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ABSTRACT

L-band Synthetic aperture radar (SAR) data has been extensively used for forest aboveground biomass (AGB) es-
timation due to its higher saturation level. However, SAR backscatter is highly influenced by the topography charac-
teristics along with the bio-geophysical properties of vegetation and underneath soil characteristics. This has limited
the accuracy of directly relating the SAR backscatter with above ground biomass in highly undulated terrain. In this
study, it has been observed that terrain degree of slope and aspect plays a vital role in influencing the SAR backscat-
ter in addition with AGB. Because of this, the degree of slope and aspect along with SAR backscatter in HH (transmit
and receive polarizations are horizontal) and HV (transmit horizontal and receive vertical) polarizations have been
considered as inputs for Support Vector Machine (SVM) to improve the biomass retrieval accuracy. Our results
demonstrate that the accuracy of AGB estimation over hilly terrain can be significantly improved by considering
topographical characteristics in addition to L-band backscatter.
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1. Introduction continuous state of flux due to wildfires,
logging, land use dynamics (which include
shifting cultivation) etc., and thus contributes
to atmospheric carbon. Several initiatives such
as Reducing Emissions from Deforestation
and Forest Degradation (REDD) and REDD+
also rely heavily on AGB information (Koch,
2010). Because of importance and dynamism

Precise estimation of spatio-temporal
biomass is a vital component of carbon stock
quantification and understanding sources and
sinks. Forests are the dominant terrestrial
ecosystem which contains approximately 80%
of the Earth’s plant biomass (Pan, et al.,
2013). Forest biomass includes above ground S
and below ground components. Above ground Of_ AGB’ itois _hecessary fo.r accurate
biomass (AGB) contributes an amount of 70%  €stimation and continuous monitoring.
to 90% of the total forest biomass (Cairns et To assess forest biomass, several
al, 1997). Furthermore, AGB is in a approaches are followed which include field

measurements and developing allometric

"Corresponding author, Email: siva.iirs@gmail.com equations. However these methods provide
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more accurate estimations, but are not
effective for large area monitoring due to the
time, cost and labour involved. Whereas,
remote sensing provides synoptic temporal
coverage from local to global scales and is
more reliable for regional level as well as
global biomass monitoring. There are
different types of data, such as optical, radar
and LiDAR, with each one having certain
advantages over the others. In recent days,
Synthetic Aperture Radar (SAR) data has
gained prominence over other datasets for
AGB estimation due to its all-weather
capability and its sensitivity towards bio-
geophysical vegetation parameters (Thumaty
et al.,, 2016; Sivasankar et al., 2018). The
return signal to the radar is sensitive towards
sensor parameters such as frequency of
operation, polarization and incidence angle as
well as target parameters such as geometrical,
structural and dielectric  properties of
vegetation cover and underneath soil moisture
(Henderson and Lewis, 1998; Srivastava et
al., 2018). So, a legitimate choice of optimum
sensor parameters is critical to improve the
sensitivity of SAR data for a particular
application.

