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ABSTRACT

Shallow landslides through land degrading not only lead to threat the properly and life of human but they also
may produce huge ecosystem damages. The aim of this study was to compare the performance of two decision tree
machine learning algorithms including classification and regression tree (CART) and reduced error pruning tree
(REPTree) for shallow landslide susceptibility mapping in Bijar, Kurdistan province, Iran. We first used 20
conditioning factors and then they were tested by information gain ratio (IGR) technique to select the most important
ones. We then constructed a geodatabase based on the selected factors along with a total of 111 landslide locations
with a ratio of 80/20 (for calibration/validation). The performance of the models was checked by the true positive rate
(TP Rate), false positive rate (FP Rate), precision, recall, F1-Measure, Kappa, mean absolute error, and area under the
receiver operatic curve (AUC). Results of IGR specified that the slope angle and TWI had the most contribution to
shallow landslide occurrence in the study area. Moreover, results concluded that although these models had a high
goodness-of-fit and prediction accuracy, the CART model (AUC=0.856) outperformed the REPTree model
(AUC=0.837). Therefore, the CART model can be used as a promising tool and also as a base classifier to hybrid
with optimization algorithms and Meta classifiers for spatial prediction of shallow landslide-prone areas.
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1. Introduction effects and damages on material and human.
Steep topographies, heavy rainfall, weak
lithology, poor human development on the
land are some of the main factors that are
responsible for a landslide occurrence (Chen
"Corresponding author, Email: binhpt@utt.edu.vn et al., 2017a; Jaafari et al.,, 2018). Climate

Landslide is considered as one of the most
dangerous disasters in the world because of its
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change in conjunction with rapid changes in
land use increases the number and intensity of
landslides around the world (Barik et al.,
2017; Tien Bui et al, 2018a), causing
damages and challenges to decision-makers
(Hong et al., 2016; Jaafari et al., 2015). The
landslide is a complicated phenomenon
because of the time of rapid occurrence on
large space and that is more difficult to fight
against (Guzzetti et al., 2006). This disaster
occurs in numerous regions of the world,
caused great damage every year on material
and population life, for example, 1.5 billion
dollars in the United States, 2 billion in Japan
(Bloechl and Braun, 2005). Iran is considered
one of the countries most affected by
this phenomenon because of climatic,
topographical, human factors. This
phenomenon causes about 500 billion rials of
damages in Iran, these figures do not yet
count the destruction of non-renewable goods
(Pourghasemi et al., 2012). Landslide analysis
is very necessary in order to reduce the
damage. Because the landslide susceptibility
analysis makes it possible to determine the
spatial probability of landslide occurrences
that can estimate and predict by analyzing the
relationships between landslide events in the
historical and geomorphologic, hydrologic,
climatic and human activity factors
(Ercanoglu and Gokceoglu, 2004). At the
center of all measurements, landslide
susceptibility maps must be available because
of preliminary information on these maps for
landslide response and management planning.
Determining landslide susceptibility areas can
contribute to reducing damage to agriculture,
and livelihoods by avoiding new construction
and developments in exposed areas.
Technically, two principle method is used to
build the landslide susceptibility map: the
qualitative technique and the quantitative
technique. The main qualitative method based
on the knowledge and experiences of the
experts (Pham et al., 2018b). The analytic

hierarchy process (AHP) is the most known
method of the qualitative method (Chen,
2016; Shirzadi et al.,, 2017a). With the
development of computational power, the
quantitative method is more used by
researchers to analyze natural catastrophes
like flash flood and landslide, for example, the
statistical method includes frequency ratio
(FR) (Guzzetti et al., 2006; Shirzadi et al.,
2017a), information value (IV) (Chen et al.,
2014), statistical index (SI) (Regmi et al.,
2013), certainly factor (Chen, 2016; Hong et
al., 2016), weights-of-evidence (WOE) (Chen
et al.,, 2018a; Ozdemir and Altural, 2013),
logistic regression (LR) (Chen et al., 2018a;
Hemasinghe et al., 2018; Shirzadi et al., 2012;
Tien Bui et al., 2019a), Fuzzy logic (Cloke
and Pappenberger; Hemasinghe et al., 2018).
Nowadays machine learning algorithms have
been attended by researchers, include artificial
neural network (ANN) (Hemasinghe et al.,
2018; Le et al., 2020; Nguyen et al., 2019a;
Shirzadi et al., 2017b; Tien Bui et al., 2019c¢),
decision tree (DT) (Shirzadi et al., 2017b),
Adaptive Neuro-Fuzz Inference System
(ANFIS) (Shirzadi et al., 2017b), support
vector machine (SVM) (Shirzadi et al., 2017b;
Tien Bui et al., 2019¢), k-nearest neighbour
(KNN) (Shirzadi et al., 2017b), Bayesian
logistic regression (BLR) (Taheri et al., 2019;
Tien Bui et al., 2018b), kernel logistic
regression (KLR) (Chen et al., 2020a; Chen et
al., 2019a; Chen et al., 2018b), logistic model
tree (LMT) (Abedini et al., 2019; Chen et al.,
2018a; Chen et al., 2019b; Khosravi et al.,
2019a), boosted regression tree (BRT)
(Shafizadeh-Moghadam et al., 2018), naive
bayes tree (NBT) (Chen et al., 2020b; Chen et
al., 2017b; Khosravi et al.,, 2019b), J48
Decision Trees (J48) (Chen et al., 2020¢) and
alternate decision tree (ADTree) (Shirzadi
et al., 2018; Tien Bui et al., 2018c; Tien Bui
etal., 2019¢c).

