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ABSTRACT

Landslide susceptibility mapping is a helpful tool for assessment and management of landslides of an area. In this
study, we have applied first time Forest by Penalizing Attributes (FPA) algorithm-based Machine Learning (ML)
approach for mapping of landslide susceptibility at Muong Lay district (Vietnam). For this aim, 217 historical
landslides locations were identified and analyzed for the development of FPA model and generation of susceptibility
map. Nine landslide topographical and geo-environmental conditioning factors (curvature, geology/lithology, aspect,
distance from faults, rivers and roads, weathering crust, slope, and deep division) were utilized to construct the
training and validating datasets for landslide modeling. Different quantitative statistical indices including Area Under
the Receiver Operating Characteristic (ROC) curve (AUC) were used to evaluate the performance of the model. The
results indicate that the predictive capability of the FPA is very good for landslide susceptibility mapping on both
training (AUC = 0.935) and validating (AUC = 0.882) datasets. Thus, the novel FPA based ML model can be utilized
for the development of accurate landslide susceptibility map of the study area and this approach can also be applied in
other landslide prone areas.
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1. Introduction

Landslides are one of the most disastrous
geo-hazards affecting life and property of
inhabitants in hilly areas (Zhong et al., 2020).
Nowadays, landslides events are occurring
more frequently due to change in the land use
pattern with increasing population and climate

“Corresponding author, Email: hai banglh@utt.edu.vn

change effect (Shirzadi et al., 2012; Shirzadi
et al.,, 2017). It requires more attention of
governments and hazard managers to find a
better way for controlling and preventing this
natural phenomenon (Zhang et al., 2016).
Mapping of landslide susceptibility is one of
the important and effective tools for
assessment and management of landslides
(Dou et al., 2020; Ghasemain et al., 2020).
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Such maps help in better land use planning by
decision makers for reducing the damages
induced by landslides, especially in hilly areas
(Nguyen et al., 2019).

In recent decades, various statistical
approaches have been proposed and used for
mapping of landslide susceptibility, which
includes  expert’s  opinion techniques,
weighted techniques, and machine learning
(ML) techniques (Nohani et al., 2019; Zhou et
al.,, 2018). Out of these techniques, ML is
considered as more accurate and advanced
approaches for better performance of models
in generating landslide susceptibility map
(Zhou et al., 2018). Achour and Pourghasemi
(2019) evaluated some of the ML methods
such as Support Vector Machine (SVM),
Random Forest (RF), and Boosted Regression
Tree (BRT) which could improve the
accuracy of landslide susceptibility maps.
Chang et al. (2019) applied and compared
different ML models such as RF, SVM, and
Logistic Regression (LR) for mapping
landslide susceptibility, and proved that these
ML models performed well for generation of
landslide susceptibility maps. Hu et al. (2020)
compared several ML models such as Naive
Bayes (NB) and SVM with Fractal Theory
(FT) model. Other popular machine learning
techniques used in mapping of landslide
susceptibility include Decision trees (DT)
(Pham et al., 2016) and Artificial Neural
Networks (ANN) (Harmouzi et al., 2019), and
Adaptive Neuro-Fuzzy Inference System
(ANFIS) (Aghdam et al., 2016).

Recently, Adnan and Islam (2017)
proposed a novel decision forest algorithm
namely Forest by Penalizing Attributes (FPA)
which builds a set of highly accurate decision
trees using the strength of all non-class
attributes available in a data set. The proposed
algorithm  promotes imposes penalties
(disadvantageous  weights) and  strong
diversity to those attributes which participated
in the latest tree to create the subsequent trees.
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The analysis results indicated that FPA
algorithm is good in creating more balanced
and highly accurate decision forests in
comparison with other prominent decision
forest algorithms, thus it is very good
technique in the domain of expert and
intelligent systems. In view of this, in this
research, the FPA algorithm-based ML model
has been used for mapping of landslide
susceptibility at Muong Lay district (Vietnam)
where landslides often occur every year.
Various  quantitative  statistical  indices
including Area Under the ROC curve (AUC)
were used to evaluate the predictive capability
of the model. Weka and GIS software were
used for modeling and data processing,
respectively.

2. Characteristic of study area

District of Muong Lay, which is lied in the
northwest of Vietnam, was chosen as the
study area covering about 114.03 km’ area
(Fig. 1). The district is described by rugged
topography, with the elevation ranges from
125 to 1778m with slope gradients up to 73%.
Average temperature in the area is 22-23°C
and rainfall 1483 mm/year. In this area the
Dien Bien Phu Fault is prominent active
fault. Sheared weathered sedimentary and
metamorphic rocks and Quaternary sediments
form vulnerable zones for landslides, which
occur usually during monsoon period.

