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ABSTRACT

The main objective of this study is to propose a method for identifying acrodynamic coefficient derivatives of
aircraft attitude channel using spiking neural network (SNN) and Gauss-Newton algorithm based on data obtained
from actual flights. Out of these, the SNN multi-layer network was trained by Normalized Spiking Error Back
Propagation, in which, in the forward propagation period, the time of output spikes is calculating by solving quadratic
equations instead of detection by traditional methods. The phase of propagation of errors backward uses the step-by-
step calculation instead of the conventional gradient calculation method. SNN in combination with Gauss-Newton
iterative calculation algorithm proposed in this study enables the identification of aerodynamic coefficient derivatives
in a nonlinear model for aerodynamic parameters with higher accuracy and faster calculation time. The identification
results are compared with the results when using the Radial Basis Function (RBF) network to prove the algorithm
efficiency.
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1. Introduction accurate description of the motion state and
acrodynamic models of flying vehicles.
Document (Thanh N.D. et al, 2019)
performed aerodynamic identification
derivatives of the aircraft attitude channel by
RBF-GN method. In particular, the RBF
network serves as an approximation to the
nonlinear model of the flight state of the
aircraft.

In recent decades, the spiking neural
network (SNN) has been actively investigated
and developed (Wulfram Gerstner et al., 2002;
*Corresponding author, Email: vinhquang2808@yahoo.com Filip Popular and Andrzej Kasinski, 2011).

The problem of identifying aerodynamic
derivatives based on data obtained from actual
flights is quite complex, including planning
and conducting flight tests, measuring,
analyzing data compatibility, consider the
motion model, and aerodynamic coefficient
model. When using identification procedures
using traditional methods (Klein V. and
Morelli E.A., 2006) requirement for an
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Compared to the 2nd generation of the neural
network, in which the output of the system is
considered as the activation speed in a
specific period time (rate firing), for SNN, the
magnitude of the spikes contains no
information, all information is encoded in the
timing of the individual spikes (Filip Popular
and Andrzej Kasinski, 2011; Rahib H. Abiyev
et al., 2012). Due to its significant computing
performance and real-time response, SNN is
used a lot in technical applications such as
speech recognition, image processing, robot
control, artificial intelligence (Filip Popular
and Andrzej Kasinski, 2011). For multi-layer
SNN training, SpikeProp is a method of
determining the errors based on the distance
between the actual spike time and the desired
spike time (target) (Bohte S.M., Kok J.N., La
Poutre H., 2002). The Supervised Remote
Method (ReSuMe) makes the practice of SNN
neurons more efficient (Filip Popular and
Andrzej Kasinski, 2011), but requires linear
dependence between the input and output
transmission speed of each class. The
Normalized Spiking Error Back Propagation
(NSEBP) algorithm is proposed in (Xiurui Xie
et al., 2016). The algorithm is compared to the
SpikeProp, and ReSuMe algorithms have
fundamental differences: The algorithm only
focuses on the time interval target spikes and
ignores other periods; During the training
process, the calculation errors are propagated
backward by intermittently changing the time
of the previous class spikes, without using the
traditional error backpropagation method; In
the straight propagation calculation stage, use
the analytical formula for the spike response
model to determine the time of the spike
instead of deciding the post-synaptic voltage.
The paper performed network training
according to the NSEBP algorithm and then
combined SNN with the Gauss-Newton
algorithm (SNN-GN) to evaluate aerodynamic
derivatives of the aircraft attitude channel.
The identification results compared with

SNN(SpikeProp) - GN and RBF - GN

methods showed more advantages.
2. Model and method
2.1. Airplane dynamic model

In the body coordinate system of the
aircraft Oxyzin Fig. 1, use the following
symbols (Thanh N.D. et al., 2019): «, B -
the angle of attack, slip angle;V - aircraft
speed; X,Y, Z - aerodynamic force
components; Vx’Vy9I/Z - speed components;

O ,0,,0. - angular speed components;
M, M e M.- aerodynamic moment
components.

Figure 1. Body-axis of the Airplane and sign
conventions

In the altitude channel, the motion of the
plane is describing by the system of nonlinear
equations on formula (1) (Klein V. et al,

2006).
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where: & - pitch angle; C;, Cp- lift force
coefficient, drag force coefficient; M, - pitch

I -

Y
inertia axis Oy ; P - propulsion force.

moment coefficient; the moment of
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The aircraft output model, in addition to
the state parameters as shown in equation (1),
also add linear acceleration:

a,= l(qSCx +P)
m

2)

gSC.