There are many studies that used the
CART model in other environmental fields
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such as air quality modeling (Choubin et al.,
2020), earth fissure modeling (Choubin et al.,
2019b), flood susceptibility assessment
(Choubin et al., 2019a), groundwater
modeling (Choubin et al., 2019c), river
suspended sediment modeling (Choubin et al.,
2018a), precipitation forecasting (Choubin et
al., 2018b). However few studies have been
focused on the REPTree on landslide
susceptibility mapping. Researchers have a
tendency to integrate individual models to
become a hybrid artificial intelligence using
optimization algorithms. For example, ANFIS
coupled with the genetic algorithm (ANFIS-
GA) (Bui et al., 2018; Hong et al., 2018);
ANFIS integrated with particle swarm
optimization (ANFIS-PSO) (Nguyen et al.,
2019¢), ANFIS coupled with the differential
evolution algorithm (ANFIS- DE) (Hong et
al., 2018); ANFIS coupled with the
biogeography-based optimization (ANFIS-
BBO) and BAT algorithms (ANFIS-BAT)
(Ahmadlou et al., 2018), ANFIS and invasive
weed optimization (ANFIS-IWO), ANFIS
with Whale Optimization Algorithm (WOA)
and Grey Wolf Optimizer (GWO) (Chen et
al., 2019a), ANFIS built using the ICA and
firefly algorithm (FA) (Bui et al.,, 2018),
ANFIS coupled with the imperialistic
competitive algorithm (ANFIS-ICA) (Wang
et al., 2019), naive bayes tree based on the
random subspace (RS-NBT) (Shirzadi et al.,
2017b), KNN classifiers based on bagging
(KNNs-BA) ensemble (Shahabi et al., 2020).
To increase model accuracy, researchers
combined machine learning meta classifiers
with statistical base classifiers (Shafizadeh-
Moghadam et al., 2018), For example, support
vector regression (SVR) and ICA (SVR-ICA)
(Nguyen et al., 2019b), ADTree coupled with
the multiboost, bagging (BA), rotation forest
(RF) and random subspace Meta classifiers
(Shirzadi et al., 2018), rotation forest based
ANN, SVM DT and naive bayes (NB), (Pham
et al., 2019a) and radial basis function neural
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network coupled with rotation forest
algorithm (RBFRF) (Pham et al., 2018b),
support vector machine and its ensembles
(Tien Bui et al.,, 2019e), SVM, ABTree,
ADTree and REPTree and different
ensembles (Nguyen et al., 2019b; Pham et al.,
2019b; Thai Pham et al., 2019; Tien Bui et al.,
2019b; Tien Bui et al., 2019d), random forest
integrated with random subspace Meta
classifier (RS-RF) (Miraki et al., 2019).
Although there are several methods for
assessing the susceptibility of the landslide;
however, there is still no conclusion on the
best method for other regions. Each region has
different geomorphological, hydrological,
climatic and human activity conditions,
therefore the methods with high accuracy are
required to analyze the landslide. In this
article, we compiled the CART and REPTree
algorithms to select the best methods for the
spatial prediction of shallow landslides to
assist land use decision-makers. The CART
algorithm is fast and do not need a long time
for the training process and is known as a
time-consuming algorithm when the training
dataset is huge. Additionally, the resulting of
CART classification model can be easily
interpreted that is considered as one of the
strong advantages of it over other
classification techniques (Lee et al., 2006). It
is inherently a non-parametric that does not
assume the distribution of values of the
conditioning factors. Moreover, it can process
the numerical dataset that is highly skewed or
multi-modal as well as categorical factors
with either ordinal or non-ordinal structure
(Breiman et al., 1984). REPTree as one of the
fast learner decision tree algorithms can build
a decision tree using an information gain ratio
technique for splitting criterion and also can
prune the tree by reduced-error pruning
technique (Zhao and Zhang, 2008). It is a
useful and applicable decision tree algorithm
because it can better fit to deal with different
scenarios (Zhao and Zhang, 2008). For
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example, Devasena (2014) was performed a
comparison among different decision tree
algorithms such as random forest, and they
concluded  that  REPTree algorithm
outperformed the other decision tree
algorithms (Barbon Jr et al., 2016). These two
mentioned algorithms belong to decision tree
algorithms that few studies have been
conducted to compare them for landslide
modeling worldwide. On the other hand, the
study area is a semi-arid region that has been
comprised of loose and erodible formations
especially on slopes that after a low intensify
rainfall shallow landslide will occur.