Numerous researchers have analyzed the
sensitivity of the SAR sensor parameters such
as frequency, polarization and incidence angle
towards AGB estimation (Harrell, et al., 1995;
Huang et al., 2015; Sivasankar et al., 2018).
Previous studies observed that the radar
backscatter saturates when the signal passes
through a certain biomass level, which is
influenced by the SAR sensor parameters and
topography characteristics (Imhoff, 1993;
Srivastava, et al., 2011; Lone et al., 2017).
Imhoff (1993) analyzed the C-, L- and P-band
quadpol. SAR data acquired between 40° and
50° incidence angle for biomass saturation
limits and observed that C-band saturates at~
20 tons/ha; L-band at ~40 tons/ha; and P-band
at ~100 tons/ha. It is also identified that the
saturation levels vary with the polarization as
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well. Srivastava et al., (2011) analyzed the
two-way attenuation in radar backscatter from
soil due to crop cover using water cloud
model. It was observed that the attenuation
increases with the increase in incidence angle
due to increase in signal propagation length
through vegetation cover. It is well-known
that each microwave frequency band has
saturation limit, with this it is understood that
the higher incidence angle SAR data gets
early saturation than lower incidence angle
(Srivastava, et al., 2011). Lone et al. (2017)
observed the early saturation of backscatter in
SAR shadowing aspects due to increase in
propagation length through vegetation than
from aspects facing towards sensor. It was
also observed that the HV backscatter can
estimate AGB with higher accuracy than HH
backscatter. Due to this complex function of
radar backscatter with several factors such as
sensor parameters as well as topography
characteristics, this is still a challenging task
to precisely retrieve AGB from SAR data.
Several researchers have attempted to
retrieve AGB using SAR data (Sivasankar et
al., 2018; Baig et al., 2017; Baghdadi et al.,
2015). Baig et al. (2017) estimated AGB of
Dalbergia sissoo forest plantation from dual-
polarized (HH and HV) ALOS-2 PALSAR
data using non-linear regression analysis by
training AGB model through ground-based
AGB measurements and SAR backscatter.
The study observed reasonable coefficient of
determination (R?) values of 0.47 and 0.55 for
HH and HV Dbackscatters respectively.
Baghdadi et al., (2015) analyzed the
sensitivity of L-band ALOS/PALSAR data to
forest biomass for Eucalyptus plantations.
Non-linear regression results found the R* of
less than 0.5 and RMSE higher than
46.7 ton/ha. However, the accuracy of AGB
estimation using nonlinear nonparametric
regressions based Random Forest algorithm
was improved slightly with R* increased from
0.88 to 0.92 and RMSE decreased from 22.7
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to 18.9 ton/ha by considering plantation age
along with backscatter. Due to the complexity
to retrieve AGB from backscatter alone,
several researchers have also attempted using
multi-sensor remote sensing data for this
purpose. Omar, et al. (2017) has used L-band
PALSAR-2 (HH and HV) and C-band
Sentinel-1A (VV and VH) SAR data for AGB
estimation in Dipterocarpus forest of
Malaysia. The study used simple linear and
multiple linear regression analysis and
observed that the combination of all
polarizations from both PALSAR-2 and
Sentinel-1A SAR data were able to increase
the accuracy and reduced the RMSE up to 14
Mg/ha compared to the estimation from single
polarization. Shao & Zhang (2016) estimated
forest AGB by combining optical and SAR
data in Genhe, Inner Mongolia, China. The
study has proposed a new passive optical and
active microwave integrated vegetation index
based on observations from both in-situ
measurements and  satellite  (Landsat-8
Operational Land Imager and RADARSAT-2
SAR data). It can be found from these
researches that the integrated use of both
optical and SAR data significantly improves
AGB estimation than the individual sources
only.

In this study, the main objective is to
evaluate the influence of the topography
characteristics (such as aspect and degree of
slope) on SAR backscatter for forest AGB
estimation. In addition, support vector
machine (SVM), a popular machine learning
technique, optimized by evolutionary
algorithm, was applied to retrieve AGB using
ALOS-2 PALSAR-2 data and SRTM derived
aspect and degree of slope. Nongkhyllem
wildlife sanctuary and reserve forest located
in the state of Meghalaya, India was taken
into account for the study area as there has
been very limited study on quantifying forest
AGB using SAR data in northeast India.
Further, the approaches of quantifying forest

AGB in other parts of India cannot be
exclusively followed in northeast part of India
due to its different topographical

characteristics. Thus, it is imperative to
undertake this study to quantify forest AGB
using SAR  considering  topographical
characteristics.

2. Materials and Methods

2.1. Study Area

This study was conducted in Nongkhyllem
wildlife sanctuary and reserve forest located
in the state of Meghalaya, India (Fig. 1). The
area consists of undulating plains to low hills
which are part of the Archaecan Meghalaya
Plateau, having elevation between 200m to
950 m asl while slope ranges from 0 to 49.85
degrees. Most part of the study area is covered
by dense tropical evergreen forest with
patches of tropical moist deciduous forest,
Assam  sub-tropical pine forest, semi
evergreen forest, Khasi sub-tropical wet hill
forest, Khasi hill sal and some jhum
cultivation. The important tree species are
Schima wallichi (8.26%), Shorea robusta
(5.37%), Tectona grandis (4.82%), Sterculia
villosa (4.36%), Castanopsis spp. (4.11%),
Bauhenia spp. (4.00%), Tetramales nudiflora
(3.85%), Artocarpus loocha (3.70%), Albizzia
procera  (3.53%), Michelia  champaca
(3.46%), Callicarpa arborea (3.42%) and
Miscellaneous spp. (51.12%) (Source: Forest
and Environment Department, Govt. of
Meghalaya). Roy et al. (2015) have recorded a
steady decrease in forests of northeast India
mainly due to logging, shifting cultivation and
mining. There has been very limited study on
quantifying forest AGB using SAR data in
northeast India. Further, the approaches of
quantifying forest AGB in other parts of India
cannot be exclusively followed in northeast
part of India due to its different topographical

characteristics. Thus, it is imperative to
undertake this study to quantify forest AGB
using SAR  considering  topographical
characteristics.
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Figure 1. Location of the study area

