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ABSTRACT

The load capacity of driven piles is a crucial mechanical property, and correctly determine the corresponding
value is important in geotechnical engineering. Concerning piles driven in clay, the load capacity is mainly associated
with the side resistance of the pile. The soil load capacity of conventional piles is determined by different methods
and then reassessed by the static load test. Nonetheless, this method is time-consuming and costly. Therefore, the
development of an alternative approach using machine learning techniques to solve this problem has been
investigated recently. In this work, the backpropagation network model (ANN) with a 4-layer structure [4-8-6-1] was
introduced to predict the frictional resistance of pile driven in clay. The dataset for the development of the ANN
model consisted of 65 instances, extracted from the available literature. The performance of the proposed ANN
algorithm was assessed by two statistical measurements, such as the Pearson correlation coefficient (denoted as R),
and Root Mean Square Error (RMSE). In addition to the original contribution, the present work conducted a step
further toward a better knowledge of the role of inputs used in the prediction phase. Using partial independence plots
(PDP), the results of this study showed that the effective vertical stress and the undrained shear strength were the
prediction variables that had a significant influence on the friction capacity of driven piles.

Keywords: Artificial Intelligence (Al); Artificial Neural Network (ANN); Levenberg Marquart algorithm; friction
capacity of driven piles.
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1. Introduction construction because it is a factor that
measures the quality of the work, ensuring the
reliability and durability of the foundation
(Randolph et al., 1979). The pile load capacity
could be defined as the maximum load that a

Currently, pile foundations are the most
commonly used foundations for constructions
on soft ground or structures with relatively
large loads, of which pile is the primary ) . e
bearing part (Tan et al., 2011). Therefore, the pile can receive and ensure that the building
determination of piles capacity is vital in still works under normal conditions. In soil,

the load-bearing capacity of the pile is created

“Corresponding author, Email: banglh@utt.edu.vn by the friction on the surface around the pile
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(f;) and the reaction of the ground on the tip of
the pile (f,) (Randolph, 2003). Meanwhile, the
pile bearing capacity depends on other factors,
such as pile geometric characteristics (the
length and size of the pile), the load condition,
the nature of the ground, the method of
lowering the pile (Samui, 2008). Up to date,
various approaches have been introduced to
determine the piles bearing capacity.
Conventional approaches mainly based on the
limit-equilibrium theory, the background
model, or empirical formulations derived from
experiments such as static, dynamic load tests
(Wrana, 2016). When piles are driven in clay,
the pile bearing capacity generally associated
with the friction between the pile and the
surrounding soil (Prayogo and Susanto, 2018).
However, these methods have been used with
different assumptions and could not correctly
determine the frictional resistance of piles,
especially in cohesive soil (Samui, 2008).
Therefore, the primary objective of the
present work is to propose a general approach
to predict the friction capacity of driven piles.
Over the past decades, an alternative
manner to estimate the results from
experiments has been the subject of intense
researches (Dao et al., 2020). Besides
conventional approaches such as regression
analysis or simulations, Artificial Intelligence
(Al) algorithms have gained increasing
interest due to many advantages (Le et al,
2020; Nguyen et al., 2019; Pham et al., 2020;
Phong et al., 2019). Among Al algorithms,
artificial neural network (ANN) has been
effectively used to deal with many complex
engineering problems (H.-B. Ly et al., 2019;
H.B. Ly et al.,, 2019). The artificial neural
network algorithm is known for its capability
in solving nonlinear and particularly problems
where a direct relationship of inputs and
output(s) can hardly be found. An outstanding
advantage of an artificial neural network
algorithm 1is the ability to self-study and
adjust the weights. Thus, the results of
the calculation are consistent without
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depending on the mechanical equations,
physicochemical, or subjective opinion. Many
complex issues related to  structural
engineering (Le et al., 2019), materials
science (Van Dao et al.,, 2019), structural
analysis, and design (VANLUCHENE and
SUN, 2008) have been solved with excellent
performance. In the geotechnical engineering
field, there have been many studies using
ANN model to predict the pile bearing
capacity (Chan et al., 1995; Chen et al., 2020;
Chow et al., 1995; Goh, 1995a; Harandizadeh
et al.,, 2019; Jahed Armaghani et al., 2017;
Momeni et al., 2015; Yong et al., 2020). In
particular, in Goh's study, the ANN model
was successfully built to predict the frictional
bearing capacity of piles in clay (Goh, 1995b).
However, the importance of these inputs is not
mentioned in this document. Therefore, the
present study contributes to the improvement
of the pile frictional load prediction as well as
analyzing the influence of input factors in the
simulation process.