2. Data acquisition and preparation
2.1. Description of study area

The study area is located in northeast of
Kurdistan province in Iran. This zone lies
between 35°4825"N and 35°59'50"N in
latitude and 47°28'50"E and 47°46'44"E in
longitude, with altitudes ranging from
1573.69 to 2550 meters above sea level
(Fig. 1). Its area is about 598 square
kilometers. The surface of this area is mostly
mountainous and its slope is between 0 and
67.7 degrees. However, the average slope of
the region is 5.73°. Analysis of precipitation
data for the period 1987 to 2014 shows that
the average annual rainfall is 338 mm. In
terms of land use, about 78% of the land is
covered by arable land. Other categories of
land cover are classified as irrigation lands,
woodlands, rangelands, residential areas and
barren land (1.2%) that cover the least.
According to Koppen classification climate is
classified as D (cold air). The number of snow
days and frozen days are 35 and 104,
respectively. The maximum and minimum of
average daily temperatures are 4.409 and
13.401°C, respectively (Shirzadi et al.,
2017b).  Geologically, 191.46  square
kilometers (31.97%) of the area comprises
Qtl (high level nonconforming, texturally
variable, recent elastic sediments), 248.75

square kilometers (41.83%) is covered by Plc
(pelagic conglomerate with marl cement and
sand is covered by sandstone displacement)
and 138.77 square kilometers (23.17%) is
covered by Ksl (shale and dark green
sandstone, locally metamorphosed into low-
grade facies). The study area is located in the
Sanandaj-Sirjan tectonic zone of Iran where
most of the mountains are composed of
carbonaceous rocks (Miocene Formation),
while the hilly areas are mainly covered by
Pliocene structures including shale and marl
and Quaternary sediments. Most of the faults
are located in the south of the study area, with
the northern half almost without fault. Most of
these faults are northwest-southwest (Shirzadi
et al., 2017b; Shirzadi et al., 2019; Shirzadi
et al., 2018).

2.2. Landslide inventory map

The quality of a landslide inventory map
has an effective contribution to the
performance of the models (Shirzadi et al.,
2019). In this study, we collected a total of
111 shallow landslide polygons from Forests,
Rangeland and Watershed Management
Organization of Iran (FRW). Then, these
locations were confirmed by field surveys,
and interpretations of aerial photographs
(1:40,000 scale) and satellite images. We
selected the center of the scarp of the shallow
landslide as shallow landslide locations with a
ratio of 80% (89 cases) for training and 20%
(22 cases) for validation datasets. Field
surveys revealed that most of the shallow
landslides had a slip depth lower than 3
meters (Shirzadi et al., 2017b; Shirzadi et al.,
2018). According to Varnes et al. (1989),
shallow landslides in the study area were
mainly classified as rotational sliding
(70.6%), complex type (22.4%), and the
rotational falling type (6.3%). Comprehensive
information about shallow landslide frequency
and its dimension can be found in (Shirzadi
et al., 2017b; Shirzadi et al., 2019).
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Figure 1. The location of shallow landslides of the study area in Iran and Kurdistan province