T oom
with Cx, CZ— component aerodynamic
coefficients in in body axes; d,d, -

component accelerations in body axes.

a o,

C,=C, +Ca+Cp

_ a a,,

m,=myg,+ ma + m,
where: Cp,, Cyp, m,, - drag coefficient, lift
force coefficient and torque moment
coefficient, when a = 5g = 0;

Cs, Cy, Cx,cr, C, C,

m;’,m;s“ , m;J - the partial derivatives of drag
coefficient, lift force coefficient and torque
moment coefficient with respect to @, @, 5e

respectively.
The identification of aerodynamic

coefficient derivatives in equation (3) is
required to solve the system of nonlinear
differential equations (1). Solving this system

Cp=C, + Cpa+ Cy

These aerodynamic coefficients depend on
many factors: aerodynamic diagram,
Geometric parameters of the aircraft, and the
wings (sweep angle, profile ). With a defined
aircraft type and for flights with subsonic
speeds and without excellent maneuverability,
the aerodynamic coefficient model is usually
determining by a linear combination of
aerodynamic coefficient derivatives for the
control, stable and intermediaries variables
(Klein V et al., 2006):
b—Aa)y + Co6,

0

(a)
by 4 cis
2 a)y + L"e (b) (3)

0

b
—L o, + m’s

2O (©)

of equations with analytic methods is very
complicated. In this paper, we propose to use
approximately this nonlinear dependency by

SNN.
2.2. Structure of the identification model

The the
implementation model is shown in Fig. 2.

structure  of identification
Because the SNN network implements the
time change mechanism, before and after, the
system must perform the time-signal encoding
and decoding.

Yes

Aerodynamic Data compatibility Mesured flight data
3 < —]
| model check
Output
Encode  —p SNN Decode  —p o (@)
y(),——
) o8
i 6,
0 . ]
< Gauss- Newton algorithm
updates parameters

Figure 2. Algorithm identification structure using SNN network
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The structure of the problem of identifying
aerodynamic coefficients of the proposed
aircraft is shown in Fig. 2. The two main
contents of the method include: using SNN to
approximate the nonlinear motion model of
aircraft altitude channel (Eq.2) and using the
Gauss-Newton algorithm to identify the
aerodynamic coefficients corresponding to

(Eq.3).

2.3. The SNN approximates the nonlinear
motion model of aircraft altitude channel

The proposed SNN network structure

diagram is shown in Fig. 3, which uses: the
input layer with seven parameter sets, one
hidden layer with 50 neurons, and the output
layer consisting of 6 neurons, corresponding
to 6 output parameter sets.
The input vector of the network has seven
parameters:
u(i)=la) 96 @,6) Vi) Cyi) G0 m,@F )
The output vector of the network z(i+1)
is a one-step prediction of the aircraft’s
movement parameters:

z(i+1):[a(i+1) i+ o,(+1) V(@i+l) a(i+]) a(i+D] (3)

For network training as well as testing the
ability to use the system to replace the
nonlinear motion model in the aircraft altitude
channel, the input-output data of the network
in equations (4), (5) must be determined.
Measured values and preliminary treatment of
these parameters were implemented in (Thanh

N.D. et al., 2019), In particular, three flight
datasets were prepared from three flights with
relatively similar flight conditions and typical
parameters of the aircraft to serve for network
training and identification of aerodynamic
parameters.

i+1
z( ], Encode

(7]

| Calculate u(1)

e 4 u(ty,)

Calculate u(1)

_’ :
H(i‘] _.O_’ ,1"(i'-+]]
—»{Encode | [ m] ™ W, (> W, : [ am‘:| Decode [—*
v v
Figure 3. Proposed SNN network structure
2.4. Encode and decode problems, the computations must be

As mentioned earlier, the state of spiking
neuron ;j described the voltage u(?) crosses a
particular constant threshold value U, ; the
neuron fires a spike, which is described by its

. . J . . .
spike time [;,,. However, in most engineering

performed on analogue data, which leads to
the development of methods for encoding
analogue signals into spike trains. The
approach followed in this study associates
weaker input signals with a “’late’’ firing
time, whereas higher signals correspond to an
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a “early’’ firing time. The values varying
from X, to X,, can be coded by choosing
an interval /1., ] [ms].