2. Database construction

In this study, the experimental data of
driven pile friction capacity were extracted
from the work of Goh (Goh, 1995a). Some 65
experimental data are used for the ANN
model. The ANN model used four input
parameters: pile diameter (denoted as D, cm),
pile length (denoted as L, m), effective
vertical stress (denoted as o’v, kPa),
undrained shear strength (denoted as Su, kPa).
The output parameter was friction capacity
(kPa). From a statistical point of view, the
value of pile length varied in the range of 4.6
96 m, the pile diameter was in the range 11.4-
76.7 cm, the effective vertical stress varied
from 19-718 kPa, and the undrained shear
strength ranged between 9 and 1205 kPa.
Besides, the friction capacity values were in
the range of 8 to 192.1 kPa. The histograms of
the corresponding variables are presented in
Fig. 1.

The dataset in this study was divided into
two sub-datasets: The first one (included 70%
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of the data) was used for ANN network
training, called the training part. The second
dataset (30% of the remaining data) used to
verify the model, referred to the testing part.
The 70/30 ratio for generating the dataset was
chosen, as suggested in the contribution of
(Khorsheed and Al-Thubaity, 2013) or
(Leema et al., 2016). With the above division,
the data set of 65 data had 45 samples for the
training dataset and 20 samples that used to
estimate the prediction performance of the
ANN network. The dataset in this study,
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including input and output variables, was
normalized in the 0-1 range, following Eq.
(7). This technique has mainly been used in
artificial intelligence problems to reduce
numerical errors.
. X —min(X )
X =
max (X ) —min (X )
where max(X) is the max value of variable X,

(1

and min(X) is the min value of the
corresponding variables used to normalize,
respectively.
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Figure 1. The histograms of the input and output
variables: (a) the length of pile; (b) the diameter of
pile; (c) the effective vertical stress; (d) the undrained
shear strength; and (e) the friction capacity
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3. Methods
3.1. Artificial Neural Network
Artificial neural network (generally

denoted as ANN) is an abstraction of the
function of the biological neural structures of
the human brain (Armaghani et al., 2020; Du
et al., 2017). This is a practical soft computing
approach to solve overly complex problems
compared with classical mathematics and
traditional methods (Jegadesh and
Jayalekshmi, 2015).  Besides, reverse
propagation neural networks (BPNN) are
commonly used in practical applications or
regression problems (Singh, 2012). The
structure of the backpropagation network
consists of three different layers: (i) the input
layer, (ii) the output layer, and (iii) the hidden
layer that plays a role as the connection of the
input and output layers. The hidden layers
contain one or many elements, called neurons,
responsible for the transmission and process
information from the input layer to the output
(Goh, 1995a). The number of hidden layers
and the number of neurons depend on the
complexity of the given problem. During the
training process, an input set is put into a
particular presumptive system to calculate the
output value, and then the output value is
compared with the actual measured value. If
there is no difference, then there is no need to
perform a test. Otherwise, the weights will be
changed during backpropagation in the neural
network to reduce the difference. The
backpropagation network usually has one or
many hidden layers with sigmoid neurons,
and the output layer is neurons with linear
transfer function. Multilayer networks using
backpropagation algorithms are the most
widely used in the field of neurons. Basically,
the backpropagation algorithm is a general
form of the Least Means Square (LMS)
algorithm because it uses the same reduction
technique in the direction of the gradient
vector but with the complexity of the error
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function more prominent. This algorithm is an
approximation algorithm to find the points at
which the network performance is optimal.
The performance index is usually determined
by a function of the weight matrix and
specific inputs that are in the process of
understanding the problem.