2.3. Landslide conditioning factors

In this study, we based on the literature
review, data availability and our experiences
of the study area selected 20 conditioning
factors for developing landslide susceptibility
prediction models (Fig. 2). According to this
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figure, the slope angle as a known important
conditioning factor is widely used for
developing landslide susceptibility prediction
models (Chen et al., 2017c). The slope angle
was extracted from the digital elevation model
obtained from ASTER satellite image with a
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resolution of 30 m x 30 m and it was
classified into 8 classes (Fig. 2b). The slope
aspect was made and classified based on
azimuth in 9 classes (Fig. 2¢). The elevation
factor has been wused in all landslide
susceptibility mapping studies as one of the
affecting factors. In this study, the elevation
map with 9 categories was prepared (Fig. 2a).
The curvature map was also extracted from
the DEM and classified into 6 classes ranges
from -12.478 to 15.578 (Fig. 2m). The Profile
curvature also controls the velocity changes of
the mass of soil flowing down the slope. This
factor varies in the study area from -6.738 to
10.386 which was then classified into 6
classes (Fig. 20). Also, Plan curvature values
that ranging from -10.722 to 7.455, were
classified into 6 classes (Fig. 2n). Sediment
transport index (STI) by surface flow
determines the amount of transported
sediments. The STI can be expressed as
below: (Moore and Burch, 1986):

sin

[22 13 0. 0856] (M
where A; is specific catchment area (m?) and
B is slope gradient (radian). In this study, STI
map was divided into six classes (Fig. 2p).
Precipitation maps were prepared using the
mean annual precipitation at 21 rainfall
stations for the period 1996-2005. The map
was categorized into 7 ranks (Fig. 2f). Also,
the annual solar radiation (h) is calculated
based on aspect and slope by ArcGIS 10.3
using the "Area solar radiation" tool. In this
study, the solar radiation map was classified
into 7 classes using ‘natural break intervals’
classification method (Fig. 2). Another factor
influencing landslides is the stream power
index (SPI), was calculated as (Moore and

Wilson 1992):
SPI = 4 xtan 3 ()

Where Ag is the specific basin area (m’)
and B is represents the local degree of slope.
The SPI show stream power to transport the
sediment in the rivers that is affected by soil

characteristic. Finally, the SPI map was
divided into 6 categories (Fig. 2q). Another
variable is Topographic wetness index (TWI),
which is calculated as follows:
As
o) ®
Where A s is the cumulative upslope area
draining through a point (M2) and f is the
slope angle at that point. In this study, the
TWI map was classified into 6 categories
(Fig. 2r). The TWI, SPI and STI conditioning
factors were prepared by SAGA software. In
this study, the river map was extracted from
1:50000 topographic map. The distance to the
river was produced in 5 categories (Fig. 2)
and the river density map was classified into 7
classes using the ‘natural break interval’
method (Fig. 2k). Also, the lithology map of
the studied basin was extracted from the
geological map of Sanandaj with a scale of 1:
100,000. Then, the lithological map was
prepared and classified into 3 categories (Fig.
2c) and the distance to fault map was made
using lithological data fault lines by ArcGIS
10.3 and was classified into 6 classes
(Fig. 2g). Finally, the fault density map was
classified into 7 classes (Fig. 2j). The land use
map was prepared using satellite imagery of
Landsat 7 (ETM+) dated April 25, 2008, by
the ‘supervised classification” method in PCI
Geomatica V9.1 into 6 classes (Figure 2d).
Normal Difference Vegetation Index (NDVI)
can evaluate the vegetation status of slope
surfaces. The NDVI is calculated from the
reflectance measurements in the red (band 3)

and near-infrared spectrum (band 4) as:
NDVI = (NIR (Band4)— Red(Band3))

(NIR(Band4) + Red(Band3)) ( )

NDVI varies from 1 to -1 and the map was
classified into 7 classes (Fig. 2t). Road
conditions are another important factor that is
used in landslide risk assessment models.
Thus, in the study area, distance to road map
in 5 classes (Fig. 2i) and the road density map
in 7 categories were prepared and used for
shallow landslide modeling (Fig. 21).

TWI= Ln[

213



Vietnam Journal of Earth Sciences, 42(3), 208-227

47730L

Tegend
R EL

© Training

()

47°40'L

477351

47°45'L

Kilometers

0 2 4 8

ation (m)

® Validation £33 1,573- 1,700 @ 2,000- 2,100 [ 2.400 - 2,549
£31.700- 1,800 @ 2,100 - 2,200 ’

0 1,800 - 1,900

8 1,900 - 2.000

.200 - 2,300
32,300 - 2,400

Kilometers

Legend U2 A o

28 v Slope (Degree)
e Validation BEo.5 —120-25
= ‘Iraining B 5-10 [ 25-30

[0 10-15 [ 30-45
[ 15-20 M >45

(b)

Legend
@ Validation
< Iraining

(©)

3 southcast (112.5-157.5)

47°35'L 47°40'1

47°45'L

South (157.5-202.5)
3 southwest (202.5247.5)
7.