Table I. Range of input value vector [ x,,, , X,.. ]
Parameters Xgin Xy m
o [deg] 19519 3.3905
3 [deg] 1,6476 6.0143
o, [deg/s] | 01344 | 01525
Vim!s] 124.8805 | 1400235
a, [m/s?] | 0.008 | 0.1267
a_[mis] 0,9529 1,2852
3, [deg] 2,0238 2.4905

The change range corresponds to the value
range [ XX/ selected in the range
0+32 [ms]. The activation mechanism at the
rising edge of the output voltage, The spiking
neuron receives a higher signal fire sooner
than when the same neuron receives a weaker
signal. The same idea is supported and called
delay coding. The following formula is
employed for encoding input variables into
spike times (Rahib H. Abiyev et al., 2012) :

(xi - xmin )'(tmax - tmin ) (6)

(xmwc - xmin )
where: fl»(x), lins Ly - the current, the
minimum

and maximum spike times,
respectively;

Xis Xpins Xmaxe - the current,
minimum, and the maximum values of the
input variables.; round - integer round
operation.

Perform coding according to equation (6)

t(x)=t,  —round|t  +

~ “max min

q = (Cy,.Cp, Cy, Cp, C, ClL G, Clom

The Gauss-Newton algorithm is defined as
follows:

Step 1: Give the original

parameters @, (these values are selected from

6, =[0.06, 1,
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set of

for all network input and output parameter
values. For example, with the parameter %,
The relationship between parameter value
- time with the activation period from
0-+32 [ms] is shown in Fig. 4.

40

0 100 200 300 400

Number of spikes

Figure 4. Time coding - parameter value ¢

To train SNN, change the link weight value
Aw, =y/EL/&e,(s;) to

ij
that the

between neurons

ensure spike time

A= Z w,, exp(ty / 7,) becomes the desired
spike time (Xiurui Xie et al., 2016). To
convert backwards from spike time series to a
set of output signal values, use the following
conversion formula:

¥ = X —t; [M} (7)

(tmax - ZLmin )
With £ Cl, - output spike times.

2.5. Identification aerodynamic coefficient
derivatives by the Gauss-Newton method

The vector of parameters in equation (3)
has to be estimated as:

a
02 mz ’

m,m) (8)
the wind-tunnel tests or through documents
with previous results).

In the paper, the initial set of parameters

6, was taken from (Vinh N.Q. et al., 2019).

-1, -1.23, 0, 5.1, 1, 0.1, 0.08, —1.26, —1, —O.76]T
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Step 2: The Gauss-Newton iteration
algorithm updates the settings need to be
identified after each loop according to the
following formula:

8. =0,+00, ;A=

oy, (i o
Z yk( )R IVk(l) M, = 29 >
i=1 i=1 k

aM; (9

- S (i )— the sensitivity matrix at the
iteration k is calculated as follows:
Sk (l) :[ay(i)/aa]jk - (ypk (i)'yk (i))/aei (11)

The sensitivity matrix S, (i ) at each
iteration (k) is computed using the
approximate relation given by equation (11).
The numerical values of Y, (perturbed
response) are obtained by replacing the
parameter vector @ with the 6+ 06, e’
(where e’ - column vector with one in the Jth
row and zeros elsewhere) in the input variable
vector of the already trained neural model.

Step 3. Determine stopping condition of
the algorithm

+ Calculate the cost function:

IS o1,
(6 R,)=5 2 v DR v (i)
i=1
+ Stop condition of the algorithm
”J 9k+1’ Rk+1 eks Rk)”S AJ
I 6 R
The allowable wvalue AJCP is usually
chosen 107 (Xiurui Xie et al., 2016).
If the condition (13) is satisfied, the end of
the
value of aerodynamic coefficient derivatives

6@ at this the identified
parameters.

3. Materials

(12)

(13)

the Gauss-Newton iteration algorithm,

iteration is

Prepare data for the identification of
aerodynamic coefficients in the aircraft’s
altitude channel, the paper will perform the
parameter identification of aircraft Cy-30.