However, the basic BPNN algorithm has
some weaknesses, such as the convergence
rate and problem of the local minimum (Zhou
et al., 2018). The study of faster algorithms is
divided into two groups. The first group
develops heuristic techniques. These heuristic
techniques offer ideas such as variable
arithmetic, using momentum and elasticities.
The second group develops in the direction of
numerical optimization techniques. Some
techniques of digital optimization that have
been successfully applied to multilayer neural
networks are the conjugate gradient algorithm
and the Levenberg-Marquardt algorithm (LM
- another version of the Newton method)
(Dahou et al., 2009).

The Levenberg Marquart (LM) algorithm is
a combination of the slope attenuation
optimization algorithm with the Newton one,
capable of increasing the convergence rate
by optimizing the iteration  process
(Ranganathan, 2004). Compared to the original
BPNN, the convergence rate of the LM
algorithm is faster than any traditional or
improved algorithm. The improvement of
BPNN using the LM algorithm has gained
many achievements in the literature. For these
reasons, the LM algorithm is used in this study.

The effectiveness of ANN models depends
on the structure of the network, which is
represented by the number of hidden layers
and the neurons. After several trial-and-error
tests, the ANN structure chosen in this study
included four layers. The input layer consisted
of 4 neurons, corresponding to 4 input
variables (L, D, o’, S,). The first hidden layer
consisted of 8 neurons, the second hidden
layer consisted of 6 neurons. Finally, the
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output layer included one neuron, representing
the value of the friction capacity (Fig. 2).
Regarding the simulation process, a code was

constructed, mainly based on the in-built
ANN program using Matlab software with
several little modifications.
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Figure 2. The structure of the ANN network in this study

3.2. Performance Evaluation

In this study, the two statistical
measurements were used to evaluate the
accuracy of the ANN model, namely the
Pearson correlation coefficient (R), and Root
Mean Square Error (RMSE). Criterion R is
widely used in regression problems (Menard,
2000) to estimate the correlation between the
target and predicted outputs (Le et al., 2019).
The value of R is in the range [-1; 1]. Besides,
RMSE measures the average magnitude of
error between the target and predicted outputs
(Chai and Draxler, 2014; Dao et al., 2019).
Quantitatively, the RMSE value closes to 0,
and the absolute value of R closes to 1
represent the higher accuracy of the machine
learning model. These values are expressed by

the following equations (Han et al., 2020;
Murlidhar et al., 2020; Pham et al., 2019;

Sadeghi et al., 2020; Sun et al., 2020):
1 N
RMSE = \/WZ(pOJ —pw.)2 2)
=1
N
z(po,j _ﬁo)(pt,j _I_)t)
R= = 3)

where N is the number of the samples, po, and
D, is the actual value and the average real
experimental value, p, and ﬁt is the predicted
value and the average predicted value,
calculated according to the forecast model.
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4. Results and discussions

As described above, the ANN model with a
four-layer structure [4-8-6-1] was applied to
predict friction capacity. Prior to the simulation
process, a trial-and-error test was first
conducted in varying the hidden layer from 1 to
2, combining with the number of neurons from
1 to 10 neurons. The selected ANN structure
exhibited optimal performance. Of the
collected data, 70% of the data corresponds to
45 data randomly assigned to the network
training phase, and the remaining 30%
corresponds to the 20 data assigned to the
testing phase. The essence of this is to separate
the testing and training parts. This means that
the data of the testing (30%) is entirely
unknown to the ANN model (learned) before.
For that reason, the forecasting capacity of the
ANN model can be evaluated objectively and
accurately. In the general forecasting problem,
the forecasting capacity of the model is the
most important. It is expressed through the
error evaluation criteria, as previously
mentioned. On the other hand, the influence of
the inputs on the driven pile's friction capacity
in clay is analyzed in this section.