Norlhwest (2 37.5)
M Norih (337.5-360)

Legend
* Validation
< ‘Iraining

47°40% 47°451;

Kilometers

0o 2 4

Landuse

[ Very dense grass land [l Dense grass land
B Residential arca [ Cultivated Land
" | Open grass land [0 Barren land

47°35'L 47°40'L

Legend
* Validation
= Training

(2)

Kilometers

o 2 4
s

Distance to Fault (m)

0 - 200 77 600 - 800

W 200 - 400 800 - 1000

T 400 - 600 T >1000

()

Kilometers

0o 2 4

Legend
* Validation Lithology

 Training -~ %“r:::::a“ Bl Cretaceous

47°30'L 47°35' 47°40'L 47°45'L

Kilometers

o 2 4 8
Legend
* Validation Dit ¢ to Rivers (m)
< ‘Traini B o - so B 150 - 200
{raining 770 50 - 100 =200
(h) 71 100- 150

Legend
® Validation
© ‘Iraining

47°40% 47°45'1;

Legend
® Validation
= ‘Iraining

@

Kilometers
0o 2 4 8 ‘ éi
Rainfll (mm)
= 263 - 270 == 330 - 360 = 420 - 450
=1 270 - 300 = 360 - 390
= 300 - 330 = 390 - 420
47°35'LL 47°40'L2 47°45'L%

0o 2 4

Distance to Road (m)

0 - 50 8 150 - 200
B 50 - 100 =200
[ 100 - 150

Legend
* Validation
= Training

@

Kilometers

2 4 8

Fault Density (km/km2)
Jo-o03

303 - 08
Edos-12
217

&

47°35'L
3 IV

Kilometers

Legend 2 4
® Validation  Riyer Density (km/km2)
° Training .

47°30'

Legend
® Validation
= Training

@

477351 47°40

Kilometers

0o 2 4 8
Road Density (km/km2)
77 0 - 0.0013 L1 0.0055 - 0.0069

B 0.0013 - 0.0027 [ 0.0069 - 0.0083
[ 0.0027 - 0.0041 [ 0.0083 - 0.0097
[ 0.0041 - 0.0055

Figure 2. Landside conditioning factors map and their classes for landslide modeling in study area
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3. Methodology we used of information gain ratio (IGR). This

3.1. Factor selection using information gain
ratio technique

The role of conditioning factors on
landslide occurrence is not the same because
of their predictive powers. In the modeling
process, the modeler should select appropriate
factors with the highest capability. Although
there are some methods to select these factors,

technique measure prefers to select attributes
having a large number of values (Quinlan,
1986). The IGR technique is assigned the
weights for each conditioning factor by
entropy method and the importance of the
factors are ranked based on the obtained
weighs named average merit (AM). The IGR
is considered the noise and over-fitting among
the training distaste and it removes the factors
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that have no high predictive power (AM=0).
Accordingly, the higher the value of IGR, the
more importance the conditioning factor
will be.

Given L as a training detest with m input
sample, (Si, L) is the number of samples in
training dataset L belonging to the class label
(shallow landslide).
The average merit (AM) is obtained based on
the entropy or expected information for each

sample of the training dataset can be

landslide-non-shallow

computed such as for slope angle using the
following equation (Han and Kamber, 2001):

IGR (L, Slope) = oL EalLSlope) 5,
SplitE (L, Slope)

in(sp Slope), , 2(S;, Slope) )

E @)= 2 |L| 2, | |
E, (L. Slope) i—JEn@ Q
=1
. n j‘ ‘Lj‘
SplitE, (L, Slope) = - |Tlog2|L—| ®)
j=1

3.2. Classification and regression tree

algorithm

This method, which forms a decision tree
with binary divisions, was introduced by
Briman et al. This method is designed for
quantitative variables but is applicable to any
type of variable. According to this algorithm,
statistical software under the name of CART
is also developed, which is one of the most
2017¢). In

this method and for the qualitative response

popular applications (Chen et al.,

variable, the Gini Index is introduced as a
criterion for selecting appropriate variables. In
the introduction of the tree model with binary
divisions, other parameters such as entropy
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can be used. The advantage of the Gini index
over entropy and other indices is its higher
speed in computation. The CART model can
be introduced as one of the best-known
classification models for diagnosis and
prediction (Hess et al., 1999; Loh, 2014). In
the CART model pruning of the classification,
tree is done on the basis of Cost-Complexity
and the accuracy of the introduced tree is
introduced using the test sample. One
disadvantage of the CART model is its bias in
the selection of variables (Timofeev, 2004). In
addition, in qualitative variables with more
than two levels, the results can be confusing.
Since several levels of a variable may be
assigned to a node, this does not make it easy
to interpret the results (Youssef et al., 2016).

