element for hydraulic fracturing in the oil and
gas industry as they can act as channels for
the fluids can flow more easily (Rahm, 2011).
Many applications, taking advantage of such
behavior, have been applied for the use in
materials science (Bose et al., 2012; H. B. Ly
et al., 2015; Ly et al., 2016a). Moreover,
“Corresponding author, Email: banglh@utt.edu.vn studying the transport phenomena through

Theoretical and applied researches have
received increased attention due to the
importance of the research area (de Borst,
2017). Indeed, the existence and propagation
of fractures in porous media can be both

13


mailto:banglh@utt.edu.vn

Hai-Bang Ly et al./Vietnam Journal of Earth Sciences 43(2021)

fractured porous media raises several
fundamental and practical questions, such as
the role of the fractures and porous media, its
relationship to the transfer process, to the final
flow behavior of the porous media. Thus, the
transport mechanism through the fractures and
the surrounding porous media requires an in-
depth investigation (Dietrich et al., 2005).

In the literature, the determination of the
permeability of porous media has been
addressed by several approaches, for instance,
asymptotic expansions (Auriault and Sanchez-
Palencia, 1977), volume average methods
(Whitaker, 1967), analytical approach
(Monchiet et al., 2019; Wang, 2003, 2001),
Fast Fourier transform - FFT (Ly et al.,
2016b; Monchiet et al., 2009; Nguyen et al.,
2013), Lattice-Boltzmann method (Pan et al.,
2004), or using the finite element approach -
FEM (Burman and Hansbo, 2007; Correa and
Loula, 2009; H.-B. Ly et al., 2015). Based on
FFT or FEM, the two numerical schemes
solve the elementary cell problem to
determine the macroscopic permeability of
fractured porous media. Treating flow
problems using FEM, two approaches have
been developed, including a "unified" and a
"decoupled"” one. The decoupled approach
uses different discretization spaces dedicated
to the fractures and the porous medium, for
instance, in (Discacciati et al., 2007), (Layton
et al., 2002) or (Celle et al., 2008). In a
unified approach, the finite element
discretization is based on the same finite
element spaces (and similar elements) for the
fractures and the porous medium. This
method is based on the use of a “robust”
element, or modified variational formulation
of the flow problem (Arbogast and Brunson,
2007; Correa and Loula, 2009; Karper et al.,
2009; Xie et al., 2008) while the decoupled
strategy is based on the use of two matching
meshes and two finite element spaces for
discretizing the flow problem.
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In this study, the unified approach in
solving flow problems wusing FEM is
considered. Based on the theoretical
development of the work of (Arbogast and
Brunson, 2007), a FEM-based numerical tool
is developed and validated. This paper is
presented as follow: (i) a brief introduction of
the flow in fractured porous media is
presented in Section 1; (ii) the nature of the
flow in fractured porous media is presented in
Section 2; (iii) a FEM variational formulation
and numerical integration scheme is presented
in Section 3; (iv) analytical solutions for a
specific problem is given in Section 4; and (v)
results and comparisons with the developed
FEM-based numerical tool is introduced in
Section 5 and 6, following by a conclusion
and several perspectives.

2. Couling free fluid with flow in porous
media

The nature of coupling free fluid with flow
in porous media leads to a well-known
problem of coupling the Stokes and Darcy
equations. In this study, the numerical scheme
of the coupling process is performed using the
finite element method in a unit cell problem.
It can be seen that in such a unit cell, three
separated scales exist: (i) the scale of the
smallest pores in the porous media, or the
lower scale, (ii) the scale of the fractures or
the intermediate scale, (iii) and the
macroscopic scale where the pressure is
applied to generate the flow. The permeability
of the lower scale is denoted as Kp, represents
the permeability that is homogenized by the
Darcy equations. In the fractures, the flow is
described by the Stokes equations. At the
interface between the Stoke region and
the Darcy region, the adherence condition
is applied, representing the
continuous/discontinuous  fields (i.e., the
velocity field and the pressure field) across
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such an interface. = Considering the
macroscopic  scale, the  macroscopic
permeability is computed in coupling the free
fluid in the fractures (Stokes equations) and
flow in porous media (Darcy law). Finally, the
velocity field and pressure field are obtained
at this step, along with the effective transport
property of the porous media. Fig. 1 represent
a schema of the fractured porous media
containing the porous phase, the fluid phase,
and the interface between the two regions.
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Figure 1. Representation of the fractured porous media

The porous medium considered in this
study is supposed saturated by a homogeneous
viscous fluid, Newtonian, and dynamic
viscosity pr. The unit cell problem is a
rectangle in two dimensions using spatial
invariance of two vectors. The total volume of
the unit cell is Qo1 = Lporous U Lpuig, Whereas
the interface (or the surface) between fractures
and the porous medium is denoted as Q. For
the sake of simplicity, the notation Qg.q is
denoted as Qy, and Qoo 1S denoted as Q. In
the porous phase, the fluid obeys the Darcy
equations as follow:

POV (0-Vp,(0-G=0 vxeq,
Ko )
Vv (x)=0 ¥xeQ

where G is the applied pressure gradient, v,(x)

and p,(x) are the velocity and pressure fields
in the porous region. In the fractures, the

fluids flow freely and obey the Stokes
equations:

HAAV(X)-Vp(X)-G=0 vxeQ
W, (x)=0 ¥YxeQ, (2)

where v(x) and pgx) are the velocity and
pressure fields in the fractures. At the
interface Q between the fractures and porous
medium, the Beavers-Joseph-Saffman is
applied (Beavers and Joseph, 1967; Mikelic
and Jager, 2000), and such a condition is
given by:
v (Xn=v (x)n ¥xeQ

21DV, (X)t=-2=V, (0t ¥x<Q ()

D

2P, DV (X)N = p.(X) -p,(X)

where n and t are the normal and tangential
vectors on the surface Q, and D represents the
symmetric gradient. Eq. (1) the
continuity of the flux across the interface Q,
whereas Egs. (2), (3) show a discontinuity
related to both the velocity and pressure fields
by the jump of the corresponding tangential
components. In the formulation presented by
Beavers-Joseph-Saffman, a coefficient o is
introduced, representing the discontinuity of
the fields. According to the authors, such a
coefficient is difficult to determine using the
classical approach (i.e., homogenization
approach or experimental approach). In this
study, infinite value of a is given to eliminate
the tangential components of the velocity field
across the interface. Finally, in taking the
average value in the unit cell problem, the
average value of the velocity field is obtained
as the following equation:

V={v (x))

shows

_ 1
BTN C)

QuQu0,

where V is the velocity field at the
macroscopic scale, and K is the permeability
at the macroscopic scale.
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3. Variational formulation and numerical
integration

In the finite element method, a variational
formulation needs to be developed.
Considering the unit cell problem, the
coupling of free fluid and fluids flow in

1
2}, (va’DWf )f + Hs <%Vf1= Wf1> * [K—Vp,Wp] —(p,VW)= (Q’W)
D 0 D P

(Vv,,q)=(0.9)

In Eq. (5), it is worth noticing that the two
forms (*,*) and <**> denote the inner
product or the duality pairing. A classical
discretization of Eq. (5), using the finite
element method, gives a linear system to
solve:

[K] [V] = [F] (6)
where [K] is the assembly matrix containing
the velocity field and pressure field in both the
fractures and porous medium, [V] is the
unknown nodal velocity and pressure of the
mesh, and [F] demonstrates the pressure
gradient that applied to the unit cell at the
macroscopic scale. In order to construct [K],
it is crucial to identify the phase of the
element in the finite element mesh. If the
element belongs to the fluid (or fractures)
region, the first term of Eq. (5) should be
used. If the element belongs to the porous
medium, the third term of Eq. (5) should be
utilized, and the second term should be
applied to the nodal values that belong to the
interface Q.

The unit cell, dimensions (-L/2, L/2) x
(-L/2, L/2), is discretized by square elements
in a regular grid (N x N pixels). The
periodicity condition is applied to the unit cell
for the local velocity and pressure field. Such
periodicity condition is written for the local
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porous media can be formulated using a
The

formulation of the coupling problem is

unique variational principle. weak

written, for the solution (v,p) in introducing

the test functions (w, q) such that:

&)
velocity field as:
{V ('Lay)=V(L:Y) (7)
v (x,-L)=v (x,L)

and for the local pressure field as:
{p('LY):P (Ly (8)
p(x-L)=p (xL)
The Lagrange multiplier (denoted as 1) is

then applied to take
periodicity conditions. Then, the final system

into account the

(Eq. (6)) is resolved by a direct method to get
a better and high-quality solution. Fig. 2
present the discretization element of the local
velocity field. Each corner of the element is
described by two degrees of freedom (DOF),
representing the flow of fluids in the two
directions. Each edge of the element is
described by a degree of freedom,
representing the flux across the element.
Overall, 12 DOFs are presented in the
discretization element. It is worth noticing
that this type of element is reported to satisfy
the inf-sup condition (Arbogast and Brunson,
2007). Besides, the pressure field is
discretized by a piecewise constant function in
each square element, making one additional
DOF related to the pressure field in each
discretization element.
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Figure 2. Degrees of freedoms of the rectangular
element

4. Development of analytical solution

The development of an analytical solution
for the problem of fluid flow in porous media
is reported in this section. Similar to the
previous sections, the fluid considered in this
study is an incompressible Newtonian fluid.
In the unit cell, the boundary conditions are
considered symmetry, and the no-slip
condition is considered at the fluid-porous
interface. The unit cell problem of the
analytical solution is presented in Fig. 3. The
laminar flow leads to a problem of
transversely isotropic, where two components
of K can be found: K; and K, for each flow
following the direction O; (the longitudinal
flow) and O, (the transversal flow),
respectively. The permeability K; can be
obtained by applying a pressure gradient
along the longitudinal direction (O;), whereas
K, can be computed with a pressure gradient
along the transversal direction (O,). Two other
components of the permeability tensor, the
off-diagonal components of K, are null.