3. Materials and Methods
3.1. Geospatial data

For landslide modeling, an inventory map
of landslides is constructed using past and
present landslide data from available records,
satellite and Google Earth images (Nhu et al.,
2020a) (Fig. 1). Mostly landslides occur along
the Vietnam Highways 6 and 12 are of
rotational, translational, debris, rock fall and
mixed types. In total 217 landslide events
were recorded in the Muong Lay district. Out
of these, 70% landslide events (locations)
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were utilized to generate training dataset for
the proposed model, whereas 30% remaining
event locations were used to generate testing
dataset for the evaluation of the model.

On the base of the local topographical and
geo-environmental conditions, and literature
review (Phong et al., 2019), nine landslide

factors: curvature, deep division, aspect,
geology/lithology, weathering crust, slope,
and distance from faults, rivers and roads
were used in the model study. Detail
description of these factors (Fig. 1) and their
frequency ratio analysis (Fig. 2) is also
presented in Phong et al. (2019).
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Figure 1. Location map of Muong Lay district, Vietnam showing landslide event points
3.2. Methods used imposed to the participated attributes in the

3.2.1. Forest by Penalizing Attributes (FPA)
algorithm

FPA is a recently developed algorithm,
which avoids several drawbacks of Random
Forest (Adnan and Islam, 2017; Hong et al.,
2020). In the FPA algorithm, entire attribute
set was used to construct the next decision
trees and penalties was simultaneously

latest decision tree (Hong et al., 2020; Samat
et al., 2019). Each level in the tree possessed a
certain weight-range and weights were
randomly distributed to the participating
attributes (Adnan and Islam, 2017; Hong et
al.,, 2020). With classical decision tree
algorithms, more than one tree might have a
chance to be the identical if the training
datasets used the same distribution of weights
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on attributes (Hong et al., 2020; Samat et al., a decision tree is generated based on the
2019). In order to avoid the construction of  previously built bootstrap sample.

similar trees, the mechanism of FPA was Step 3: Weight values and gradual weight
different and could be summarized in four increment values are updated for all the
steps as below (Adnan and Islam, 2017): attributes from the latest tree.

] Step 4: Choosing the corresponding weight
Step 1: Generate a bootstrap sample from increment values, which is not in the latest

the training data set. tree, and used to update the weights of the
Step 2: Using the weights of the attributes, respective attributes.
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Figure 2. Landslide conditioning factors: (a) aspect, (b) curvature, (c) deep division, (d) distance from
faults, (e) distance from rivers, (f) distance from roads, (g) geology, (h) slope, and (i) weathering crust
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Figure 3. Frequency ratio analysis of landslide conditioning factors

3.2.2. Validation methods

In this study, popular quantitative
statistical indexes such as Negative Predictive
Value (NPV), Positive Predictive Value
(PPV), Kappa index (k), Accuracy (ACC),
Root Mean Square Error (RSME), Specificity
(SPF), and Sensitivity (SST) were used to
assess predictive capability of the FPA model
(Dao et al., 2020; Nguyen et al., 2020; Van
Dao et al, 2020). Quantitatively, smaller
RMSE values represent better accuracy for

landslide models. Whereas, higher values of
NPV, PPV, SPE, k, SST, and ACC show
better accuracy (Nguyen et al., 2019).

In addition, Area Under the ROC curve
(AUC) was computed to validate predictive
capability of the model. This is the standard
performance metric for evaluating
classification problems (Pourghasemi et al.,
2020). The AUC represents probability that a
landslide model will rank for a randomly
chosen positive landslide sample higher than a
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randomly chosen non-landslide. The value of
AUC is based on the specificity and
sensitivity values on the ROC curve (Nhu et
al., 2020b). The highest value of AUC =1 is
best for the prediction of any model.

4. Results and discussion

4.1. Validation of landslide susceptibility
model

Landslide susceptibility model using FPA
was validated on both training and testing
datasets (Table 1 and Figs. 4, 5). In term of
training dataset, the FPA has a good
performance as the values of PPV, NPV,
ACC, SPF, SST, and Kappa are 88.08%,
85.43%, 86.75%, 87.76%, 85.81% and 0.735,
respectively. With testing dataset,
performance of the FPA is also good as the
values of PPV, NPV, ACC, SPF, SST, and
Kappa are 83.33%, 78.46%, 80.92%, 82.26%,
79.71%, and 0.615, respectively (Table 1).
Figure 4 shows that the error of the models is
small on both training (RMSE = 0.322) and
testing (RMSE = 0.373) datasets. Based on
the ROC curve analysis, the FPA model
performs well for both training (AUC =
0.935) and testing (AUC = 0.882) datasets.