3.3. Reduced error pruning tree algorithm

This method is proposed by Quinlan. First,
the tree is allowed to grow well enough.
Nodes are then pruned that do not increase the
accuracy of the clustering. The data are
divided into two test and training sets. The
tree is trained with training data. It is then
deleted for an internal node (non-branch n) of
sub-node n deleted (Pham et al., 2019b). This
sub-branch is replaced by a leaf. This leaflet is
referred to as the majority examples category,
meaning the category of most examples
placed wunder this category. The tree
performance is tested on test examples if the
pruned tree performs better than or equal to
the current tree, the pruned tree is used.
Pruning continues until pruning is no longer
beneficial (Elomaa and Kaariainen, 2001;
Firnkranz and Widmer, 1994). Figure 3
shows the sections of the current research in
the study area.
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Figure 3. A flowchart of the methodology

3.4. Model validation and comparison

The knowledge generated during the
model learning phase should be analyzed in
the evaluation phase to determine its value
and then determine the performance of the
model learning algorithm. These criteria can
be calculated for both the training data set at
the learning stage and the test record set at the
evaluation stage (Wu and Yen, 2009). We in
this study used of the following measures to
check the performance of the models:

3.4.1. Accuracy

The most important criterion for
determining the efficiency of an accuracy
classification algorithm is the classification
rate, which calculates the accuracy of a whole
cluster. In fact, this criterion is the most
popular and most general criterion for
calculating the efficiency of classification
algorithms, which shows that the designed

cluster correctly classifies a few percent of the
entire set of experimental records.
Classification accuracy is obtained using
Equation 1, which states that the two values of
TP and TN are the most important values that
should be maximized in a two-dimensional

problem (Wang et al., 2003).
CA= —N+¥TP )
TN+FN+TP+FP
where TP, FN, FP, and TN are true positives,
false negatives, false positives and true

negatives.
3.4.2. Precision

The Precision criterion measures the ratio
of the number of "correct predictions" made
for samples of a particular class to the number
of "total predictions" for samples of the same
class (this number includes all the correct
predictions and false predictions). The high
value for the accuracy criterion indicates the
low number of data that is incorrectly
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categorized in a particular class (Pham et al.,

2019).
TP

TP+FP

Precision =

(10)
3.4.3. Recall

The Recall criterion represents the ratio of
"the number of correctly categorized textual
data" in a particular class to the total number
of data that must be categorized in the same
class. The high value for the Recall criterion
indicates the low number of data that is not
incorrectly categorized in that particular class.
Using this criterion alone is not correct for
evaluating system performance and should be
used alongside the Precision criterion because
it is easy to design textual classification
models that are highly accurate and do not
necessarily mean high precision (Stojanova et

al., 2006).
TP

TP+FN

Recall =

(1)
3.4.4. Kappa

The interrater reliability/precision of the
data is estimated using kappa index. If the
same data gives the same score the interrater
will be happened among data. The kappa
close to 1 indicates the degree of agreement
between the data (Shirzadi et al., 2017b). The
kappa can be computed according to the
following equation (Shirzadi et al., 2018):

kappa = o~ Tet (12)

" Lest

Pa::(TP+TN)&TP+TN+FN+FP)
P = ((TP+FN)(TP+FP)+(FP+TN)(FN+TN ) /(TP+TN+FN+FP)) (13)
3.4.5. Mean Absolute Error

Mean absolute error is an error-based
measure to check the performance of the
models. The lower the MAE will be, the better
the performance of the model is. The MAE
can be formulated as bellow (Bui et al., 2018):

1

MAE = - il — x| (14)

Where n is the number of errors, xi is the
prediction and x is the true value.
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3.4.6. Receiver Operating Characteristic (ROC)

Another important criterion used to
determine the efficiency of a cluster is the
Area under the Curve (AUC). The AUC
represents the area under the Receiver
Operating Characteristic (ROC) chart. The
larger the value of a subclass, the more
efficient the final clustering performance is
evaluated. In fact, ROC curves are two-
dimensional curves where DR is the True
Positive Rate (TPR) on the Y axis and
similarly False Positive Rate (FPR) which
drawn on the X-axis (Janizadeh et al., 2019;
Shirzadi et al., 2017b). The AUC value for a
cluster that randomly determines the sample
cluster under study is 0.5. The maximum
value of this criterion is also equal to 1 and
occurs for a condition that is ideal clustering
and can detect all positive samples without
any false warnings (Avand et al., 2019;
Shirzadi et al., 2019).