For the unit cell problem, the permeability
following the direction O; is:

Ki=Ks+K, ()]
where Ky and K, represent the permeability
contributed by the fluid and the porous
medium, obtained by averaging the velocity
field on the of each region,
respectively. The analytical formulations of K;
and K, are:

K¢=L¢L.
K, = (L-LpKp/L, (10)
In Eq. (10), L. and Lt are defined in Fig. 3,
representing the dimensions of each region. In
the fluid region, the flow is the laminar flow
and has a parabolic velocity profile as a
classical Poiseuille flow. The profile and the
maximum velocity in the fluid phase are:

volume

Ap 12

V(y)=2—u(z-y)
11
, bl (4
max 2“ 4

Similarly, the permeability following the
direction O, is:
K> = (Le-L)Kp/Lc (12)
It is noticed that such a developed
analytical solution is the two-dimensional
unidirectional flow of infinite extent, also
called the plane Poiseuille flow.

L

C

Figure 3. Schema of the plane Poiseuille flow
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5. Results

The verification of the developed finite
element tool is performed in this section. The
fluid flow through fractured porous media is
induced by a dimensionless pressure gradient
(of 1 unit), the dynamic viscosity of the fluid
is considered as dimensionless (of 1 unit), and
the unit cell size is taken as 1 (from -0.5 to
0.5). First, the discretization choice is
analyzed and compared with the analytical
solutions. The results are presented in Table 1.
In the case of transversal flow through the unit
cell, it can be seen that the discretization
choice of 200 x 200 pixels is sufficient to
describe the flow in the fractures, whereas the
flow in the porous media can be estimated

precisely with only 50 x 50 pixels. Besides, in
the case of longitudinal flow, a minimum
discretization of 200 x 200 pixels is needed to
describe the flow in fractures, and a
discretization choice of 200 x 200 pixels is
required to compute the flow in porous media.
Overall, a resolution of 200 x 200 pixels in
the unit cell is necessitated to obtain reliable

finite element solutions. It is worth noticing
that simulations are performed using an Intel
Xeon(R) E3-1505M 2.80GHz - 8 processors
and 64GB RAM. Each simulation requires, in
general, 30 minutes of computation time and
about 6GB RAM, mostly dedicated to deal
with the linear system (Eq. 6).

Table 1. Comparison of the solutions calculated by the finite element method and analytical solutions

Case of transversal flow through the unit cell
Dim. K¢ K¢ (Analytic) Kp Kp (Analytic)
50 9.2317E-07 1.0000E-06 1.0000E-06 1.0000E-06
100 9.8415E-07 1.0000E-06 1.0000E-06 1.0000E-06
150 1.0271E-06 1.0000E-06 1.0000E-06 1.0000E-06
200 1.0001E-06 1.0000E-06 1.0000E-06 1.0000E-06
250 1.0000E-06 1.0000E-06 1.0000E-06 1.0000E-06
300 1.0000E-06 1.0000E-06 1.0000E-06 1.0000E-06
Case of longitudinal flow through the unit cell
Dim. K¢ K¢ (Analytic) Kp Kp (Analytic)
50 9.2160E-03 1.0417E-02 5.2000E-07 5.0000E-07
100 1.0839E-02 1.0417E-02 4.9333E-07 5.0000E-07
150 1.0169E-02 1.0417E-02 5.0400E-07 5.0000E-07
200 1.0417E-02 1.0417E-02 5.0000E-07 5.0000E-07
250 1.0417E-02 1.0417E-02 5.0000E-07 5.0000E-07
300 1.0417E-02 1.0417E-02 5.0000E-07 5.0000E-07

Considering the longitudinal flow, Fig. 4
presents a comparison of the solutions
obtained with the finite element method and
analytical solutions derived from the previous
section. The local velocity fields of the fluid
and porous media are in excellent coherent
with those obtained by the analytical
solutions. A Poiseuille velocity profile is
obtained, and the maximum velocity at y = 0
is reached (i.e., the value of 0.03125). Such a
result is also the value obtained by the
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benchmark problem (see Eq. (11)). Fig. 5
shows the velocity profile concerning the
longitudinal flow in the whole unit cell. It is
worth noticing that the resolution is taken as