4.1. Performance of Backpropagation ANN

Figure 3 shows the friction capacity of
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driven piles predicted by the ANN model (a)
training; (b) testing comparing with
experimental data. The results demonstrated
that the proposed algorithm could correctly
predict the friction capacity in comparison
with experimental data. The error of the
model for the training and testing datasets
were small compared to the experimental
data (cf. Figs. 4a, b). Figure 4a shows the
frequency versus error value of the training
phase, whereas Figure 4b shows that of the
testing phase. During the training period, the
errors were small, and some errors were
found in the range [-20;40] (kPa). In the
testing phase, the errors were slightly higher
than the errors of the training phase with
range [-45;55] (kPa). However, the errors
were closely concentered around 0 for both
the training and testing parts. These errors
showed that the predictive ability of the
ANN model proposed is good with the
lowest error. The mean errors of the training,
testing parts were estimated as 2.9181, and
2.6481, respectively. Besides, the standard
deviation values were 12.6476 and 26.5719,
and the RMSE values were 12.8422 and
25.9984 for the training and testing datasets,
respectively.
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Figure 3. Friction capacity of driven piles by ANN model (a) Training; (b) Testing
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Figure 4. Errors of the ANN algorithm for (a) training dataset; (b) testing dataset

The regression model for the training and
testing phases is shown in Figs. 5a and 5b,
respectively. It could be observed that the
predictive ability of the ANN model is
relatively high. The correlation value obtained
for training was R = 0.88814, and that of the
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testing phase was R = 0.87895. It could be
concluded that applying the ANN model for
predicting friction capacity of driven strength
is possible with high accuracy and low errors.
Therefore, the ability ANN model for
predicting was relatively high.
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Figure 5. ANN regression results for (a) training; (b) testing

4.2. Significance of input variables

The numerical value of friction capacity of
driven piles predicted by the ANN model and
each selected input variable is dependent,
which is effectively estimated by Partial
Dependence Plots (PDP). The PDP of 4 input

variables is shown in Fig. 6. For the pile
length, the latter value varied from [85 to 0].
The latter value is from [75 to 0] for the pile
diameter. The latter value varied from [180 to
25] for effective vertical stress and from [120
to 25] for undrained shear strength. The latter
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value of 6 inputs strongly fluctuates.
However, based on the variation amplitude of
each range, the influence on the prediction
output is in order of effective vertical stress,
undrained shear strength, pile length, and pile
diameter, respectively. In fact, the undrained
shear strength, depending on water, is found
as the crucial variable for the soil shear
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reduces the angle of friction and connection
among the particles of soil. This increases the
friction capacity of the pile by increasing the
undrained shear strength. The geometrical
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have less influence on the friction capacity of
driven piles.
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Figure 6. Partial dependence plots (PDP) of variables used in this study

5. Conclusions

This study shows a simple but effective
approach using the ANN algorithm to predict
the frictional resistance of piles in clay. An
optimal ANN structure [4-8-6-1] has been
proposed, statistically evaluated to verify the
reliability of the results and confirm the
excellent performance of the proposed ANN
model. Two criteria, the correlation
coefficient (R) and the Root Mean Square
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Error (RMSE) were used to assess the
correlation between the predicted values and
the actual experimental ones. The proposed
ANN model showed high reliability (R =
0.88814). Besides, a sensitivity analysis was
performed using PDP to assess the
significance of input variables. The obtained
results showed that effective vertical stresses
and undrained shear strength were the factors
that significantly affected the friction
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resistance. The results of this study might be
useful for quickly and accurately predicting
the friction capacity of driven piles practice.
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