4. Results and analysis

4.1. The most important factors using IGR
technique for shallow landslide modeling

Conditioning factors play an important role
in constructing the landslide susceptibility
model. However, from the literature review,
there is no guide to selecting these factors.
The selections of these factors depend on
several elements such as the availability of
data, the condition of geomorphology,
hydrology, climate, and human activities. 20
samples were generated from the four groups,
so it's important to check these factors if some
variables are useless and have similar values,
which can reduce the performance and model
and focus on the important factors. In this
article, we used the IGR technique which is
considered one of the most popular techniques
for evaluating conditioning factors. It assigns
a weighting to each factor to rank the
prediction ability. Factors have higher values
that are more important in the model. In this
study, Slope angle, TWI, Curvature plane, LS,
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Curvature, Elevation, Solar radiation,
Curvature profile, SPI, Aspect, Land use,
rainfall are more important. In the study area,
a landslide occurs in the high elevation zone

with the loss of vegetation and the
construction of humans (Fig. 4).
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Figure 4. The most important conditioning factors
using IGR technique for shallow landslide
susceptibility mapping

Table I Modeling validation and comparison

4.2. Modelling process of shallow landslide

In this paper, the model is constructed by
the training data and the test data is used to
validate the models. Table 1 show some
measures of statistics to evaluate how the
model is performing. The CART model is
better for training data (TP Rate = 0.932, FP
Rate = 0.068, Precision = 0.933, Recall =
0.932, Fl-Mesaure = 0.932, AUC = 0.958,
Kappa = 0.864, MAE = 0.1717) and
validation dataset (TP Rate = 0.841, FP Rate =
0.158, Precision = 0.845, Recall = 0.841,
Fl-Mesaure = 0.841, AUC = 0.839, Kappa =
0.673, MAE = 0.225), fallowed by REPTree
with the traning data (TP Rate = 0.889, FP
Rate = 0.111, Precision = 0.898, Recall =
0.889, Fl-Mesaure = 0.888, AUC = 0.889,
Kappa = 0.778, MAE = 0.191) and the
validation dataset ((TP Rate = 0.833, FP Rate
= 0.167, Precision = 0.839, Recall = 0.833,
Fl-Mesaure = 0.833, AUC = 0.833, Kappa =
0.667, MAE = 0.235) (Table 1).

CART REPTree
Training Validation Training Validation

1* 0* | Average | 1 0 | Average| 1 0 | Average| 1 0 | Average
TP Rate 0.914/0.951| 0.932 |0.900[0.783| 0.841 [0.815]0.963| 0.889 [0.900]|0.767| 0.833
FP Rate 0.049/0.086| 0.068 |0.217]0.100| 0.158 ]0.037[0.185| 0.111 [0.233]0.100| 0.167
Precision 0.949/0.917| 0933 |0.811]0.880| 0.845 [0.957[{0.839| 0.898 [0.794|0.885| 0.839
Recall 0.914/0.951| 0.932 |0.900[0.783| 0.841 [0.815]0.963| 0.889 [0.900]|0.767| 0.833
F1-Mesaure |[0.9310.933| 0.932 |0.831/0.850| 0.841 [0.880|0.897| 0.888 |0.844|0.821| 0.833
AUC 0.958/0.958| 0.958 |0.839]0.839| 0.839 [0.889|0.889| 0.889 |0.833]0.833| 0.833

Kappa 0.864 0.673 0.778 0.667

MAE 0.117 0.225 0.191 0.235

*1 and 0 are shallow landslide and non-shallow landslide

4.3. Development of Shallow landslide
susceptibility mapping

After model validation, the CART and
REPTree models are used to construct the
landslide susceptibility map. This process is
accomplished by feeding 12 selected
conditioning factors out of 20 factors to the
study area from two models. The values of
susceptibility are variable from 0 to 1 which is

reclassified in 4 groups using the natural
break: low, moderate, high and very high.
Figures 5 show the landslide maps using the
CART and REPTree model. The landslide
occurs mostly in the high elevation zone
where vegetation loss and near the inhabitant
area. These maps are useful for assisting land-
use decision-makers and landslide
management in reducing damage.