300 x 300 pixels. It can be seen that the
Poiseuille profile is conserved in the fluid
of the

velocity field in the porous media are
confirmed. In this case, the flow in the

region, whereas constant values

direction O, is null.
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Figure 4. Comparison of finite element
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Concerning the case of transversal flow,
Fig. 6 presents a comparison of the solutions
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obtained by the finite element method and
analytical solutions. The local velocity fields of
the fluid and porous media are similar and in
agreement with those obtained by the analytical
solutions. A small difference in the border of
the fluid region is observed. However, the
errors between the solutions by the finite
element method and analytical ones are small.
The wvelocity profile concerning the
longitudinal flow exhibits almost identical
values in the whole unit cell of 300 x 300
pixels. Again, the flow in the direction O, is
null. Overall, the choice of the element is
reliable, and the solutions obtained by the finite
element method are in excellent agreement

with the developed analytical results.

Figure 5. Local velocity profile of the longitudinal flow through the unit cell:
(a) velocity field following direction O;; and (b) velocity field following direction O,
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Figure 6. Local velocity profile of the transversal flow through the unit cell:
(a) velocity field following direction O; and (b) velocity field following direction O,
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6. Discussions

Several discussions are given in this
section.

First, considering the finite element
method, an appropriate discretization is a
crucial factor to obtain reliable results. In this
study, the effect of the macroscopic
permeability on the discretization choice is
conducted. An excellent agreement between
the numerical and analytical responses are
achieved when the discretization of the unit
cell is higher than 200 x 200 pixels. It is
worth noticing that for 2-dimensional
problems, a discretization of 200 x 200 pixels
might pose no problem in terms of
computational memory demand. However,
considering  3-dimensional problems, a
discretization of 200 x 200 x 200 voxels
would require many efforts in terms of
computational memory usage, especially
when reversing the assembly matrix of the
linear system. An extension of the present
study is to treat the flow in a 3D unit cell,
thus, an alternative solver for such a linear
system should be investigated and
implemented.

Second, it can be seen that for longitudinal
flow, the flow in the Stokes region is a
dominant one, whereas the flow in the Darcy
region is almost null. In this case, the flow in
the Stokes region plays a significant role in
the macroscopic permeability of the fractured
porous media. The permeability of the Darcy
region only acts as a small correction to the
macroscopic permeability. This situation can
be seen in the field of geoscience, where the
flow and transport of substances usually take
place preferentially through an interconnected
network of fractures (Hunt and Sahimi, 2017).
Investigation on the macroscopic response of
the flow in such porous media is crucial for
understanding and modeling subsurface
transport (Miglio et al., 2003). The finite
element numerical tool developed in this
study could be used for further study,
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especially the effect of the size of fractures on
the macroscopic permeability. This is helpful
in many engineering applications or
geoscience as fractures are present in almost
porous media like soil, rocks, glaciers, or
porous materials such as wood.

Third, considering the transversal flow, it
seems that for the considered case, the
contribution of the two regions to the
macroscopic permeability is similar. Besides,
the velocity field shows that the flow is
identical in the whole unit cell with only an
inconsiderable difference at the border of the
Stokes-Darcy region. The transversal flow, in
this case, reflects a porous medium containing
non-interconnected fractures (the so-called
isolated or closed voids), in which the
morphology of fractures plays a vital role in
the substance transfer process in porous
media. The morphology is thus a key
parameter that determines the contribution of
each region to the macroscopic permeability
(Discacciati et al., 2002). Again, it is thus
interesting to study the effect of the fracture
morphology on the overall transport
properties of porous media. Accurately
capture the effect of a complex fracture
network could enhance the knowledge of the
fluid transfer process, which might be helpful
in controlling groundwater flows or flow in
naturally fractured reservoirs (Royer et al.,
1996).

7. Conclusions

In this study, the development of a
numerical tool based on the finite element
method to solve the problem of fluid flow in
fractured porous media is conducted. Fluid
flow in porous media is considered as the
coupling problem of the Stokes and Darcy
equations, where the strong formulation is
given. The variational formulation is then
deduced, focusing on the Beavers-Joseph-
Saffman boundary conditions at the interface

between the two regions. A numerical
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implementation of the variational formulation
is next proposed, using the “robust” square
elements to discretize the unit cell problem
with periodic boundary conditions. The
analytical solutions are also constructed in
order to compare with the responses given by
the numerical tool. The results show that the
“robust element” could well simulate the flow
behavior, both at the local field (i.e., the
velocity and pressure field) and macroscopic
properties.

Two perspectives of the present finite
element toolbox, or this work, can be
envisioned: (i) investigate the effect of
fractures, including shape and size, on the
flow and macroscopic behavior of porous
media, and (ii) consider more realistic
fractured porous media.
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