- oy DD g WD) ; v, ()= 2(0)-y,(0) g, -

where: §, - the gradient of the cost function;
M ¢ - the Fisher information matrix; V; (l) -
error vector between data and SNN output;
Rk - correlation error matrix. These
parameters are determined as follows:

iivk @w! (@) (10)

3.1. Characteristic parameters

The thrust force of engine: P =
mass: M, = 24900[kg ; wing reference
area: S= 65 [mz ; _mean aerodynamic
chord: b, =4, [m] ;  wing  span:
[=14,1 m% moment of inertia:

, = 62010|kg.m|;  dynamic pressure:
g=pV>/2|N/m ]

3.2. Flight data of aircraft altitude channel

74600[N] ;

In the paper, to perform aerodynamic
parameter identification used the dataset
which recorded during the flight. The
parameter set here have been taken from the
actual plane of the Cy-30 aircraft (via the
system of parameter writing itself). The
parameters of aircraft altitude channel
measured for identification include: the angle

of attack a[deg]; pitch angle J [deg]; pitch
angle rate®, [deg/ s]; translational velocity

V[m / S] ; deflection O, [deg] ;

acceleration component along 0z in body axes

elevator

a. I:m/ s2:|; acceleration component along

Ox in body axes a_ [m / sz] .

The three flight datasets in the aircraft
altitude channel are used, including: a dataset
for network training and test is shown in
Fig. 5a); a dataset for identification of
aerodynamic coefficient derivatives is shown
in Fig. 5b); a dataset for cross - validation and
comparing is shown in Fig. 5c),
recording data T = 0, OZ[S].

interval
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Figure 5. Three datasets of aircraft altitude channel

4. Results and discussions
4.1. SNN training and testing results

The SNN training consists of two steps:
the
preparation of the current layer and the
presynaptic spike jitter to backpropagate the
error. The calculation is made using the

MATLAB software tool.

The coding follows equation (6). The
network training dataset and test dataset
consist of 600 points encoded in time
0+32 [ms], of which 400 marks are for
training, and 200 points are for network test.
The inputs vector u(i)is encoded into the

7. The
predicted outputs vector z(i+1)is codified into

weight modification to complete

input spikes sequence vector

the desired sequence of spike output chains

T :[Td T8 ¢ T4 T T¢ }

out out, >~ outg > "out, > outy > out, > out,,

Feedforward calculation

The feedforward calculation is performed
before conducting network training; SNN will
calculate  the  spike  output  chains

a __ a a a a a a
the chains

from input-output

282

Ti:[Tina,T T T .T

in ing? ing, > Ciny > Ting, 2 Ting, 0 iy, :|

Feedback modification

From the voltage u (tjm )and the error £

for each target spike required in 7¢ , we will

out ?

calculate the time of the peak Al‘; with the
Jjth
adjustment Aw, = 7V'E/ €,(s;) . Continue to

input. Finally, calculate the weight

calculate for all spikes in the set and update
all mutant moment variations and associated
weights to continue counting for straight
propagation in the next iteration.

Network training results will give time
series of mutations for six network output
parameters, corresponding to 6 desired spike
sequence output. For example, the parameter
with the most significant variation, the pitch

angle &, the spike ranges T

out, after four
training epochs is as shown in Fig. 6.

The difference in the time of the output
spike compared to the time of the input spike
for the pitch angle parameter through training
epochs is shown in Fig. 7 and Table 2. On the
horizontal axis, the unit is [ms] , on the
vertical axis can show the desired number of
spikes (black column) and the actual number
of peaks (blue column).
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Figure 6. Network training result after four epochs with respect to pitch angle
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Epoch 3 Epoch 4
Figure 7. Network training results for pitch angle through 4 epochs
Table 2. Results of training and network testing The SNN, which trained with four epochs,
Epoch | Standard errorfor | Standard errors for is tested on the test dataset. To evaluate the
number training data set test data set quality of SNN training according to the
1 0.1557 0.1713 difference in the time of network output spike
) 0.1055 0.1262 with the required target spike time, use the
3 0.0635 00781 comparison chart as shown in Fig. 8 for all six
network output parameters after four epoch
4 0,0352 0,0417 ..
network training.
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Figure 8. Network training results for the output parameters

Table 3 shows the accuracy of the network
output six parameters with network training
parameters and network test parameters after
four epochs.