risk
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Figure 5. Shallow landslide susceptibility maps by REPTree and CART models
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4.4. Evaluation shallow landslide

susceptibility maps

of

From the literature review, the predictive
ability of the model is tested by the known
technical: receiver operating characteristics
(ROC). The performance of the model is
presented by the sensitivity of the y-axes and
the 1-specificity on the x-axes. The surfaces
under the arch ROC is used to determine the
model precisions with values from 0 to 1. If
the values are equal to 1, the model is perfect.
Figure 6 shows the AUC values of the two
proposed models. The results indicate that the
CART model is better than the REPTree

1.0
(a)
0.8
2 0.6
2
=
7]
c
[
0 0.4
0.2
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0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

model in terms of training data and
validations data (AUC training data = 0.906
and AUC validation data = 0.856), followed
by REPTree (AUC data from training = 0.857,
AUC validation data = 0.837). Two models
proposed are reasonable and reliable to build
the map of landslide susceptibility in the
mountain region in Iran where often touches
by the landslide. However, risk management
is still the limit. As a result, these methods can
use as solutions for risk management
Moreover, these models can apply to the other
region in the world in general because the data

is free and can collect from the global portal.
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Figure 6. ROC curve and AUC: (a) training dataset, (b) validation dataset

5. Discussions

The results of the study of factors affecting
landslide susceptibility showed that one of the
factors affecting slope. The examination of
the slope map in the study area shows that the
higher slopes are more susceptible to landslide
than the lower slopes. At low slopes, usually,
the resistive forces such as soil friction are
higher than the driving forces such as gravity.
But on the higher slopes, the opposite was the
case due to the climate and vegetation
characteristics of the region, which provided

high gravity forces for landslides. The results
of this study are in agreement with the results
of Schlogel et al. (2018); Tavoularis et al.
(2018) and Kutlug Sahin and Colkesen,
(2019). They also found that slope is one of
the important factors affecting landslide
sensitivity. The next factor that had the
greatest impact on landslide sensitivity was
TWI. The survey of landslide maps in the
study area shows that the landslide susceptible

areas in the study area are in accordance with
the areas with high topographic moisture
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index. In areas with high TWI, due to
increased soil moisture, soil erosion and soil
stability increase. Areas with  higher
topographic wetness have a greater role in
maintaining and concentrating subsurface
waters, resulting in rapid water pressure
within the pores. Surface landslides often
occur in these areas. These findings are
consistent with the results of Taalab et al.
(2018) who showed that TWI is one of the
important  variables affecting landslide
susceptibility in the study area.

Landslide susceptibility modeling was
performed using two CART and REPTree
data mining models. Statistical criteria were
used to evaluate the efficiency of the models.
The results of the modeling showed that both
models had a good performance in
determining landslide zones, however, the
CART model had higher performance than the
REPTree models. The obtained result is in
agreement with Pham et al. (2018a). The main
advantage of the CART model is inherently a
non-parametric method that can control very
small or multidimensional numerical data
(Loh, 2014). In addition, no assumptions
should be made during the learning process
regarding the fundamental distribution of
predictive variable values. Therefore, it can
eliminate time analysis to determine whether
variables are normally distributed for
classification (Lewis, 2000). Similarly, CART
is able to search for all possible variables to
identify "split" variables. It is also effective in
dealing with missing variables. In addition,
CART is a fast and simple data mining
method (Lewis, 2000). Various researchers,
such as (Pham et al., 2018a; Youssef et al.,
2016) in the study of natural phenomena, have
shown that the CART model can predict these
phenomena well.

6. Conclusions

Landslides are one of the major
geographical hazards that cause the loss of
lives and property around the world.
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Landslide susceptibility mapping is a useful
tool in reducing landslide damage through
land-use planning and decision making. In the
present study, in order to map the
susceptibility to landslide hazards in Bjar,
Kurdistan province, Iran, 12 important
conditioning factors were used. The CART
and REPTree data mining models were used
for data analysis and modeling. According to
the results of the analysis, the slope and TWI
variables are of great importance in
determining landslide risk in the study area. It
can also be concluded that the CART model is
a promising method for predicting the location
of landslides that can be used in other
landslides. Its performance is even better than
other machine learning techniques (REPTree).
The landslide susceptibility map obtained
from this study can be of great help to
managers and planners in better decision
making and management and prevention of
potential hazards.
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