In general, it is reasonable to state that the
FPA model has a good performance for
mapping of landslide susceptibility at the
study area. Compared with other published
studies using same datasets, it can be seen that
the FPA is much better models than SVM
(AUC = 0.87), LR (AUC = 0.863), ANN
(AUC = 0.865), and REPT (AUC = 0.851)
(Phong et al., 2019). This is reasonable as
FPA performance is similar to Bagging or
Random Forest, where bootstrap samples are
used to construct the decision trees (Adnan
and Islam, 2017). Therefore, the trees are
different if they are constructed from different
bootstrap samples. Moreover, once the first
tree is constructed, the second tree will be
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different from the previously constructed tree
due to mechanism of building trees in FPA.
Last but not least, the strategy of the weight
increment of FPA algorithm will generate
different distribution of weight to different
trees. Another advantage of the FPA is that it
avoids any hyper-parameters during the
learning process (Adnan and Islam, 2017).
With these advantages, performance of the
FPA is a robust and reliable model for
mapping of landslide susceptibility as
observed in this study.

Table 1. Model performance using various
validation criteria
No.| Parameters | Training model | Validation model
1 TP 133 55
2 TN 129 51
3 FP 18 11
4 FN 22 14
5 | PPV (%) 88.08 83.33
6 | NPV (%) 85.43 78.46
7 SST (%) 85.81 79.71
8 SPF (%) 87.76 82.26
9 | ACC (%) 86.75 80.92
10 Kappa 0.735 0.615
Legend
Magnitude of error of training models (RMSE = 0.322)
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= Magnitude of error of validation model (RMSE = 0.373)
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Figure 4. Error analysis of the models
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Figure 5. Evaluation of model using ROC curve: (a) training dataset (b) validating dataset

4.2. Construction and validation of landslide
susceptibility map

Map of landslide susceptibility was finally
constructed using the FPA model (Fig. 6). This
process was implemented in two main steps.
Firstly, indexes of landslide susceptibility were
extracted from the training process of FPA.

These indexes were then assigned for all pixels
of the area. Secondly, these indexes were
finally classified into five classes (very high,
high, moderate, low and very low) using the
natural break classification method in GIS
application to construct the final landslide

susceptibility map (Fig. 6).
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Figure 6. Landslide susceptibility maps produced by FPA model
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Validation of the constructed landslide
susceptibility map was also done using
frequency ratio analysis, which indicated that
15.6% of the study area falls into very high

susceptibility zone, 18.9 % in high
susceptibility zone, 16.76% in moderate
susceptibility  zone, 16.8% in low

susceptibility zone, and 31.8% in very low
susceptibility zone (Fig. 7). Validation of the
susceptibility map was also done using

Moderate
76

Percentage of class pixels (%)

Very low

Moderate
3 0.868

High
1.917

Frequency ratio

frequency ratio analysis (Fig. 7). Results show
that very high and high susceptibility classes
have the highest values of frequency ratio
(2.668 for very high class and 1.917 for high

class) which indicates that the performance of
landslide susceptibility map constructed is
good and reliable for practical application in

better land wuse planning
management at the study area.

and hazard
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Figure 7. Validation of landslide susceptibility map

5. Concluding remarks

In this study, we have applied first time
FPA algorithm-based ML approach for

landslide susceptibility mapping at Muong
Lay district (Vietnam). Results of the
statistical analysis show that the performance

244

of the FPA is very good for landslide
susceptibility mapping on both training
(AUC: 0.935) and testing (AUC: 0.882)
datasets. Analysis of the model performance
based on other statistical methods such as
NPV, PPV, ACC, SPF, SST, and Kappa also
show very good results. RMSE Value of the
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model was also small on both training
(RMSE: 0.322) and testing (RMSE: 0.373)
datasets. Performance evaluation of FPA
model shows that this model is a robust and
reliable  for mapping of landslide
susceptibility. Thus, the proposed FPA based
ML model can be utilized for the construction
of accurate landslide susceptibility map and
for better land use planning and hazard
management not only of the study area but
also of other landslide prone areas depending
on the local geo-environmental factors.

The FPA algorithm is relatively new which
has been applied in landslide study in the
present paper. Results indicated that it is
effective in generating highly accurate results,
thus it is a promising ML algorithm for
landslide studies. Its further application in
other areas is required to be explored for
proper landslide management.
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