Table 3. Results of training and network testing
after four epochs

Parameters Standard error for | Standard errors for
training data set test data set
o, [deg] 0,0322 0,0551
o, [deg] 0.0352 0.679
o, [deg/s] 0.0585 0.0981
G [m's] 0.0253 0,0335
g, [m/s] 0,0218 0,0356
a, [m/s'] 0,0284 0,0562

From the above results,
conclusions can be drawn:

- For SNN, the number of different spike
times with the desired spike decreases very
quickly after a few network training epoch.
With the epoch number greater than 4, the
error decreases almost negligible;

the following

284

- The error between the network output
value for the network training dataset (400
points) and the network test dataset (200
points) does not change much, proving that
the network after training is generalized for
the range of changes of input parameters;

- The number of neurons in the hidden
layer of the network is quite small (50
neurons) (compared to the second-generation
network, the best approximation is the RBF
network is 164 neurons (Thanh N.D. et al. In
this section, two simulations were conducted
to evaluate the effectiveness of the proposed
SNN network method against the SpikeProp
and RBF methods. With the SNN network
structure, as shown in Fig. 2 and the Gauss-
Newton algorithm has realized the 12
aerodynamic coefficient derivatives of the
aircraft attitude channel. After 43 iterations of
the Gauss-Newton algorithm, the condition of
convergence (13) is satisfied. The importance
of the corresponding aerodynamic coefficient
derivatives is given in column 2 of Table 4,
2019).
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deviation between model output data and
actual dataset are shown in the second column
of Table 6. The third and fourth columns of
Table 6 show the standard deviation when
using the SNN (SkipeProp) and RBF
networks, respectively.

Table 6. Standard deviation for cross validation

Standard deviation

SNN (NSEBP)

SNN (SkipeProp)

RBF

o, [deg]

0.0417

0,0595

00613

a; [deg]

0.0385

0.0432

0.0365

g, [degs|

0.0751

0.0788

0.0791

G [}J ¥ .s]

0,0468

0,0519

0,0588

a, [m: f]

0,0292

0,0319

0,0305

g, [in;'s"]

0.0314

0,0338

00257

Table 4. ldentification results using SNN
(NSEBP), SNN (SkipeProp) and RBF
Parameters | §(NSEBP) | #(SpikeProp) | &(RBF)
CD__ 0,0815 0,0792 0,098
C; 1,4983 1,4592 14115
C. 5,2055 5,3127 5,129
C;S 0,0798 0,0827 0,0885
CL_ 0,3911 0,3871 0419
. 2,9331 2,7151 2,501
C; 32,1132 32,1377 31,532
C‘I 0,6011 0,5791 0,5112
m, 0,0725 0,0685 0,0881
m“_‘ -0,7133 -0,7871 -0,7733
m -20.112 -19,763 -19,322
m’ -0,871 -0,755 0,712

4.2. Simulation, evaluation of identification

results of the aerodynamic coefficient
derivatives
With  the aerodynamic  coefficient

derivatives values 1identified in Table 4,
calculate the output values of SNN (NSEBP)
and compare accuracy with the actual dataset
(second dataset shown in Fig. 4b). This result
is also compared with the two methods SNN
(SpikeProp), RBF (Table 5).

Table 5. Compare standard deviations between
three methods

Standard deviation | SNN (NSEBP) SNN (SkipeProp) RBF
o, [deg] 0,0376 0,0457 0,0573
oy [deg] 0.0332 0.0379 0.0317
o, [deg'_;] 0.0635 0.0681 0.0717
G [",“;] 0,0387 0,0235 0,0519
q, [,;;;;’J 0,0257 0,0266 0,0287
o, [;;;;y‘} 0,0288 0,0302 0,0239
The generality of structured SNN

(NSEBP) use for identification aerodynamic
coefficient derivatives is considered when
using the third dataset (shown in Fig. 4c) to
perform  cross-validation. The standard

From the results received above, we can be
compared with the identification results by the
method SpikeProp and RBF (Thanh N.D. et
al., 2019), with the following remarks:

- Identification the aerodynamic coefficient
derivatives use the SNN (NSEBP) and SNN
(SpikeProp) give more accurate results than
the RBF.

- The accuracy of identification when
using SNN (NSEBP) is not much better than
SNN (SpikeProp); however, the number of
network training epochs is much smaller,
resulting in a faster execution time.

5. Conclusions

In this paper, we have demonstrated a plan
to identify aerodynamic derivatives for the
aircraft’s altitude channel based on data
received from actual flights when using the
SNN network which training by the NSEBP
method, approximates the nonlinear motion
model of the aircraft’s altitude channel and
Gaus-Newton algorithm. The simulation
results  received reflected  the
effectiveness of the proposed method when
compared to the SNN with the previous
network training method (SpikeProp) and the
second-generation ANN (RBF). In subsequent
work, we will study to improve the

were
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convergence speed of the Gauss-Newton
algorithm, as well as the ability to generalize
the SNN network in the cases when the
aircraft’s height channel motion model (1)
affected by disturbances that cannot be
measured.
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