2.2. Datasets used

Fine beam dual polarized (HH and HV) L-
band ALOS-2 PALSAR-2 data with spatial
resolution of 9.1 m x 53 m (Range X
Azimuth), 24 cm radar wavelength and
incidence angle of 36.2° captured on
November 14th 2014 has been acquired from
the Japan Aerospace Exploration Agency
(JAXA) for this study. The PALSAR data
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used in this study is looking towards North-
East (NE) direction during data acquisition.
Shuttle Radar Topography Mission (SRTM)
30m DEM was used to generate slope, aspect
information of the study and also for terrain
correction of the PALSAR 2 image. The data
was processed in Sentinel Application
Platform (SNAP) toolbox provided by
European Space Agency (ESA).
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Data from 150 sampling plots of one-
hectare size from the Meghalaya Forest and
Environment Department (MFED) inventory
database was used to estimate plot level AGB.
The field data acquired from MFED included
individual tree based measured parameters of
tree height, girth at breast height (GBH) and
species type information of 1 ha plot size with
150 sampled plots. The estimated volume or
growing stock using the derived volumetric
equations was converted into dry biomass by
using specific gravity or wood density as the
product of specific gravity and volume
(Rajput et al.,, 1996; Mitchard et al., 2012).
These sampling plots have requisite size to be
considered for target parameters retrieval
using PALSAR-2 fine beam mode data (Patel
and Srivastava, 2013). Due to the limitations
of range Doppler terrain correction, in
resolving layover and shadowing, proper care
has been taken in choosing the sampling
locations for this study. Since the SAR data
used in the present study is of 36.2° incidence
angle, the ground-truth samples from terrain
with slope less than 36.2° are considered to
minimize the effect of geometrical errors in
SAR data processing of range Doppler terrain
correction (Jensen, 2007).

2.3. Support Vector Machine (SVM)

The SVM is a machine learning technique
using a high dimensional feature space.
Initially, the SVM was developed for optical
character recognition and object recognition
tasks (Scholkopf et al., 1998). The SVM and
Random Forest has produced better results
than other machine learning methods like
Neural Network (Attarchi & Gloaguen, 2014).
It yields prediction functions that are
expanded on a subset of support vectors. One
of the principle characteristics of the SVM is
that instead of reducing the observed training
error, the SVM endeavors to decrease the
generalized error in order to achieve
generalized performance. This generalization

error bound is the combination of the training
error and a regularization term that controls
the complexity of the hypothesis space
(Basak, Pal, & Patranabis, 2007). The SVM
essentially transforms the nonlinear regression
problem into a linear one by using kernel
functions to map the original input space into
a new feature space with higher dimensions
(Cristianini, & Taylor, 2000). Common kernel
functions include linear, polynomial, radial
bias function (RBF) and hyperbolic tangent,
among which, RBF is widely used for various
applications due to its typically better
performance and smaller number of input
parameters (Gao, et al., 2012).The RBF kernel
is defined as

Krpr(x,x") = el7vIx=xI7] (1)
Where, vy is kernel parameter
The SVM calculates the difference

between the estimated and the actual values,
and if the error is less than the ¢ (tolerated
training error i.e., e-insensitive loss), the
regression function is considered to be most
desirable and accurate (Samola and
Scholkopf,  2004).  Consequently, the
performance of an SVM model is highly
related to the values of the three parameters: C
(indicates the tradeoff between the tolerated
training error and the model complexity), €
and y (kernel parameter). To optimize their
selection, Evolutionary algorithm (Friedrichs
and Igel, 2005) was used in the present study.
Coefficient of determination (R*) and RMSE
(as given in Eq. 2) have been used to analyze
the AGB retrieval model performance.

Z?=1(AGB_esti—AGB_obsi)2

RMSE = J — (2)

Where, AGB est; is the jth plot estimated
AGB; AGB_obs; is the i plot observed AGB;
and n denotes the total number of plots.

3. Results and Discussion

The total 150 samples have been
segmented into two independent sets of 120
(80%) and 30 (20%) to model non-linear
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regression relationship of backscatter with in-
sitt AGB and validate the same respectively.
Fig. 2 shows the relationship between the
backscatter coefficients in HH and HV
polarization with in-situ AGB. As anticipated
from previous research works, the backscatter
is best fitted with logarithmic relationship and
HV backscatter yields higher R* and low
RMSE than HH backscatter (Thumaty et al.,
2016; Morel et al., 2011; Patel and Srivastava,
2013). The results show that HH backscatter
was of lower significance with R* and RMSE
of 0.30 and 48.01 ton/ha respectively; HV
backscatter was of higher significance with R
and RMSE of 0.38 and 45.95 ton/ha
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Figure 2. Relationship

The accuracy of forest AGB estimation
using ALOS PALSAR data have been
observed greater than 10 ton/ha in the
previous studies. For example, (Peregon and
Yamagata, 2013; Hamdan, et al., 2014) have
observed the RMSE of 51 ton/ha in Western
Siberia using ALOS PALSAR data and 33.90
ton/ha over Matang Mangroves, Malaysia
respectively. Because of this, the backscatter
from the sampled locations with 70 + 10
ton/ha (which ranges from 60 ton/ha to 80
ton/ha) have been considered to understand
the influence of the aspect and degree of
slope. The mean HH and HV backscatter of
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respectively. Thumaty et al., (2016) observed
the R* of 0.395 and 0.509 for HH and HV
backscatter respectively, which was carried
over central Indian deciduous forests using
ALOS PALSAR L-band data. This lower
significance may be due to the highly
undulated terrain of the study area. The
changes in topographic characteristics such as
aspect and degree of slope leads to the change
in local incidence angle which intern
influence the backscatter. So, this study has
continued to analyze the influence of aspect
and degree of slope on SAR backscatter in
context to the AGB estimation.
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having AGB in the range 70 + 10 ton/ha
samples from each aspect have been given in
the Fig. 3. The results clearly show that the
backscatter varies with the change in
topography aspect in spite of having the
nearly equal AGB. Higher backscatter was
observed from the South (S), South-West
(SW) and West (W) aspects facing towards
the sensor; lower backscatter from the
shadowing aspects which are North (N), NE
and East (E); and moderate backscatter from
North-West (NW) and South-East (SE)
aspects, which are facing perpendicular to the
sensor look direction.
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Figure 3. Mean HH and HV backscatter from the
sampled plots having 70 + 10 ton/ha
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The trend of the mean HH and HV
backscatter from sampled locations having 70
+ 10 ton/ha with changes in degree of slope
for all the three grouped cases is given in Fig.
4. It is observed that the HH and HV
backscatters have similar behavior. It is
identified that the backscatter increases with
increase in degree of slope over the aspects
facing towards the SAR sensor. Whereas,
backscatter decreases with increase in degree
of slope over the shadowing aspects (N-NE-
E). However, the backscatter has little
increased with increase in degree of slope
over the aspects facing perpendicular to the
SAR look direction. The results from Fig. 3
and 4 indicate that the aspect and degree of
slope are vital to be considered for AGB
estimation using SAR backscatter.
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Figure 4. Backscatter trend at various degree of slope (a) HV backscatter (b) HH backscatter

An attempt has been made to consider
aspect and degree of slope in addition to L-
band SAR backscattering coefficient as the
SVM model inputs for AGB retrieval. A total
of three models have been calibrated and
validated using 120 and 30 independent
samples respectively as given in Table 1. The
results indicated that the inclusion of aspect
and degree of slope information has
significantly improved the AGB estimation
accuracy. The SVM model with HH
backscatter observed R* and RMSE of 0.83
and 24.32 ton/ha, whereas the HV backscatter
observed R* and RMSE of 0.89 and 20.56

ton/ha. As anticipated from previous studies,
the HV backscatter model has shown better
performance than HH backscatter for AGB
retrieval. It is also identified that the use of
both HH and HV backscatter has improved R*
and RMSE of 0.02 and 2.35 ton/ha
respectively than HV backscatter alone.

Table 1. AGB retrieval results using SVM

Backscatter used in| Model Model validation
addition with development
Degree of slope 2 RMSE
and Aspect R N (ton/ha) N
HH 0.83 120 24.32 30
HV 0.89 120 20.56 30
HH and HV 0.91 120 18.21 30
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4. Conclusions

The present study has shown the influence
of terrain aspect and degree of slope for AGB
retrieval using L-band SAR data. It has been
observed that aspects facing towards the SAR
sensor have higher backscatter than from
shadowing aspects in spite of having nearly
same AGB. It is also identified that the SAR
backscatter increases with the increase in
degree of slope over aspect facing towards
SAR sensor, whereas decreases with the
increase in degree of slope over shadowing
aspects. This indicates that the topography
characteristics such are aspect and degree of
slope play a vital role in AGB retrieval using
SAR backscatter. In this study, the degree of
slope and aspect along with SAR backscatter
in HH and HV polarizations have been
considered as inputs for SVM to improve the
biomass retrieval accuracy. RMSE and R2
have been used to validate the accuracy of the
SVM. The results observed that the R* and
RMSE of 0.30 and 48.01 ton/ha respectively
with HH backscatter, whereas 0.38 and 45.95
ton/ha with HV backscatter using non-linear
regression approach. As anticipated from
previous studies, HV backscatter has shown
better performance for AGB estimation than
HH backscatter due to the multiple scattering
of illuminated microwave signal. Since the
degree of slope and aspect have effect on L-
band backscatter in addition to AGB, an
attempt has been made to train SVM for AGB
retrieval using both L-band SAR backscatter
and topography characteristics. The use of
topography characteristics such are aspect and
degree of slope in addition to ALOS-2
backscatter has significantly improved the
accuracy, R” of 0.83 and 0.89 are observed
with HH and HV backscatter respectively.
The use of both HH and HV backscatter has
slightly increased AGB retrieval accuracy to
R* and RMSE of 0.91 and 18.21 ton/ha
respectively.
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